43 research outputs found
Dielectronic Recombination of Argon-Like Ions
We present a theoretical investigation of dielectronic recombination (DR) of
Ar-like ions that sheds new light on the behavior of the rate coefficient at
low-temperatures where these ions form in photoionized plasmas. We provide
results for the total and partial Maxwellian-averaged DR rate coefficients from
the initial ground level of K II -- Zn XIII ions. It is expected that these new
results will advance the accuracy of the ionization balance for Ar-like M-shell
ions and pave the way towards a detailed modeling of astrophysically relevant
X-ray absorption features. We utilize the AUTOSTRUCTURE computer code to obtain
the accurate core-excitation thresholds in target ions and carry out
multiconfiguration Breit-Pauli (MCBP) calculations of the DR cross section in
the independent-processes, isolated-resonance, distorted-wave (IPIRDW)
approximation. Our results mediate the complete absence of direct DR
calculations for certain Ar-like ions and question the reliability of the
existing empirical rate formulas, often inferred from renormalized data within
this isoelectronic sequence