856,393 research outputs found

    Color Superconductivity in Dense QCD and Structure of Cooper Pairs

    Full text link
    The two-flavor color superconductivity is examined over a wide range of baryon density with a single model. To study the structural change of Cooper pairs, quark correlation in the color superconductor is calculated both in the momentum space and in the coordinate space. At extremely high baryon density, our model becomes equivalent to the usual perturbative QCD treatment and the gap is shown to have a sharp peak near the Fermi surface due to the weak-coupling nature of QCD. On the other hand, the gap is a smooth function of the momentum at lower densities due to strong color magnetic and electric interactions. The size of the Cooper pair is shown to become comparable to the averaged inter-quark distance at low densities, which indicates a crossover from BCS to BEC (Bose-Einstein condensation) of tightly bound Cooper pairs may take place at low density.Comment: 6 pages, 5 figures. Invited talk at the Joint CSSM/JHF Workshop on Physics at Japan Hadron Facility (March 14-21, Adelaide, 2002

    Tunneling of Cooper pairs across voltage biased asymmetric single-Cooper-pair transistors

    Get PDF
    We analyze tunneling of Cooper pairs across voltage biased asymmetric single-Cooper-pair transistors. Also tunneling of Cooper pairs across two capacitively coupled Cooper-pair boxes is considered, when the capacitive coupling and Cooper pair tunneling are provided by a small Josephson junction between the islands. The theoretical analysis is done at subgap voltages, where the current-voltage characteristics depend strongly on the macroscopic eigenstates of the island(s) and their coupling to the dissipative environment. As the environment we use an impedance which satisfies Re[Z]<<R_Q and a few LC-oscillators in series with Z. The numerically calculated I-V curves are compared with experiments where the quantum states of mesoscopic SQUIDs are probed with inelastic Cooper pair tunneling. The main features of the observed I-V data are reproduced. Especially, we find traces of band structure in the higher excited states of the Cooper-pair boxes as well as traces of multiphoton processes between two Cooper-pair boxes in the regime of large Josephson coupling.Comment: 9 pages, 9 figures, Revtex

    Cooper v. Cooper

    Get PDF
    Settlement agreement that provided for decedent to name former spouse as life insurance beneficiary terminated with divorce decree, and decedent\u27s obligation to support former spouse ended with former spouse\u27s remarriage

    Superconducting crossed correlations in ferromagnets: implications for thermodynamics and quantum transport

    Full text link
    It is demonstrated that non local Cooper pairs can propagate in ferromagnetic electrodes having an opposite spin orientation. In the presence of such crossed correlations, the superconducting gap is found to depend explicitly on the relative orientation of the ferromagnetic electrodes. Non local Cooper pairs can in principle be probed with dc-transport. With two ferromagnetic electrodes, we propose a ``quantum switch'' that can be used to detect correlated pairs of electrons. With three or more ferromagnetic electrodes, the Cooper pair-like state is a linear superposition of Cooper pairs which could be detected in dc-transport. The effect also induces an enhancement of the ferromagnetic proximity effect on the basis of crossed superconducting correlations propagating along domain walls.Comment: 4 pages, RevTe

    AC Josephson effect and resonant Cooper pair tunneling emission of a Cooper Pair Transistor

    Full text link
    We measure the high-frequency emission of a single Cooper pair transistor(SCPT) in the regime where transport is only due to tunneling of Cooper pairs. This is achieved by coupling on-chip the SCPT to a superconductor-insulator-superconductor junction and by measuring the photon assisted tunneling current of quasiparticles across the junction. This technique allows a direct detection of the AC Josephson effect of the SCPT and provides evidence of Landau-Zener transitions for proper gate voltage. The emission in the regime of resonant Cooper pair tunneling is also investigated. It is interpreted in terms of transitions between charge states coupled by the Josephson effect.Comment: Revtex4, 5 pages, 4 figures, final versio

    dc Conductivity of an array of Josephson junctions in the insulating state

    Full text link
    We consider microscopically low-temperature transport in weakly disordered arrays of Josephson junctions in the Coulomb blockade regime. We demonstrate that at sufficiently low temperatures the main contribution to the dc conductivity comes from the motion of single-Cooper-pair excitations, scattered by irregularities in the array. Being proportional to the concentration of the excitations, the conductivity is exponentially small in temperature with the activation energy close to the charging energy of a Cooper pair on a superconductive island. Applying a diagrammatic approach to treat the disorder potential we calculate the Drude-like conductivity and obtain weak localization corrections. At sufficiently low temperatures or strong disorder the Anderson localization of Cooper pairs ensues.Comment: 4 page

    Unambiguous probe of parity-mixing of Cooper pairs in noncentrosymmetric superconductors

    Full text link
    We propose an experimental scheme to detect unambiguously parity-mxing of Cooper pairs in noncentrosymmetric superconductors, which utilizes crossed Andreev reflection processes between two oppositely spin-polarized normal metal leads and a noncentrosymmetric superconductor. It is demonstrated that a non-local conductance exhibits a clear signature of parity breaking of Cooper pairs, and thus, can be a direct probe for the parity-mixing.Comment: 4 pages, 2figure

    Cooper pair cotunneling in single charge transistors with dissipative electromagnetic environment

    Full text link
    We observed current-voltage characteristics of superconducting single charge transistors with on-chip resistors of R about R_Q = h/4e^2 = 6.45 kOhm, which are explained in terms of Cooper-pair cotunneling. Both the effective strength of Josephson coupling and the cotunneling current are modulated by the gate-induced charge on the transistor island. For increasing values of the resistance R we found the Cooper pair current at small transport voltages to be dramatically suppressed.Comment: 4 pages and 2 figure

    Crossover from time-correlated single-electron tunneling to that of Cooper pairs

    Full text link
    We have studied charge transport in a one-dimensional chain of small Josephson junctions using a single-electron transistor. We observe a crossover from time-correlated tunneling of single electrons to that of Cooper pairs as a function of both magnetic field and current. At relatively high magnetic field, single-electron transport dominates and the tunneling frequency is given by f=I/e, where I is the current through the chain and e is the electron's charge. As the magnetic field is lowered, the frequency gradually shifts to f=I/2e for I>200 fA, indicating Cooper-pair transport. For the parameters of the measured sample, we expect the Cooper-pair transport to be incoherent.Comment: 5 pages, 4 figures; v2: minor changes, clarifications, addition
    • …
    corecore