2 research outputs found
Pitch-informed instrument assignment using a deep convolutional network with multiple kernel shapes
This paper proposes a deep convolutional neural network for performing note-level instrument assignment. Given a polyphonic multi-instrumental music signal along with its ground truth or predicted notes, the objective is to assign an instrumental source for each note. This problem is addressed as a pitch-informed classification task where each note is analysed individually. We also propose to utilise several kernel shapes in the convolutional layers in order to facilitate learning of timbre-discriminative feature maps. Experiments on the MusicNet dataset using 7 instrument classes show that our approach is able to achieve an average F-score of 0.904 when the original multi-pitch annotations are used as the pitch information for the system, and that it also excels if the note information is provided using third-party multi-pitch estimation algorithms. We also include ablation studies investigating the effects of the use of multiple kernel shapes and comparing different input representations for the audio and the note-related information
Agreement among human and annotated transcriptions of global songs
Cross-cultural musical analysis requires standardized symbolic representation of sounds such as score notation. However, transcription into notation is usually conducted manually by ear, which is time-consuming and subjective. Our aim is to evaluate the reliability of existing methods for transcribing songs from diverse societies. We had 3 experts independently transcribe a sample of 32 excerpts of traditional monophonic songs from around the world (half a cappella, half with instrumental accompaniment). 16 songs also had pre-existing transcriptions created by 3 different experts. We compared these human transcriptions against one another and against 10 automatic music transcription algorithms. We found that human transcriptions can be sufficiently reliable (~90% agreement, κ ~.7), but current automated methods are not (<60% agreement, κ <.4). No automated method clearly outperformed others, in contrast to our predictions. These results suggest that improving automated methods for cross-cultural music transcription is critical for diversifying MIR