17 research outputs found
지식 베이스를 활용한 청자 기반 대화시스템
MasterWe developed a natural language dialog listening agent that uses a knowledge base (KB) to generate rich and relevant responses. Our system extracts an important named entity from a user utterance, then scans the KB to extract contents related to this entity. The system can generate diverse and relevant responses by assembling the related KB contents into appropriate sentences. Fifteen students tested our system; they gave it higher approval scores than they gave other systems. These results demonstrate that our system generated various responses and encouraged users to continue talking
Answer Ranking based on Named Entity Types for Question Answering
Question answering (QA) using triples has been widely studied. One important aspect is answer ranking, that is, which answer candidates should be used to find correct answers. We are proposing a new method using type-matching information for ranking QA triples. We recommend using a new ranking method that includes type-matching scores from semantic answer types, and named entity types of answer candidates. Our experiments provided new ranking results with ranking average values that were lower by 24.80. We conclude that our proposed method has great potential for answer ranking.1
QUESTION ANSWERING SYSTEM FOR FINDING CORRECT SENTENCE AND TRAINING METHOD THEREOF
문서 내에 포함된 복수의 본문 문장과 정답이 문서 내에 미리 결정되어 있는 질의 문장을 바탕으로 비교 네트워크를 사전 훈련하고, 사전 훈련의 결과에 따라 복수의 본문 문장과 질의 문장 간의 문장 비교 정보를 생성하는 문장 비교부, 및 문서 내의 본문, 질의 문장, 및 문장 비교 정보를 사용하여 질의 문장에 대응하는 정답이 출력될 수 있도록 정답 탐지 네트워크를 훈련하는 정답 탐지부를 포함하는 질의 응답 시스템 및 질의 응답 시스템의 훈련 방법이 제공된다
Exploiting knowledge base to generate responses for natural language dialog listening agents.
1
