6 research outputs found

    Performance Enhancement of the Channel Estimation Technique in MIMO Underwater Acoustic Communication

    Get PDF
    In the area of underwater communications, MIMO(Multiple Input Multiple Output) techniques for increasing the data rates are being studied. The advantage of MIMO techniques is increasing channel capacity, and it does not use additional frequency or transmit power. Representative method is V-BLAST. The channel estimation is one of important roles in MIMO system. In this thesis, the channel estimation method for underwater MIMO communication system is proposed. The proposed method is comprised of channel tap position detection based on L1-norm minimization, channel regeneration, and LMS(Least Mean Square) channel estimation. To prove the performance of the proposed method the simulations are conducted. The number of transmitters and receivers is 2, respectively. The channels for simulation were generated by Bellhop model, and the sound speed profile that was really measured in Korean East Sea was used. The range between sources and receivers is 1 km, and the water depth is 200 m. In simulation results, the channel tracking speed of the proposed method is faster than the conventional method. The BER(Bit Error Rate) performance improves about 10%. In the future, it is needed to prove the performance of MIMO underwater communication via sea trials.그림목차 ························································································ iii Abstract ······················································································· vii 제 1 장 서 론 ················································································· 9 제 2 장 수중음향통신 채널 특성 ······················································· 12 제 2-1절 수중 채널 특성 ···························································· 12 제 2-2절 수중음향통신 오차 유발 요인 분석 ······························ 13 제 2-2-1. 전달 손실 ······························································· 14 제 2-2-2. 다중 경로 전달 ······················································ 15 제 2-2-3. 도플러 확산 ···························································· 16 제 2-2-4. 잡음 ······································································ 17 제 3 장 MIMO 기술과 등화기법 ······················································· 18 제 3-1절 공간 다중화 ···························································· 18 제 3-2절 기존의 채널 추정 기법 ················································· 19 제 3-1-1. LS 채널 추정 ······················································ 20 제 3-1-2. LMS 채널 추정 ·················································· 22 제 3-3절 선형 등화기법 ····················································· 24 제 4 장 제안된 MIMO 채널 추정 기법 ········································· 27 제 4-1절 고려된 MIMO 시스템 구조 ······································ 27 제 4-2절 제안된 채널 추정 기법 ············································ 29 제 5 장 시뮬레이션 환경과 모의실험 ············································ 34 제 5-1-1. 시뮬레이션 환경 ············································· 34 제 5-1-2. 모의실혐 결과 ············································ 39 제 6 장 결론 ···································································· 47 참고문헌 ······················································································· 4

    장단기 메모리 순환신경망(Long Short-Term Memory)을 활용한 건화물운임지수 (BDI) 예측

    No full text
    As like the global economy, the maritime economy repeats its fluctuations. Since the global financial crisis in 2008, the ongoing recession and decline in freight volume and oversupply of vessels have led to a long-term recession in maritime economy. In the latter half of 2018, it is recovering and rebounding, but it is not clear whether this is a sign of recovery in the maritime economy. In the situation where uncertainty is growing due to the long-term shipping recession, not only the understanding of the economic trend but also the importance of forecasting is also rising. Baltic Dry Index (BDI), which is an indicator of the dry cargo freight rate, is attracting attention. It is an index representing the dry bulk shipping market, where raw-materials used for various industrial developments are regarded as major freight. The index is announced on a daily basis based on the freight rates of the time-charter contracts occurring on the major routes of the dry bulk shipping market. The shipping industry makes the world as the target market. In particular, due to the nature of freight to be transported in the dry bulk shipping market, BDI not only reflects the global economy sensitively but also reflects the characteristics of global demand for dry bulk. As a result, BDI is highly seasonal and cyclical, and the volatility of the time-series is known to be very high. This thesis focuses on BDI prediction by applying Artificial Neural Network (ANN), which is popular as a methodology for specific complex problems. As a result of the literature reviews, most of the papers have been used to improve the prediction performance of BDI by utilizing various statistical techniques with combinations of ANN models, especially, MLP (Multi-Layer Perceptron) was used. These studies suggest a methodology that shows excellent predictive performance by combining or manipulating existing time-series prediction techniques with ANN. However, the basic premise of time-series prediction that the past values or trends of the relevant time-series will be reflected in the future, was not taken into consideration. In this thesis, unlikely to other studies of related fields, another method named Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) were applied to BDI time-series prediction. Especially, LSTM is the special application of RNN that made to overcome the ‘vanishing or exploding gradient problem’ of RNN. In addition, a short-term prediction was performed through a traditional time-series prediction methodology named Auto-Regressive Integrated Moving Average (ARIMA) model. Non-seasonal uni-variate ARIMA model was conducted in the research. As a result, despite the short-term prediction, the accuracy of the model prediction is very poor. Due to the nature of BDI time-series, there is a high possibility of improving prediction performance by applying more detailed methodologies such as seasonal and/or multi-variate ARIMA models. Nevertheless, the ARIMA model applied in this paper is limited to simply only for predictive performance comparisons between statistical-based methodologies and ANN-based methodologies. The period of study was from April 1, 2009, to July 31, 2017. To predict BDI time-series through ANN. Eight independent time-series that related to shipping and freight rates were set as input variables. ANN predictions will be split into two phases. First, in order to grasp the applicability of ANN to the given time-series datasets, divided the time-series data into training and test datasets, followed by learning through only the training datasets, and then confirmed the fitness for the test set. Second, a sliding-window method was applied. The time-series datasets are intentionally put back 1-day. Therefore, ANN models are trained on the premise of the output variable of at is occurred based on the input variables of at . After that, a daily prediction is conducted for a 1-year (from August 1, 2016, to July 31, 2017). In this phase, to demonstrate the superiority of the performance of the networks over different or future time windows in the given time-series, using the same network structure as the first phase. As a result, LSTM showed the most well performed predictive performance while the second and the last were RNN and MLP, respectively. Contributions of the thesis are that it showed the superiority of ANN for short-term prediction of BDI time-series and it is the first study of applying LSTM to the specific time-series (BDI). However, the studied ANN models cannot always guarantee the same or similar prediction performance when in the future time point or changes in the prediction object period. This phenomenon also might arise in other time-series datasets. Therefore, it is expected that the prediction performance of BDI of corresponding ANN models can be improved through more precise literature reviews and selection of input variables or application of various methodologies. Even the applicability of long-term forecasting can also be sought. Further research on the subject could serve as a supporting indicator for more scientific and rational decision-making for sound shipping business management with the current global economic environment where uncertainty is evident.|세계 경기와 마찬가지로 해운경기 역시 그 등락을 반복한다. 2008년 세계 금융위기 이후로 지속적인 경기 침체 및 물동량 감소, 그리고 선박 과잉공급 등의 요소들로 인해 장기 해운 불황이 지속되고 있는 실정이다. 2018년 후반기에는 일부 반등하여 회복되는 추세를 보이나 이가 확실한 해운경기 회복의 신호일지는 미지수이다. 이와 같은 장기 해운 불황에 따른 불확실성이 증폭되고 있는 상황에서는 경기추세에 대한 이해뿐만 아니라 예측 또한 그 중요성이 대두되고 있다. 해운경기를 반영하는 지표는 여러 가지가 있으나 그중에서도 건화물운임지수인 Baltic Dry Index(BDI)가 주목받고 있다. BDI는 각종 산업 발전에 사용되는 원자재들을 주요 운송화물로 삼는 건화물 운송시장을 대표하는 지수이다. 해당 지수는 건화물 운송시장의 주요 항로들에서 발생하는 정기용선계약의 운임률을 기초로 하여 일별 단위로 발표된다. 해운 산업은 전 세계를 시장의 대상으로 삼는다. 특히, 건화물 운송시장의 운송 대상이 되는 화물의 특성상 BDI는 세계 경기를 민감하게 반영할 뿐만 아니라 세계 건화물 수요의 특성 역시 반영한다. 이에 따라 BDI는 계절성 및 순환성을 강하게 띄어 해당 시계열의 변동성은 매우 높은 것으로 알려져 있다. 본 논문에서는 최근 특정 복잡한 문제에 대한 방법론으로 각광받고 있는 인공신경망을 적용하여 BDI 예측을 연구하였다. 본 논문의 선행연구 결과, 주로 인공신경망 중 다층 퍼셉트론(Multi-Layer Perceptron; MLP)을 활용하여 통계적 기법 등을 결합한 접근법으로 BDI에 대한 예측 성능을 향상시키고자 한 논문들이 대부분이었다. 해당 연구들은 기존의 시계열 예측 기법들과 인공신경망을 결합한 접근법으로 뛰어난 예측 성능을 보여주는 방법론을 제시하였지만, 이는 해당 시계열의 과거의 값들 또는 추세들이 미래에도 반영되어 특정한 형태로 나타나게 될 것이라는 시계열 예측의 대전제를 적극 수용하지 못한 접근법들이라 할 수 있다. 본 논문에서는 이를 적극 수용코자 기존 선행연구들과는 차별되는 접근법으로 순환 (구조) 신경망(Recurrent Neural Network; RNN)과 기존 순환 신경망의 한계점인 기울기 소실 또는 발산 문제(vanishing or exploding gradient problem)를 극복한 장단기 메모리 순환 신경망(Long Short-Term Memory; LSTM)을 BDI 시계열 예측에 적용하였다. 추가적으로 전통적 시계열 예측방법론인 아리마 (Auto-Regressive Integrated Moving Average; ARIMA) 모델 중, 비계절성(non-seasonal) 단변량(uni-variate; BDI) 아리마를 통해 단기 예측을 수행하였다. 그 결과로 단기 예측에도 불구하고 아리마 시계열 예측의 정확도는 매우 떨어지는 것으로 나타났다. BDI 시계열의 특성상 계절성 아리마, 다변량 아리마 모형과 같은 보다 세밀한 방법론들의 적용을 통한 예측 성능 향상의 가능성이 매우 높다. 그럼에도 불구하고 본 논문에서 적용된 아리마 모형은 통계학 기반의 방법론과 인공 신경망 기반의 방법론들 간의 단순한 예측 성능 비교의 대상으로써 한정 지었다. 연구의 대상이 된 기간은 2009.04.01.부터 2017.07.31.까지이다. 인공 신경망들을 통한 BDI 시계열을 예측을 위해 해운경기 및 운임과 관련된 8개의 시계열 자료들을 투입 변수로 설정하였다. 인공 신경망을 활용한 예측은 두 단계로 나누어 진행하였다. 첫 번째로 해당 시계열에 대한 인공 신경망들의 적용 가능성을 파악하기 위해 학습과 테스트 데이터 셋으로 해당 데이터를 나누어 학습 데이터만을 통해 학습을 진행 후 테스트 셋에 대한 적합도를 확인하였다. 두 번째로 이동 시계열 분석 기법(sliding-window method)을 적용하여 시점의 출력 변수 의 값이 시점의 의 값들에 의해 발생한 것으로 가정하고 해당 인공 신경망들을 학습시켜 1 년의 기간(2016.08.01. ~ 2017.07.31.)을 대상으로 일일 예측을 진행하였다. 해당 단계에서는 첫 번째 단계와 동일한 네트워크 구조를 사용하여 시계열의 다른 시간범위 또는 미래시점에서 해당 네트워크들의 성능의 우수성을 증명하였다. 그 결과로 장단기 메모리 순환 신경망, 순환 신경망, 다층 퍼셉트론의 수순으로 BDI 시계열에 대한 뛰어난 예측 성능을 보여주었다. 본 연구에서는 적용된 인공 신경망들의 BDI 시계열 단기 예측에 대한 우수성을 증명함과 동시에 장단기 메모리 순환 신경망을 특정 시계열(BDI)에 적용한 최초의 연구에 그 의의가 있다. 하지만 해당 인공 신경망들은 동일한 설정 값으로 미래의 시점 또는 예측 대상이 되는 기간 등이 달라질 경우 그 예측 성능을 항상 보장할 수 없다. 이는 다른 시계열 자료에 대해서도 마찬가지일 것이다. 따라서 보다 정밀한 선행연구 및 투입 변수들의 선정 또는 다양한 방법론들의 적용 및 응용을 통해 해당 인공 신경망 모델들의 BDI에 대한 예측 성능 향상 및 장기 예측에 대한 적용 가능성을 기대할 수 있다. 해당 주제에 대한 추가적인 연구는 불확실성이 뚜렷한 현 세계경제 상황에서 건전한 해운기업 경영을 위해 보다 과학적이고 합리적인 의사결정을 위한 보조지표로써의 역할을 할 수 있다.Contents List of Tables ⅴ List of Figures ⅵ 요 약 ⅷ Abstract ⅺ Chapter 1 Introduction 1 1.1. Research Background 1 1.2. Research Purpose 4 1.3. Research Scope 5 1.4. Research Procedure 7 1.5. Research Structure 9 Chapter 2 The Dry Bulk Shipping Market and Relations with Baltic Dry Index 11 2.1. Define the Tramp Shipping and the Dry Bulk Shipping Market 11 2.2. Characteristics of the Dry Bulk Shipping Market 13 2.2.1. Understanding General Characteristics of the Shipping Business 13 2.2.2. Seasonality and Cyclicity of the Dry Bulk Shipping Market and Relations with Global Economy 15 2.3. Understanding of Baltic Dry Index 23 Chapter 3 Literature Reviews 29 3.1. Statistical Based Prediction of Baltic Dry Index 30 3.2. Artificial Neural Network Architectures Based Prediction of Baltic Dry Index 33 3.3. Findings and Limitations 35 Chapter 4 Research Methodologies: Autoregressive Integrated Moving Average Model and Artificial Neural Network Architectures 38 4.1. Autoregressive Integrated Moving Average Model 38 4.2. Artificial Neural Network Architectures 42 4.2.1. Multi-Layer Perceptron 42 4.2.2. Recurrent Neural Network 46 4.2.3. Long Short-Term Memory 52 4.3. Basic Assumptions and Data Descriptions 58 Chapter 5 Results 67 Chapter 6 Conclusion 80 References. 83 Bibliographies. 90 Appendix. 93Maste

    Formation behavior of hydroxyl carbonate apatite on BCP granules in simulated body fluid

    No full text
    학위논문 (석사)-- 서울대학교 치의학대학원 : 치의학과, 2014. 2. 이상훈.본 연구에서는 의사체액에 BCP를 침적시킨 후 수산화 탄산인회석의 생성거동을 관찰하면서 BCP의 생체 내에서 활성원리를 알아보고 골이식재로서 활용도를 평가해 보고자 하였다. BCP 과립은 수산화인회석과 β-삼인산칼슘을 60:40의 비율로 혼합한 후 1100℃에서 열처리하여 만들었다. 의사체액은 시약급의 , , , , , 그리고 를 증류수에 넣어서 제조하며 36.5℃에서 tris(hydroxymethyl) amino methane []와, 1M hydrochloric acid(HCl)를 사용하여 pH 7.4의 완충용액을 이루도록 제조하였다. 그 후 제조된 시편은 36.5℃의 의사체액 20ml에 7일 간 침적시킨 후, 증류수로 수 회 수세한 다음 상온에서 자연건조 시키고 표면에 형성된 결정을 주사전자현미경을 통해 분석하였다. 또한 1, 3, 7일 간 침적시킨 후 시편을 제거한 용액의 이온 농도 및 pH를 측정하였다. BCP 시편을 의사체액에 침적시킨 후, 시간경과에 따른 의사체액 내의 Ca 이온농도 및 pH를 분석한 결과 침적 전과 비교 시 처음 2.5mM이었던 Ca이온 농도와 7.40이었던 pH 값은 1, 3, 7일 째에 시간이 경과함에 따라 점차 감소함을 보였다. 이는 침적 1일 째부터 아파타이트의 생성에 의해 의사체액 내의 Ca 및 OH 이온이 소모된 것으로 생각된다. BCP 시편을 의사체액 중에서 7일간 침적 시킨 후 주사전자 현미경으로 미세조직을 관찰한 결과 침적 전 사진과 비교해보면 BCP 시편의 표면에 침적 후 flake-like한 형상의 결정상들이 발생한 것이 관찰된다. 선행 연구결과에 의하면 이 결정상은 실제 체내에서 발견되는 인회석인 수산화탄산인회석임을 알 수 있다. 이상의 결과로 부터 BCP는 뛰어난 생체활성을 가짐을 알 수 있었고 골이식재로 응용이 가능한 것으로 생각된다.I. 서론 1 II. 실험방법 3 1. Biphasic calcium phosphate의 합성 3 2. 생체활성도 시험 3 3. 분석 4 III. 실험 결과 6 IV. 고찰 13 V. 결론 15 참고문헌 16 영문초록 20Maste

    아미노산 유도체를 이용한 아미노산 운반체의 개발

    No full text
    Maste
    corecore