3 research outputs found
A Comparison between Simulation Results of DSSAT CROPGRO-SOYBEAN at US Cornbelt using Different Gridded Weather Forecast Data
주요 곡물 생산 지역에 대한 작황 계절 예측을 위해 작물모형과 기상 예보자료들이 활용되고 있다. 이 때, 작물모형의 입력자료로 활용되는 기상자료의 불확실성이 작황 예측 결과에 영향을 줄 수 있다. 본 연구에서는 기상 예보자료에 따른 작물모형 결과에 미치는 영향을 알아보고자 하였다. 주요 곡물 생산 지역인 미국의 콘벨트 지역을 대상으로 중규모 수치예보 모형인 Weather Research and Forecasting (WRF)로 10km 해상도의 계절 예측 자료를 생산하였다. 보다 상세한 기상 예보자료 생산을 가정하기 위해 통계적 기법인 Parameter-elevation Regressions on Independent Slopes Model (PRISM) 기법을 활용하여 WRF 자료를 기반으로 5km 해상도로 예측 자료를 생산하였다. WRF와 PRISM 계절 예측 자료로 CROPGRO-SOYBEAN 모형을 구동하여 두 기상 예보자료에 따른 작물 생육 모의 결과를 얻었다. 2011~2018 기간에 대하여 4월 10일부터 8일 간격으로 11개의 파종일을 설정하였으며, 3개의 콩 성숙군에 대한 품종 모수가 사용되었다. 기상 자료의 불확실성을 파악하기 위해 작물 재배기간 동안의 누적 생육도일과 누적 일사량을 비교하였다. 예측된 수량 및 성숙일 등의 주요 변수들을 비교하였다. 두 기상 자료로부터 얻어진 변수들 사이의 일치도 통계량 계산을 위해 root mean square error (RMSE), normalized root mean square error (NRMSE) 및 structural similarity (SSIM) index가 사용되었다. WRF와 PRISM에서 계산된 누적 생육도일 사이의 일치도가 낮았던 연도에 콩 성숙일 모의 값에 대한 오차가 크게 나타났다. 콩 모의 수량 또한 성숙일 및 온도의 오차가 크게 나타났던 연도에 상대적으로 낮은 일치도를 가졌다. 또한 파종일이 수량 및 성숙일 예측의 일치도에 상당한 영향을 미치는 것으로 나타났다. 이러한 결과는 WRF와 PRISM 자료 사이에 온도 자료의 불확실성이 작황 예측의 불확실성에 영향을 주었으며, 재배 시기에 따라 그 불확도의 크기가 상이할 수 있음을 암시하였다. 따라서 신뢰도 높은 작황 예측 자료 생산을 위해 작물별 재배기간을 고려한 불확실성 평가 등의 추가적인 연구가 진행되어야 할 것으로 보인다.N
역학적 규모축소 기온을 이용한 남한지역 벼 수확일 1개월 예측
본 연구에서는 농촌진흥청에서 홍콩과학기술대학교와 국제공동연구를 통해 개발중인 1개월 농업기상 예측 시스템을 이용하여 2012-2022년 기간 동안 1개월 과거기후 예측 정보를 생산하고, 유효적산온도 기법을 적용하여 벼 수확일 전망 가능성을 살펴보았다. 상세한 기후정보를 얻기 위해, 지역기후모델(WRF)을 이용하여 전지구 기후예측 정보(CFSv2)를 남한지역에 대해 5 km 해상도로 규모축소하였다. 벼 수확일은 역학적 규모축소된 최고기온과 최저기온 과거예측 자료를 유효적산온도에 적용하여 추정하였다. 모형의 최고기온(최저기온)는 벼 생육기간(5월~10월)에 대해 관측과 비교하여 약 1.2 ℃ (0.1 ℃) 정도 과소모의하였다. 벼 수확일 추정 자료는 정성적으로 관측의 전반적인 공간 패턴을 모의하면서 지형효과에 의한 상세한 지역적 편차를 모의하였다. 그러나 음의 기온 오차가 유효적산온도에 투영되어, 예측자료에서 추정한 벼 수확일이 관측에서 추정한 벼 수확일과 비교하여 정량적으로 약 9일 늦게 모의하였다. 본 연구를 통해 1개월 기상예측 정보와 유효적산온도를 이용하여 남한 전역에 대해 공간적으로 연속적인 상세한(5 km) 벼 수확일 정보를 사전에 얻을 수 있는 가능성을 보았다. 예측정보의 신뢰성을 확보하고, 유효적산온도 뿐만 아니라 농업모형과 연계한다면 다양한 작목에 대한 농업정보들을 사전에 생산할 수 있을 것으로 생각된다.This study predicted rice harvest date in South Korea using 11-year (2012-2022) hindcasts based on dynamically downscaled 2m air temperature at subseasonal (1-month lead) timescale. To obtain high (5 km) resolution meteorological information over South Korea, global prediction obtained from the NOAA Climate Forecast System (CFSv2) is dynamically downscaled using the Weather Research and Forecasting (WRF) double-nested modeling system. To estimate rice harvest date, the growing degree days (GDD) is used, which accumulated the daily temperature from the seeding date (1 Jan.) to the reference temperature (1400℃ + 55 days) for harvest. In terms of the maximum (minimum) temperatures, the hindcasts tends to have a cold bias of about 1. 2℃ (0. 1℃) for the rice growth period (May to October) compared to the observation. The harvest date derived from hindcasts (DOY 289) well simulates one from observation (DOY 280), despite a margin of 9 days. The study shows the possibility of obtaining the detailed predictive information for rice harvest date over South Korea based on the dynamical downscaling method
