50 research outputs found

    The Electronics and Data Acquisition System of the DarkSide Dark Matter Search

    Full text link
    It is generally inferred from astronomical measurements that Dark Matter (DM) comprises approximately 27\% of the energy-density of the universe. If DM is a subatomic particle, a possible candidate is a Weakly Interacting Massive Particle (WIMP), and the DarkSide-50 (DS) experiment is a direct search for evidence of WIMP-nuclear collisions. DS is located underground at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, and consists of three active, embedded components; an outer water veto (CTF), a liquid scintillator veto (LSV), and a liquid argon (LAr) time projection chamber (TPC). This paper describes the data acquisition and electronic systems of the DS detectors, designed to detect the residual ionization from such collisions

    The Electronics and Data Acquisition System of the DarkSide Dark Matter Search

    No full text
    It is generally inferred from astronomical measurements th at Dark Matter (DM) comprises approximately 27% of the energy-dens ity of the universe. If DM is a subatomic particle, a possible candidate is a Weakl y Interacting Mas- sive Particle (WIMP), and the DarkSide-50 (DS) experiment i s a direct search for evidence of WIMP-nuclear collisions. DS is located undergr ound at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, and consists of thr ee active, embedded components; an outer water veto (CTF), a liquid scintillato r veto (LSV), and a liquid argon (LAr) time projection chamber (TPC). This pap er describes the data acquisition and electronic systems of the DS detectors , designed to detect the residual ionization from

    DarkSide-50, a background free experiment for dark matter searches

    No full text
    The existence of dark matter is inferred from gravitational effects, but its nature remains a deep mystery. One possibility, motivated by considerations in elementary particle physics, is that dark matter consists of elementary particles, such as the hypothesized Weakly Interacting Massive Particles (WIMPs), with mass ~ 100 GeV and cross-section ~ 10−47 cm2, that can be gravitationally trapped inside our galaxy and revealed by their scattering on nuclei. It should be possible to detect WIMPs directly, as the orbital motion of the WIMPs composing the dark matter halo pervading the galaxy should result in WIMP-nucleus collisions of sufficient energy to be observable in the laboratory. The DarkSide-50 experiment is a direct WIMP search using a Liquid Argon Time Projection Chamber (LAr-TPC) with an active mass of 50 kg with a high sensitivity and an ultra-low background detector

    First Results from the DarkSide-50 Dark Matter Experiment at Laboratori Nazionali del Gran Sasso

    No full text
    We report the first results of DarkSide-50, a direct search for dark matter operating in the un- derground Laboratori Nazionali del Gran Sasso (LNGS) and searching for the rare nuclear recoils possibly induced by weakly interacting massive particles (WIMPs). The dark matter detector is a Liquid Argon Time Projection Chamber with a ( 46.4 0.7 ) kg active mass, operated inside a 30 t or- ganic liquid scintillator neutron veto, which is in turn installed at the center of a 1 kt water Cherenkov veto for the residual flux of cosmic rays. We report here the null results of a dark matter search for a ( 1422 67 ) kg d exposure with an atmospheric argon fill. This is the most sensitive dark matter search performed with an argon target, corresponding to a 90% CL upper limit on the WIMP-nucleon spin-independent cross section of 6.1 1

    Search for the decay D-0 -> pi(+)pi(-)mu(+)mu(-)

    No full text
    A search for the D-0 -> pi(+)pi(-)mu(+)mu(-) decay, where the muon pair does not originate from a resonance, is performed using proton-proton collision data corresponding to an integrated luminosity of 1.0 fb(-1) recorded by the LHCb experiment at a centre-of-mass energy of 7 TeV. No signal is observed and an upper limit on the relative branching fraction with respect to the resonant decay mode D-0 -> pi(+)pi(-)phi(-> mu(+)mu(-)), under the assumption of a phase-space model, is found to be B(D-0 -> pi(+)pi(-)mu(+)mu(-))/B(D-0 -> pi(+)pi(-)phi(-> mu(+)mu(-))) pi(+)pi(-)mu(+)mu(-)) < 5.5 x 10(-7) at 90% confidence level. This is the most stringent to date

    Measurement of the track reconstruction efficiency at LHCb

    No full text
    The determination of track reconstruction efficiencies at LHCb using J/psi -> mu(+)mu(-) decays is presented. Efficiencies above 95% are found for the data taking periods in 2010, 2011, and 2012. The ratio of the track reconstruction efficiency of muons in data and simulation is compatible with unity and measured with an uncertainty of 0.8% for data taking in 2010, and at a precision of 0.4% for data taking in 2011 and 2012. For hadrons an additional 1.4% uncertainty due to material interactions is assumed. This result is crucial for accurate cross section and branching fraction measurements in LHCb

    Measurement of CP violation and constraints on the CKM angle gamma in B-+/- -> DK +/- with D -> K-s(0)pi(+)pi(-) decays

    No full text
    A model-dependent amplitude analysis of B-+/- -> DK +/- with D -> K-s(0)pi(+)pi(-) decays is performed using proton proton collision data, corresponding to an integrated luminosity of 1 fb(-1), recorded by LHCb at a centre-of-mass energy of 7 TeV in 2011. Values of the CP violation observables x +/- and y +/-, which are sensitive to the CKM angle gamma, are measured to be x- = +0.027 +/- 0.0441(-0.008)(+0.010) +/- 0.001, y- = +0.013 +/- 0.0481(-0.007)(+0.009) +/- 0.003, x+ = -0.084 +/- 0.045 +/- 0.009 +/- 0.005, y+ = -0.032 +/- 0.048(-0.009)(+0.010) +/- 0.008, where the first uncertainty is statistical, the second systematic and the third arises from the uncertainty of the D -> K-S(0)pi(+)pi(-) amplitude model. The value of gamma is determined to be (84(-42)(+49))degrees including all sources of uncertainty. Neutral D meson mixing is found to have negligible effect. (C) 2014 The Authors. Published by Elsevier B.V

    Effective lifetime measurements in the B-s(0) -> K+K-, B-0 -> K+pi(-) and B-s(0) -> pi K-+(-) decays

    No full text
    Measurements of the effective lifetimes in the B-s(0) -> K+K-, B-0 -> K+pi(-) and B-s(0) -> pi K-+(-) decays are presented using 1.0 fb(-1)of pp collision data collected at a centre-of-mass energy of 7 TeV by the LHCb experiment. The analysis uses a data-driven approach to correct for the decay time acceptance. The measured effective lifetimes are tau(Bs0 -> K+K-) = 1.407 +/- 0.016 (stat) +/- 0.007 (syst) ps, tau(Bs0 -> K+pi-) = 1.524 +/- 0.011 (stat) +/- 0.004 (syst) ps, tau(Bs0 ->pi+K-) = 1.60 +/- 0.06 (stat) +/- 0.01 (syst) ps. This is the most precise determination to date of the effective lifetime in the B-s(0) -> K+K- decay and provides constraints on contributions from physics beyond the Standard Model to the B-s(0) mixing phase and the width difference Delta Gamma(s). (C) 2014 The Authors. Published by Elsevier B.V

    Measurement of the CP-violating phase phi(s) in (B)over-bar(s)(0) -> J / psi pi(+)pi(-) decays

    No full text
    The mixing-induced CP-violating phase phi(s) in B-s(0) and (B) over bar (0)(s) decays is measured using the J / psi pi(+)pi(-) final state in data, taken from 3 fb(-1) of integrated luminosity, collected with the LHCb detector in 7 and 8 TeV centre-of-mass pp collisions at the LHC. A time-dependent flavour-tagged amplitude analysis, allowing for direct CP violation, yields a value for the phase phi(s) = 70 +/- 68 +/- 8 mrad. This result is consistent with the Standard Model expectation and previous measurements. (C) 2014 The Authors. Published by Elsevier B.V

    Measurement of the Xi(-)(b) and Omega(-)(b) baryon lifetimes

    No full text
    Using a data sample of pp collisions corresponding to an integrated luminosity of 3 fb(-1), the Xi(-)(b) and Omega(-)(b) baryons are reconstructed in the Xi(-)(b) -> J/psi Xi(-) and Omega(-)(b) -> J/psi Omega(-) decay modes and their lifetimes measured to be tau(Xi(-)(b)) = 1.55(-0.09)(+0.10) (stat) +/- 0.03 (syst) ps, tau(Omega(-)(b)) = 1.54(-0.21)(+0.26) (stat) +/- 0.05 (syst) ps. These are the most precise determinations to date. Both measurements are in good agreement with previous experimental results and with theoretical predictions. (C) 2014 The Authors. Published by Elsevier B.V
    corecore