26 research outputs found

    Determination of gamma and-2 beta(s) from charmless two-body decays of beauty mesons

    No full text
    Using the latest LHCb measurements of time-dependent CP violation in the B-s(0) -> K+K- decay, a U-spin relation between the decay amplitudes of B-s(0) -> K+K- and B-0 -> p(+)p(-) decay processes allows constraints to be placed on the angle gamma of the unitarity triangle and on the B-s(0) mixing phase -2 beta(s). Results from an extended approach, which uses additional inputs on B-0 -> pi(0)pi(0) and B+ -> pi(+)pi(0) decays from other experiments and exploits isospin symmetry, are also presented. The dependence of the results on the maximum allowed amount of U-spin breaking is studied. At 68% probability, the value gamma =( 63.5(-6.7)(+7.2))degrees modulo 180 degrees is determined. In an alternative analysis, the value -2 beta(s)= - 0.12(-0.16)(+ 0.14) rad is found. In both measurements, the uncertainties due to U-spin breaking effects up to 50% are included. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/)

    Measurement of the lifetime of the B-c(+) meson using the B-c(+) -> J/psi pi(+) decay mode

    No full text
    The difference in total widths between the B-c(+) and B+ mesons is measured using a data sample corresponding to an integrated luminosity of 3.0 fb(-1) collected by the LHCb experiment in 7 and 8 TeV centre-of-mass energy proton-proton collisions at the LHC. Through the study of the time evolution of B-c(+) -> J/psi pi(+) and B+ -> J/psi K+ decays, the width difference is measured to be Delta Gamma = Gamma(Bc+) - Gamma(Bc+) = 4.46 +/- 0.14 +/- 0.07 mm(-1) c, where the first uncertainty is statistical and the second systematic. The known lifetime of the B+ meson is used to convert this to a precise measurement of the B-c(+) clifetime, tau(Bc+) = 513.4 +/- 11.0 +/- 5.7 fs, where the first uncertainty is statistical and the second is systematic. (C) 2015 The Authors. Published by Elsevier B.V

    First measurement of time-dependent CP violation in Bs0→K+K− B_s^0\to K^+K^- decays

    No full text
    Direct and mixing-induced CP-violating asymmetries in B-s(0) -> K+K- decays are measured for the first time using a data sample of p p collisions, corresponding to an integrated luminosity of 1.0 fb(-1), collected with the LHCb detector at a centre-of-mass energy of 7 TeV. The results are C-KK = 0.14 +/- 0.11 +/- 0.03 and S-KK = 0.30 +/- 0.12 +/- 0.04, where the first uncertainties are statistical and the second systematic. The corresponding quantities are also determined for B-0 -> pi(+)pi(-) decays to be C-pi pi = -0.38 +/- 0.15 +/- 0.02 and S-pi pi = -0.71 +/- 0.13 +/- 0.02, in good agreement with existing measurements

    Observation of B-s(0) -> chi(c1)phi decay and study of B-0 -> chi K-c1,K-2*(0) decays

    No full text
    The first observation of the decay B-s(0) -> chi(c1)phi and a study of B-0 -> chi K-c1,K-2*(0) decays are presented. The analysis is performed using a dataset, corresponding to an integrated luminosity of 1.0 fb(-1), collected by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. The following ratios of branching fractions are measured: B(B-s(0) -> chi(c1)phi)/B(B-s(0) -> J/psi phi) = (18.9 +/- 1.8 (stat) +/- 1.3 (syst) +/- 0.8(B)) x 10(-2), B(B-0 -> chi K-c1*(0))//B(B-0 -> J/psi K*(0)) = (19.8 +/- 1.1 (stat) +/- 1.2 (syst) +/- 0.9(B)) x 10(-2), B(B-0 -> chi K-c2*(0))//B(B-0 -> chi K-c1*(0)) = (17.1 +/- 5.0 (stat) +/- 1.7 (syst) +/- 1.1(B)) x 10(-2), where the third uncertainty is due to the limited knowledge of the branching fractions of chi(c) -> J/psi gamma modes

    Measurement of the flavour-specific CP-violating asymmetry a(sl)(s) in B-s(0) decays

    No full text
    The CP-violating asymmetry a(sl)(s), is studied using semileptonic decays of B-s(0) and (B) over bar (0)(s) mesons produced in pp collisions at a centre-of-mass energy of 7 TeV at the LHC, exploiting a data sample corresponding to an integrated luminosity of 1.0 fb(-1). The reconstructed final states are D-s(+/-)mu(+/-)(s), with the D-s(+/-) particle decaying in the phi pi(+/-) mode. The D-s(+/-)mu(+/-)(s) yields are summed over B-s(0) and (B) over bar (0)(s) initial states, and integrated with respect to decay time. Data-driven methods are used to measure efficiency ratios. We obtain a(sl)(s) = (-0.06 +/- 0.50 +/- 0.36)%, where the first uncertainty is statistical and the second systematic

    Measurement of the charge asymmetry in B-+/- -> phi K +/- and search for B-+/- -> phi pi(+/-) decays

    No full text
    The CP-violating charge asymmetry in B-+/- -> phi K-+/- decays is measured in a sample of pp collisions at 7 TeV centre-of-mass energy, corresponding to an integrated luminosity of 1.0 fb-1 collected by the LHCb experiment. The result is A(CP)(B-+/- -> phi K-+/-) = 0.022 +/- 0.021 +/- 0.009, where the first uncertainty is statistical and the second systematic. In addition, a search for the B-+/- -> phi pi(+/-) decay mode is performed, using the B-+/- -> phi K-+/- decay rate for normalization. An upper limit on the branching fraction B(B-+/- -> phi pi(+/-)) < 1.5 x 10(-7) is set at 90% confidence level. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved

    Search for the rare decay D-0 -> mu(+) mu(-)

    No full text
    A search for the rare decay D-0 -> mu(+) mu(-) is performed using a data sample, corresponding to an integrated luminosity of 0.9 fb(-1), of pp collisions collected at a centre-of-mass energy of 7 TeV by the LHCb experiment. The observed number of events is consistent with the background expectations and corresponds to an upper limit of B(D-0 -> mu(+) mu(-)) < 6.2 (7.6) x 10(-9) at 90% (95%) confidence level. This result represents an improvement of more than a factor twenty with respect to previous measurements

    Search for the decay D-0 -> pi(+)pi(-)mu(+)mu(-)

    No full text
    A search for the D-0 -> pi(+)pi(-)mu(+)mu(-) decay, where the muon pair does not originate from a resonance, is performed using proton-proton collision data corresponding to an integrated luminosity of 1.0 fb(-1) recorded by the LHCb experiment at a centre-of-mass energy of 7 TeV. No signal is observed and an upper limit on the relative branching fraction with respect to the resonant decay mode D-0 -> pi(+)pi(-)phi(-> mu(+)mu(-)), under the assumption of a phase-space model, is found to be B(D-0 -> pi(+)pi(-)mu(+)mu(-))/B(D-0 -> pi(+)pi(-)phi(-> mu(+)mu(-))) pi(+)pi(-)mu(+)mu(-)) < 5.5 x 10(-7) at 90% confidence level. This is the most stringent to date

    Observation of the decay B-s(0) -> (D)over-bar(0)phi

    No full text
    First observation of the decay B-s(0) -> (D) over bar (0)phi is reported using pp collision data, corresponding to an integrated luminosity of 1.0 fb(-1), collected by the LHCb experiment at a centre-of-mass energy of 7 TeV. The significance of the signal is 6.5 standard deviations. The branching fraction is measured relative to that of the decay B-S(0) -> (D) over bar (0)phi to be beta B-S(0) -> (D) over bar (0)phi/beta B-S(0) -> (D) over bar (0)(K) over bar*(0) = 0.069 +/- 0.013 (stat) +/- 0.007 (syst). The first measurement of the ratio of branching fractions for the decays beta B-S(0) -> (D) over bar (0)(K) over bar*(0) and beta B-S(0) -> (D) over bar (0)(K) over bar*(0) is found to be beta B-S(0) -> (D) over bar (0)(K) over bar*(0/)beta B-S(0) -> (D) over bar (0)(K) over bar*(0=7.8) +/- 0.7(stat) +/- 0.3 (syst) +/- 0.6 (f(s)/f(d)) where the last uncertainty is due to the ratio of the B(s)(0)and B-0 fragmentation fractions

    Measurement of the track reconstruction efficiency at LHCb

    No full text
    The determination of track reconstruction efficiencies at LHCb using J/psi -> mu(+)mu(-) decays is presented. Efficiencies above 95% are found for the data taking periods in 2010, 2011, and 2012. The ratio of the track reconstruction efficiency of muons in data and simulation is compatible with unity and measured with an uncertainty of 0.8% for data taking in 2010, and at a precision of 0.4% for data taking in 2011 and 2012. For hadrons an additional 1.4% uncertainty due to material interactions is assumed. This result is crucial for accurate cross section and branching fraction measurements in LHCb
    corecore