3 research outputs found

    Topological edge state lasers based on photonic Su-Schrieffer-Heeger lattices

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ๋ฌผ๋ฆฌยท์ฒœ๋ฌธํ•™๋ถ€(๋ฌผ๋ฆฌํ•™์ „๊ณต), 2020. 8. ์ „ํ—Œ์ˆ˜.Topological phases of matter opened the era of quantum materials by suggesting new states of matter. In particular, topological insulators are insulating in the bulk, but simultaneously the surface is conducting and the flow of surface electrons is topologically protected, so that scattering due to imperfections can be suppressed. These characteristics are expected to be useful for the development of spintronic devices or for stable information storage in quantum computers. On the other hand, the discovery in the fields of condensed matter has become another cornerstone for studying topological properties in other wave-particle systems such as light. In the case of the topological edge state of light, since it can be protected from backscattering due to imperfections as in the case of the electrons in the topological insulators, it is expected to be utilized in high-efficiency optical waveguides, couplers, and so on. Many studies on topological photonics have been conducted to observe the propagation characteristics of light, such as time-reversal symmetry broken edge states using a magnetic field, and spin-protected edge states using dedicatedly designed pseudospin of light. Lasing action from topological edge states has not been studied as much as passive (transport) properties. In the case of previous studies on the topological lasers mainly utilizing the microring resonator, the sizes of the device and the mode are dozens of micrometers. However, by using a photonic crystal resonator, the mode can be reduced to a wavelength scale, and a single mode oscillation is feasible due to the small mode size. Therefore, if an edge state laser using a photonic crystal resonator is developed, it is expected to be a new turning point in the study of the topological edge state lasers. In addition, the photonic crystal resonators usually suffer from process imperfections due to its small feature size. The topological edge state is relatively less sensitive to the disorder caused by such process variations, and thus the yield improvement of the optical device can be expected. In this thesis, for the first research topic, a robust topological edge state which is formed in a finite chain of photonic crystal (PhC) nanocavities combined with the Su-Schrieffer-Heeger (SSH) model is theoretically and experimentally demonstrated. We implement the model by arranging the same PhC nanocavities in an SSH dimer chain configuration composed of InAsP / InP multiple quantum well (MQW) epilayers, and demonstrate lasing behavior in relevant topological edge state and bulk state. In addition, the presence and robustness of TES is demonstrated by spectral analysis as well as direct visualization of the corresponding modal pattern using near-field optical microscopy techniques. For the second research topic, inspired by novel higher-order topological insulator concept, we fabricate a 2D SSH-like topological photonic crystal structure using a InGaAsP MQW semiconductor optical gain material and confirm laser oscillations in multiple dimensional topological states existing in the structure. It is proved through spectral analysis and emission imaging that various lasers are selectively excited by varying the position of the pump light in a single photonic crystal device. Finally, brief results of a valley edge mode laser are introduced. Valley edge modes which exist at the interface of two inversion symmetry-broken valley photonic crystals are utilized to form a ring cavity, which is enabled by topological protection of edge modes from sharp bends along the interface waveguide. Lasing action from the ring cavity is demonstrated and the fact that the formation of the ring cavity is truly a fruit of topological protection of the edge modes is confirmed by comparing with a trivial cavity laser.๋ฌผ์งˆ์˜ ์œ„์ƒ์  ์ƒํƒœ๋Š” ๊ธฐ์กด์— ์—†์—ˆ๋˜ ์ƒˆ๋กœ์šด ๋ฌผ์งˆ์˜ ์ƒํƒœ๋ฅผ ์ œ์‹œํ•จ์œผ๋กœ์จ ์–‘์ž ๋ฌผ์งˆ์˜ ์‹œ๋Œ€๋ฅผ ์—ด์—ˆ๋‹ค. ํŠนํžˆ, ์œ„์ƒ๋ถ€๋„์ฒด๋Š” ๋‚ด๋ถ€๊ฐ€ ๋ถ€๋„์ฒด์ธ ๋™์‹œ์— ๋„์ฒด์ธ ํ‘œ๋ฉด์„ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ ํ‘œ๋ฉด์—์„œ์˜ ์ „์ž์˜ ํ๋ฆ„์€ ์œ„์ƒ์ ์œผ๋กœ ๋ณดํ˜ธ๋˜๋ฏ€๋กœ ๋ถˆ์™„์ „์„ฑ์— ์˜ํ•œ ์‚ฐ๋ž€์ด ํฌ๊ฒŒ ๊ฐ์†Œ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์ง•์€ ์Šคํ•€ํŠธ๋กœ๋‹‰ ์†Œ์ž ๋˜๋Š” ์–‘์ž ์ปดํ“จํ„ฐ์—์„œ์˜ ์•ˆ์ •์ ์ธ ์ •๋ณด ์ €์žฅ์— ํ™œ์šฉ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ํ•œํŽธ, ์ด๋Ÿฌํ•œ ์‘์ง‘๋ฌผ์งˆ๋ฌผ๋ฆฌํ•™์—์„œ์˜ ๋ฐœ๊ฒฌ์€ ๋น›๊ณผ ๊ฐ™์€ ๋‹ค๋ฅธ ํŒŒ๋™ ์‹œ์Šคํ…œ์—์„œ์˜ ์œ„์ƒ์  ์ƒํƒœ๋ฅผ ์œ„ํ•œ ์—ฐ๊ตฌ์˜ ํฌ์„์ด ๋˜์—ˆ๋‹ค. ์œ„์ƒ๋ถ€๋„์ฒด ํ‘œ๋ฉด์˜ ์ „์ž์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ, ๋น›์˜ ์œ„์ƒ์  ๊ฐ€์žฅ์ž๋ฆฌ ์ƒํƒœ๋Š” ์‚ฐ๋ž€์œผ๋กœ๋ถ€ํ„ฐ ๋ณดํ˜ธ๋˜๊ณ , ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ ๊ณ ํšจ์œจ์˜ ๊ด‘๋„ํŒŒ๋กœ, ๊ด‘๊ฒฐํ•ฉ๊ธฐ ๋“ฑ์˜ ์‘์šฉ์— ๊ธฐ์—ฌํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ์ง€๊ธˆ๊นŒ์ง€์˜ ๋งŽ์€ ์œ„์ƒ๊ด‘์žํ•™ ์—ฐ๊ตฌ๋Š” ๋น›์˜ ์ „ํŒŒํŠน์„ฑ์— ์ง‘์ค‘๋˜์–ด ์žˆ์—ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค๋ฉด, ์‹œ๊ฐ„ ๋ฐ˜์ „ ๋Œ€์นญ์„ฑ์ด ๊นจ์ง„ ์–‘์ž-ํ™€ ๊ฐ€์žฅ์ž๋ฆฌ ์ƒํƒœ ๋˜๋Š” ์Šคํ•€์œผ๋กœ๋ถ€ํ„ฐ ๋ณดํ˜ธ๋œ ๊ฐ€์žฅ์ž๋ฆฌ ์ƒํƒœ๋ฅผ ํ†ตํ•œ ๋น›์˜ ์ „ํŒŒ๊ฐ€ ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ˆ˜๋™์  ์‹œ์Šคํ…œ์— ๋น„ํ•ด ๋ ˆ์ด์ € ๋ฐœ์ง„์€ ๋งŽ์ด ์—ฐ๊ตฌ๋˜์ง€ ์•Š์•˜๋‹ค. ๊ธฐ์กด์˜ ๋ช‡๋ช‡ ์œ„์ƒ์  ๊ฐ€์žฅ์ž๋ฆฌ ์ƒํƒœ๋ฅผ ์ด์šฉํ•œ ๋ ˆ์ด์ € ์—ฐ๊ตฌ๋Š” ๋งˆ์ดํฌ๋กœ๋ง ๊ณต์ง„๊ธฐ๋ฅผ ์ด์šฉํ•˜์—ฌ์„œ ์†Œ์ž์˜ ํฌ๊ธฐ๊ฐ€ ๋งค์šฐ ํฌ๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ์—ˆ๋‹ค. ํŒŒ์žฅ-์Šค์ผ€์ผ์˜ ๊ด‘์ž๊ฒฐ์ •๊ตฌ์กฐ์—์„œ ์œ„์ƒ์  ๊ฐ€์žฅ์ž๋ฆฌ ์ƒํƒœ๋ฅผ ํ™•์ธํ•˜๊ณ  ์ด๋ฅผ ์ด์šฉํ•œ ๋ ˆ์ด์ € ์†Œ์ž๋ฅผ ๊ฐœ๋ฐœํ•œ๋‹ค๋ฉด ํ–ฅ์ƒ๋œ ๊ด‘ ์ง‘์  ํšŒ๋กœ๋‚˜ ์œ„์ƒ์  ๋น›-๋ฌผ์งˆ ์ƒํ˜ธ์ž‘์šฉ์„ ์—ฐ๊ตฌํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฐ˜์ด ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๊ด‘์†Œ์ž์˜ ํฌ๊ธฐ๊ฐ€ ์ž‘์•„์งˆ์ˆ˜๋ก ๊ณต์ •์ƒ์˜ ์˜ค์ฐจ์— ์˜ํ•œ ์„ฑ๋Šฅ ํŽธ์ฐจ๊ฐ€ ์ปค์ง€๋Š”๋ฐ, ์œ„์ƒ์  ๊ฐ€์žฅ์ž๋ฆฌ ์ƒํƒœ๋Š” ์ด๋Ÿฌํ•œ ์ƒํ™ฉ์—์„œ ํ•ด๊ฒฐ์ฑ…์ด ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š”, ์ฒซ ๋ฒˆ์งธ๋กœ, ๊ด‘์ž๊ฒฐ์ • ๊ณต์ง„๊ธฐ ๋ฐฐ์—ด์„ ํ†ตํ•œ ์œ„์ƒ์  ๊ฐ€์žฅ์ž๋ฆฌ ์ƒํƒœ์—์„œ์˜ ๋ ˆ์ด์ € ๋ฐœ์ง„์„ ์‹œ์—ฐํ•˜์˜€๋‹ค. Su-Schrieffer-Heeger ๋ชจ๋ธ์— ๊ธฐ๋ฐ˜ํ•œ ๋ฐฐ์—ด๊ณผ ๋‹ค์ค‘์–‘์ž์šฐ๋ฌผ ๊ด‘์ด๋“ ๋ฌผ์งˆ์„ ์ด์šฉํ•˜์—ฌ ์œ„์ƒ์ ์œผ๋กœ ๋น„์ž๋ช…ํ•œ ๋ฐฐ์—ด์—์„œ ์œ„์ƒ์  ๊ฐ€์žฅ์ž๋ฆฌ ์ƒํƒœ๊ฐ€ ๋ ˆ์ด์ € ๋ฐœ์ง„์„ ํ†ตํ•ด์„œ ํ™•์ธ๋˜์—ˆ๋‹ค. ๊ทผ์ ‘์žฅ ์ธก์ •์„ ํ†ตํ•ด ๋ชจ๋“œ ๋ถ„ํฌ๋ฅผ ์ง์ ‘์ ์œผ๋กœ ๊ด€์ฐฐํ•จ์œผ๋กœ์จ ๊ด‘๋ชจ๋“œ์˜ ๊ธฐ์›์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ , ๊ณต์ •์  ๋ฌด์งˆ์„œ๋กœ๋ถ€ํ„ฐ ๊ฐ€์žฅ์ž๋ฆฌ ์ƒํƒœ๊ฐ€ ์ƒ๋Œ€์ ์œผ๋กœ ๊ฒฌ๊ณ ํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, 2์ฐจ์› ๊ด‘์ž๊ฒฐ์ •์—์„œ์˜ ๊ณ ์ฐจ์› ์œ„์ƒ์ ๋ถ€๋„์ฒด ์›๋ฆฌ์— ์˜ํ•œ ๊ณ„์ธต์  ๊ฐ€์žฅ์ž๋ฆฌ ์ƒํƒœ์—์„œ์˜ ๋ ˆ์ด์ € ๋ฐœ์ง„์„ ์‹œ์—ฐํ•˜์˜€๋‹ค. 2์ฐจ์› SSH ๋ฐฐ์—ด๊ณผ ์œ ์‚ฌํ•œ ํ˜•ํƒœ๋กœ ๊ด‘์ž๊ฒฐ์ •์„ ๋””์ž์ธํ•˜์˜€๊ณ , ๊ด‘์ด๋“ ๋ฌผ์งˆ์„ ์ด์šฉํ•˜์—ฌ ์œ„์น˜์— ๋Œ€ํ•ด ์„ ํƒ์ ์ธ ๊ด‘ํŽŒํ•‘์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์ƒํƒœ์—์„œ์˜ ๋ ˆ์ด์ € ๋ฐœ์ง„์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฐ ์ƒํƒœ์—์„œ์˜ ๋ ˆ์ด์ € ํŠน์„ฑ์„ ์ŠคํŽ™ํŠธ๋Ÿผ๊ณผ ์ด๋ฏธ์ง€ ๋ถ„์„์„ ํ†ตํ•ด์„œ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, valley ๊ฐ€์žฅ์ž๋ฆฌ ์ƒํƒœ๋ฅผ ์ด์šฉํ•œ ๋ง ๊ณต์ง„๊ธฐ์—์„œ์˜ ๋ ˆ์ด์ € ๋ฐœ์ง„์„ ์‹œ์—ฐํ•˜์˜€๋‹ค. ๊ณต๊ฐ„ ๋ฐ˜์ „ ๋Œ€์นญ์„ฑ์ด ๊นจ์–ด์ง„ ๊ตฌ์กฐ์—์„œ๋Š” valley๊ฐ€ ๋ณดํ˜ธ๋œ ๊ฐ€์žฅ์ž๋ฆฌ ์ƒํƒœ๊ฐ€ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ๊ณ  valley๊ฐ„ ์‚ฐ๋ž€์ด ์ ์€ ์ƒํ™ฉ์—์„œ๋Š” ์ „ํŒŒ ํŠน์„ฑ์ด ๋ณดํ˜ธ๋˜์–ด ๊ตฌ์กฐ์  ๋ณ€ํ™”์— ์˜ํ•œ ํ›„๋ฐฉ์‚ฐ๋ž€์ด ๋งค์šฐ ๋‚ฎ์•„์ง„๋‹ค. ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ธ‰๊ฒฉํ•œ ๊บพ์ž„์„ ๊ฐ€์ง„ valley ๊ฐ€์žฅ์ž๋ฆฌ ๋ชจ๋“œ๋ฅผ ์ด์–ด์„œ ๋ง ํ˜•ํƒœ๋กœ ๊ณต์ง„๊ธฐ๋ฅผ ์ œ์ž‘ํ•˜์˜€๊ณ  ์‹ค์ œ๋กœ ์œ„์ƒ์ ์œผ๋กœ ๋ณดํ˜ธ๋œ ํŠน์„ฑ์— ์˜ํ•ด ๋ ˆ์ด์ € ๋ฐœ์ง„์ด ๊ฐ€๋Šฅํ•œ ๊ฒƒ์„ ์œ„์ƒ์ ์œผ๋กœ ๋ณดํ˜ธ๋˜์ง€ ์•Š์€ ์ž๋ช…ํ•œ ๋ง ๊ณต์ง„๊ธฐ์™€์˜ ๋น„๊ต๋ฅผ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค.Chapter 1. Introduction ๏ผ‘ 1.1. Photonic crystals and photonic crystal lasers ๏ผ‘ 1.1.1. Introduction to the photonic crystal ๏ผ‘ 1.1.2. Scaling property of electrodynamics ๏ผ” 1.1.3. Photonic band structure ๏ผ• 1.1.4. Photonic crystal band edge lasers ๏ผ˜ 1.1.5. Photonic crystal cavity lasers ๏ผ‘๏ผ‘ 1.2. Topological photonics ๏ผ‘๏ผ“ 1.2.1. Topological Insulator and topological band theory ๏ผ‘๏ผ“ 1.2.2. Topological edge states ๏ผ‘๏ผ– 1.2.3. Topological photonics ๏ผ‘๏ผ™ 1.2.4. Topological photonic crystal lasers ๏ผ’๏ผ“ 1.3. Outline of the Manuscript ๏ผ’๏ผ• Chapter 2. Edge mode lasing in a photonic crystal cavity SSH array ๏ผ’๏ผ– 2.1. Introduction ๏ผ’๏ผ– 2.1.1. Photonic Su-Schrieffer-Heeger model ๏ผ’๏ผ– 2.1.2. Lasing in photonic SSH structures ๏ผ’๏ผ˜ 2.1.3. Performance fluctuation on a photonic crystal cavity ๏ผ“๏ผ 2.2. Result ๏ผ“๏ผ’ 2.2.1. Photonic crystal cavity SSH array ๏ผ“๏ผ’ 2.2.2. Coupling strength control of coupled photonic crystal L3 cavities ๏ผ“๏ผ“ 2.2.3. Band structure calculation ๏ผ“๏ผ• 2.2.4. Topological invariant calculation ๏ผ“๏ผ˜ 2.2.5. Finite lattice simulation ๏ผ”๏ผ 2.2.6. Coupling-induced resonance shift ๏ผ”๏ผ” 2.2.7. Localization of the edge state ๏ผ”๏ผ– 2.2.8. Sample fabrication ๏ผ”๏ผ— 2.2.9 Micro-photoluminescence measurement ๏ผ”๏ผ™ 2.2.10. Near-field scanning microscope measurement ๏ผ•๏ผ‘ 2.2.11. Lasing characteristics of the edge and bulk modes ๏ผ•๏ผ“ 2.2.12. Spontaneous emission factor of the edge mode ๏ผ•๏ผ• 2.2.13. Chiral symmetry ๏ผ•๏ผ— 2.2.14. Robustness of the edge state ๏ผ•๏ผ™ 2.2.15. Edge states in topological kink ๏ผ–๏ผ’ 2.3. Conclusion ๏ผ–๏ผ“ Chapter 3. Higher-order topological edge states lasers ๏ผ–๏ผ” 3.1. Introduction ๏ผ–๏ผ” 3.1.1. 2D SSH lattices ๏ผ–๏ผ” 3.1.2. Higher order topological insulators ๏ผ–๏ผ– 3.1.3. Photonic crystal HOTIs ๏ผ–๏ผ™ 3.2. Result and discussion ๏ผ—๏ผ 3.2.1. Band structure calculation ๏ผ—๏ผ 3.2.2. Hierarchical topology ๏ผ—๏ผ’ 3.2.3. Edge state simulations ๏ผ—๏ผ• 3.2.4. Device fabrication ๏ผ—๏ผ— 3.2.5. Photoluminescence measurement ๏ผ—๏ผ˜ 3.2.6. Lasing characteristics ๏ผ˜๏ผ 3.2.7. Origin of in-gap corner states ๏ผ˜๏ผ’ 3.3. Conclusions ๏ผ˜๏ผ” Chapter 4. Preliminary results of a valley edge mode laser. ๏ผ˜๏ผ• 4.1. Introduction to valley photonic crystals ๏ผ˜๏ผ• 4.2. Result and discussion ๏ผ˜๏ผ˜ 4.2.1. Band structure of valley photonic crystals ๏ผ˜๏ผ˜ 4.2.2. VPC laser ๏ผ™๏ผ 4.2.3. Comparison with a trivial cavity laser ๏ผ™๏ผ“ 4.2.4. FSR analysis ๏ผ™๏ผ• 4.2.5. Structural disorder simulation ๏ผ™๏ผ˜ 4.3. Conclusions ๏ผ‘๏ผ๏ผ Chapter 5. Conclusion and Perspective ๏ผ‘๏ผ๏ผ‘ References ๏ผ‘๏ผ๏ผ“ Abstract in Korean ๏ผ‘๏ผ๏ผ™Docto
    corecore