129 research outputs found

    Direct identification and susceptibility testing of enteric bacilli from positive blood cultures using VITEK (GNI+/GNS-GA)

    Get PDF
    AbstractObjective To study the possibility of reporting results of identification and susceptibility testing of Gram-negative bacilli the same day as bacteremia is detected by using direct inoculation from positive blood cultures (Bactec 9240) into VITEK GNI+ and GNS-GA cards.Methods All blood cultures with Gram-negative enteric bacillus-like morphology on microscopy found to be positive on workdays between 15 June 1999 and 29 February 2000 were included. Identification and susceptibility testing were done by three methods: the direct method using a suspension made by differential centrifugation of positive blood culture broth for inoculation of the VITEK cards; the standard method using an inoculum made from an overnight culture on a solid media; and the routine method (reference method) using conventional testing.Results Of 169 isolates, the direct method resulted in 75% correct identifications, 9% misidentifications and 17% non-identifications. All misidentified isolateswere Escherichia coli, of which 80% were reported as Salmonella arizonae. Five biochemical tests yielded most of the aberrant results; correcting the citrate and malonate reactions in most cases led to correct identification by the VITEK database. Despite a negative H2S reaction, 11 E. coli isolates were reported as S. arizonae. Two-thirds (69%) of identifications were reported within 6 h, and 95% of these were correct. The direct susceptibility testing method was assessable for 140 isolates. Correct results were found in 99% of isolate-antimicrobial combinations, and 85% were reported within 6 h.Conclusion The direct VITEK method could correctly report identifications and susceptibility patterns within 6 h, making same-day reporting possible for almost two-thirds (63%) of bacteremic episodes with Gram-negative bacilli. These results could probably be improved by modification of the identification algorithms of the VITEK software

    An Effective-Medium Tight-Binding Model for Silicon

    Full text link
    A new method for calculating the total energy of Si systems is presented. The method is based on the effective-medium theory concept of a reference system. Instead of calculating the energy of an atom in the system of interest a reference system is introduced where the local surroundings are similar. The energy of the reference system can be calculated selfconsistently once and for all while the energy difference to the reference system can be obtained approximately. We propose to calculate it using the tight-binding LMTO scheme with the Atomic-Sphere Approximation(ASA) for the potential, and by using the ASA with charge-conserving spheres we are able to treat open system without introducing empty spheres. All steps in the calculational method is {\em ab initio} in the sense that all quantities entering are calculated from first principles without any fitting to experiment. A complete and detailed description of the method is given together with test calculations of the energies of phonons, elastic constants, different structures, surfaces and surface reconstructions. We compare the results to calculations using an empirical tight-binding scheme.Comment: 26 pages (11 uuencoded Postscript figures appended), LaTeX, CAMP-090594-

    Shape- and Size-Specific Chemistry of Ag Nanostructures in Catalytic Ethylene Epoxidation

    Full text link
    Catalytic selectivity in the epoxidation of ethylene to form ethylene oxide on alumina-supported silver catalysts is dependent on the geometric structure of catalytically active Ag particles and reaction conditions. Shape and size controlled synthesis of Ag nanoparticles is used to show that silver nanocubes exhibit higher selectivity than nanowires and nanospheres. For a given shape, larger particles offer improved selectivity. The enhanced selectivity toward ethylene oxide is attributed to the nature of the exposed Ag surface facets; Ag nanocubes and nanowires are dominated by (100) surface facet and Ag nanospheres are dominated by (111). Furthermore, the concentration of undercoordinated surface sites is related to diminished selectivity to ethylene oxide. We demonstrate that a simple model can account for the impact of chemical and physical factors on the reaction selectivity. These observations have also been used to design a selective catalyst for the ethylene epoxidation reaction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64906/1/78_ftp.pd

    Effect of strain on surface diffusion and nucleation

    Get PDF
    The influence of strain on diffusion and nucleation has been studied by means of scanning tunneling microscopy and effective-medium theory for Ag self-diffusion on strained and unstrained (111) surfaces. Experimentally, the diffusion barrier is observed to be substantially lower on a pseudomorphic Ag monolayer on Pt(111), 60 meV, compared to that on Ag(111), 97 meV. The calculations show that this strong effect is due to the 4.2% compressive strain of the Ag monolayer on Pt. It is shown that in general isotropic two-dimensional strain as well as its relief via dislocations have a drastic effect on surface diffusion and nucleation in heteroepitaxy and are thus of significance for the film morphology in the kinetic growth regime
    • …
    corecore