10 research outputs found

    였배자 및 λ΄‰μΆœ μΆ”μΆœλ¬Όμ˜ ν”ΌλΆ€ 노화와 피뢀암에 λŒ€ν•œ μž‘μš© λ©”μ»€λ‹ˆμ¦˜μ˜ λΆ„μžμ  연ꡬ

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사) -- μ„œμšΈλŒ€ν•™κ΅λŒ€ν•™μ› : 농업생λͺ…κ³Όν•™λŒ€ν•™ 농생λͺ…곡학뢀, 2021.8. μž₯νŒμ‹.κ³Όλ„ν•œ μžμ™Έμ„ (UV)의 λ…ΈμΆœμ€ ν”ΌλΆ€ 염증 및 ν”ΌλΆ€μ•” λ°œμƒμ˜ μ£Όμš” 원인 쀑 ν•˜λ‚˜μ΄λ‹€. μœ μ „μ  μš”μΈκ³Ό μƒν™œμŠ΅κ΄€μ— 따라 κ·Έ κ²½ν–₯은 λ‹€λ₯΄κ²Œ λ‚˜νƒ€λ‚  수 μžˆμ§€λ§Œ, 반볡적으둜 μžμ™Έμ„ μ— λ…ΈμΆœλœ ν”ΌλΆ€λŠ” λΆˆκ·œμΉ™ν•œ κ°ˆμƒ‰ 반점과 주름 ν˜•μ„±μ΄ λ‚˜νƒ€λ‚˜λ©°, 이λ₯Ό μ΄μΉ­ν•˜μ—¬ κ΄‘λ…Έν™”(photoaging)라고 ν•œλ‹€. 전사 인자 AP-1은 mmp-1κ³Ό cox-2 μœ μ „μžμ˜ λ°œν˜„ μ‘°μ ˆμ„ 톡해 κ΄‘λ…Έν™”, 피뢀염증, ν”ΌλΆ€μ•”μ˜ λ°œμƒμ— μ£Όμš”ν•œ 역할을 ν•œλ‹€. AP-1이 μžμ™Έμ„ μ— μ˜ν•œ κ΄‘λ…Έν™” 및 μ—Όμ¦μ˜ 쀑심 맀개체이기 λ•Œλ¬Έμ—, AP-1 ν™œμ„±μ„ μ–΅μ œν•  수 μžˆλŠ” 화합물을 효율적으둜 선별 κ°€λŠ₯ν•œ 뢄석 λ„κ΅¬μ˜ κ°œλ°œμ€ μƒˆλ‘œμš΄ ν•­ κ΄‘λ…Έν™” 및 ν•­ 염증 제λ₯Ό κ°œλ°œν•˜κΈ° μœ„ν•œ 효과적인 μ „λž΅μ΄ 될 것이닀. μƒˆλ‘œμš΄ ν•­ κ΄‘λ…Έν™” 및 항염증 제λ₯Ό μ„ λ³„ν•˜κΈ° μœ„ν•΄, MMP-1 ν”„λ‘œλͺ¨ν„°λ₯Ό 인간 κ°μ§ˆμ„Έν¬μΈ HaCaT μ„Έν¬μ—μ„œ μ•ˆμ •μ μœΌλ‘œ λ°œν˜„λ˜λŠ” ν˜•μ§ˆμ „ν™˜ 세포λ₯Ό κ΅¬μΆ•ν•˜μ˜€μœΌλ©°, ν•­μƒμ œ 선별을 톡해 MMP-1 ν”„λ‘œλͺ¨ν„°κ°€ ν¬ν•¨λœ pGF1 λ²‘ν„°λ‘œ HaCaT 세포에 μ„±κ³΅μ μœΌλ‘œ ν˜•μ§ˆμ „ν™˜ 된 것을 ν™•μΈν•˜μ˜€λ‹€. MMP-1 luciferase 뢄석 쑰건을 ν™•λ¦½ν•˜κ³  infection 된 μ„Έν¬μ˜ μžμ™Έμ„ μ— λŒ€ν•œ λ°˜μ‘μ„ λΆ„μ„ν•˜κΈ° μœ„ν•˜μ—¬ μžμ™Έμ„  강도와 μ‹œκ°„μ— λ”°λ₯Έ luciferase ν™œμ„±μ„ ν™•μΈν•˜μ˜€λ‹€. μ‹€ν—˜κ²°κ³Ό 0.04 J/cm2, 5μ‹œκ°„μ—μ„œ κ°€μž₯ 높은 luciferase ν™œμ„±μ„ λ‚˜νƒ€λ‚΄μ–΄, ν–₯ν›„ luciferase assay 쑰건으둜 κ³ μ •ν•˜μ˜€λ‹€. 이 세포λ₯Ό μ΄μš©ν•˜μ—¬, 식물 μΆ”μΆœλ¬Ό 9개λ₯Ό μ„ λ³„ν•˜μ˜€λ‹€. κ·Έ κ²°κ³Ό, 였배자 μΆ”μΆœλ¬Ό(RJE)κ³Ό λ΄‰μΆœ μΆ”μΆœλ―ˆμ΄ UVB에 μ˜ν•˜μ—¬ μœ λ„λœ MMP-1 ν”„λ‘œλͺ¨ν„° κ²°ν•© ν™œμ„±μ„ 각각 80.9%, 75.8%둜 μ–΅μ œν•˜μ—¬ κ°€μž₯ μš°μˆ˜ν•œ κ΄‘λ…Έν™” μ–΅μ œ μ†Œμž¬λ‘œ μ„ λ³„ν•˜μ˜€λ‹€. λ˜ν•œ, 25-100 ΞΌg/mL의 λ†λ„μ—μ„œ HaCaT μ„Έν¬μ—μ„œ 독성이 λ‚˜νƒ€λ‚˜μ§€ μ•Šμ•˜λ‹€. UVB에 μ˜ν•˜μ—¬ μœ λ„λœ MMP-1 ν”„λ‘œλͺ¨ν„° κ²°ν•© ν™œμ„± 및 세포 독성에 λŒ€ν•œ λ‹€μ–‘ν•œ RJE의 농도 λ³„λ‘œ ν‰κ°€ν•œ κ²°κ³Ό RJEλŠ” UVB에 μ˜ν•˜μ—¬ μœ λ„λœ MMP-1 ν”„λ‘œλͺ¨ν„° κ²°ν•© ν™œμ„±μ„ 농도 의쑴적으둜 μ–΅μ œν•˜λŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€. UVB에 μ˜ν•˜μ—¬ COX-2와 MMP-1의 λ°œν˜„μ΄ μ¦κ°€ν•˜μ˜€μœΌλ©°, RJE의 농도 의쑴적으둜 COX-2와 MMP-1의 λ°œν˜„μ„ ν˜„μ €ν•˜κ²Œ μ €ν•΄ν•˜μ˜€λ‹€. λ˜ν•œ, RJEκ°€ HaCaT μ„Έν¬μ—μ„œ UVB에 μ˜ν•˜μ—¬ μœ λ„λœ MAPKs/MAPKKs/Akt 인산화λ₯Ό λͺ¨λ“  λ†λ„μ—μ„œ ν˜„μ €ν•˜κ²Œ μ–΅μ œν•˜μ˜€λ‹€. SKH-1 무λͺ¨ μ₯ λͺ¨λΈμ„ μ‚¬μš©ν•œ μ‹€ν—˜ κ²°κ³Όμ—μ„œ RJE의 경ꡬ νˆ¬μ—¬κ°€ UVB에 μ˜ν•˜μ—¬ μƒμ„±λœ μ£Όλ¦„μ˜ ν˜•μ„±κ³Ό 마우슀 ν”ΌλΆ€μ‘°μ§μ—μ„œ COX-2 및 MMP-13 λ°œν˜„μ„ 유의적으둜 μ–΅μ œν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ κ²°κ³ΌλŠ” RJEκ°€ COX-2 및 MMP-1 λ°œν˜„μ„ μ–΅μ œν•˜λŠ” κ°•λ ₯ν•œ 항염증 및 κ΄‘λ…Έν™” μ–΅μ œμ œλ‘œ 개발 κ°€λŠ₯성을 μ œμ‹œν•˜κ³  μžˆλ‹€. 또 λ‹€λ₯Έ μ†Œμž¬λ‘œ, λ΄‰μΆœ μΆ”μΆœλ¬Ό(CZE)이 HaCaT μ„Έν¬μ—μ„œ UVB에 μ˜ν•˜μ—¬ μœ λ„λœ COX-2 및 MMP-13 λ°œν˜„μ„ μœ μ˜ν•˜κ²Œ μ–΅μ œν•˜λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. Western blot 뢄석 κ²°κ³Όμ—μ„œ MPAKKs/MAPKs의 인산화가 CZE에 μ˜ν•΄ μ–΅μ œλ˜μ—ˆλ‹€. λ˜ν•œ, CZEλŠ” HaCaT μ„Έν¬μ—μ„œ UVB에 μ˜ν•˜μ—¬ μœ λ„λœ Akt 인산화와 EGFR 및 Src의 인산화λ₯Ό 유의적으둜 μ–΅μ œν•˜μ˜€λ‹€. SKH-1 무λͺ¨ μ₯ λͺ¨λΈμ„ μ‚¬μš©ν•œ μ‹€ν—˜ κ²°κ³Όμ—μ„œλŠ” CZE의 경ꡬ νˆ¬μ—¬λŠ” UVB에 μ˜ν•˜μ—¬ μœ λ„λœ 주름 ν˜•μ„±κ³Ό 마우슀 ν”ΌλΆ€μ‘°μ§μ—μ„œ COX-2 및 MMP-13 λ°œν˜„μ„ μœ μ˜ν•˜κ²Œ μ–΅μ œν•˜μ˜€λ‹€. CZE에 μ‘΄μž¬ν•˜λŠ” νŠΉμ • ν™”ν•©λ¬Ό 쀑 컀큐민은 UVB에 μ˜ν•˜μ—¬ μœ λ„λœ MMP-1 ν”„λ‘œλͺ¨ν„° κ²°ν•© ν™œμ„±μ„ κ°€μž₯ λ†’κ²Œ μ–΅μ œν•˜λŠ” 효과λ₯Ό λ‚˜νƒ€λ‚΄μ—ˆλ‹€. RJE ν™”ν•©λ¬Ό 쀑 syringic acid은 MMP-1 ν”„λ‘œλͺ¨ν„° κ²°ν•© μ €ν•΄ ν™œμ„±μ΄ κ°€μž₯ λ†’κ²Œ λ‚˜νƒ€λ‚¬λ‹€. λ”°λΌμ„œ syringic acidκ°€ UVB에 μ˜ν•˜μ—¬ μœ λ„λœ ν”ΌλΆ€μ•”μ˜ ν˜•μ„±μ— λ―ΈμΉ˜λŠ” 영ν–₯을 λΆ„μ„ν•˜μ˜€λ‹€. HaCaTμ„Έν¬μ—μ„œ syringic acid으둜 μ²˜λ¦¬ν•œ λ’€, μœ μ „μžμ™€ λ‹¨λ°±μ§ˆ λ°œν˜„ μˆ˜μ€€μ„ μΈ‘μ •ν•˜μ˜€μœΌλ©°, 이λ₯Ό 톡해 syringic acid에 μΈν•œ ROS의 생성이 μ‘°μ ˆλ¨μ„ ν™•μΈν•˜μ˜€κ³ , FDAμ—μ„œ 승인된 ν•­μ‚°ν™”μ œμΈ N-acetyl-L-systein(NAC)의 νš¨κ³Όμ™€ λΉ„κ΅ν•œ κ²°κ³Ό μœ μ‚¬ν•œ μ €ν•΄ νš¨κ³Όκ°€ μžˆμŒμ„ λ°ν˜”λ‹€. NADPH μ‚°ν™” νš¨μ†Œμ— syringic acid의 영ν–₯을 ν‰κ°€ν•œ κ²°κ³Ό syringic acidκ°€ NADPH μ‚°ν™” νš¨μ†Œμ˜ ν™œμ„±μ„ 저해함을 ν™•μΈν•˜μ˜€λ‹€. Syringic acid의 ν”ΌλΆ€μ•” 예방 κ°€λŠ₯성을 ν‰κ°€ν•˜κΈ° μœ„ν•΄ λ™λ¬Όμ‹€ν—˜μ„ μ‹€μ‹œν•˜μ˜€λ‹€. κ·Έ κ²°κ³Ό, λ§Œμ„±μ μΈ UVB μ²˜λ¦¬μ— μ˜ν•˜μ—¬ 무λͺ¨ μ₯μ˜ ν”ΌλΆ€ μ’…μ–‘ λ°œμƒκ³Ό 그와 κ΄€λ ¨λœ λΆ„μžμ˜ λ°œν˜„μ„ μ–΅μ œν•˜μ˜€λ‹€. Syringic acidλŠ” NADPH μ‚°ν™”νš¨μ†Œμ˜ μ–΅μ œμ œλ‘œ μž‘μš©ν•˜μ—¬ μžμ™Έμ„ μ— μ˜ν•œ ROS 생산을 μ–΅μ œν•˜κ³  ν”ΌλΆ€μ•” λ°œμƒμ„ λ°©μ§€ν•˜μ—¬, μ²œμ—° μΉ˜λ£Œμ œλ‘œμ„œμ˜ κ°€λŠ₯성을 μ œμ‹œν•˜κ³  μžˆλ‹€.Excessive ultraviolet (UV) exposure can cause acute skin inflammation and chronic exposure has been linked to skin cancer. While dependent on genetic factors and lifestyle choices, repeated exposure to UV irradiation generally results in the appearance of irregular brown spots and wrinkle formation, collectively referred to as photoaging. The transcription factor AP-1 plays a critical role in these processes via regulation of mmp-1 and cox-2 gene expression, respectively. Due to the fact that AP-1 is a central mediator of UV-induced photoaging and inflammation, the development of analytical tools that efficiently screen compounds that can inhibit AP-1 activity represents a potential strategy to develop new anti-photoaging and anti-inflammatory agents. To screen effective anti-photoaging and anti-inflammatory agents, I generated immortalized human keratinocyte HaCaT cells stably transfected with an MMP-1 promoter and after selection with puromycin, I confirmed that HaCaT cells were successfully transfected with the pGF1 vector containing the MMP-1 promoter. To determine the optimal conditions needed to assess MMP-1 promoter activity, I investigated different doses of UV and incubation times. The reporter gene assay revealed that 0.04 J/cm2 and 5 h were the optimal conditions for activating the MMP-1 promoter. Using these cells, I screened 99 botanical extracts of interest. 9 botanical extracts showed UVB-induced MMP-1 promoter binding activity inhibition. Rhus javanica extract (RJE) and Curcuma zedoaria extract (CZE) were identified as the most potent anti-photoaging material, suppressing UVB-induced MMP-1 promoter binding activity by 80.9% and 75.8%, respectively. Furthermore, the viability of HaCaT cells did not show signs of cytotoxicity at 25-100 ΞΌg/mL concentrations. Evaluation of varying RJE concentrations on UVB-induced MMP-1 promoter binding activity and cell cytotoxicity revealed that RJE inhibits UVB-induced MMP-1 promoter binding activity in a dose-dependent manner. I further observed that RJE suppressed UVB-induced MAPKs and AP-1 signaling cascades in HaCaT cells. Experiments using the SKH-1 hairless mouse model revealed that oral administration of RJE significantly suppresses UVB-induced wrinkle formation, as well as COX-2 and MMP-13 expression in mouse skin. These findings suggest that RJE is a potent anti-inflammatory and anti-photoaging agent that inhibits COX-2 and MMP-1 expression. Several experiments confirmed that CZE significantly suppressed UVB-induced COX-2 and MMP-13 expression in HaCaT cells. My Western blot results showed that phosphorylation of all three MPAKK/MAPKs were suppressed by CZE. Additionally, CZE strongly suppressed UVB-induced Akt phosphorylation as well as EGFR and Src phosphorylation in HaCaT cells. Using an SKH-1 hairless mice model, I determined that CZE prevented chronic UVB-induced wrinkle formation. Immunohistochemistry and Western blot assay results showed that CZE significantly suppressed UVB-induced COX-2 and MMP-13 expression in vivo. Among the specific compounds present in CZE, curcumin was found to exhibit the strongest inhibitory effect on UVB-induced MMP-1 promoter activity. Among the RJE compounds, syringic acid exhibited the most potent inhibitory effect on MMP-1 promoter activity. I sought to investigate the inhibitory effects of syringic acid on UVB-induced skin carcinogenesis. In vitro experiment, I treated human epidermal keratinocytes (HaCaT cells) with syringic acid and measured the gene and protein expression levels. Accordingly, I detected the change in ROS due to syringic acid treatment, which was compared to the effects of the FDA-approved antioxidant drug N-acetyl-L-cysteine (NAC), which is commonly used to identify and test ROS inducers and to inhibit ROS. Since NADPH oxidases of the Nox family are important enzymatic sources of ROS, I further measured the effect of syringic acid on NADPH oxidase activity to determine the potential targets mediating its inhibitory effects. To evaluate the therapeutic potential of syringic acid, I conducted an in vivo experiment using the SKH-1 hairless mouse model that received topical treatment of syringic acid prior to UVB exposure, and compared the tumor incidence and expression of relevant molecules in the mouse skin.Chapter β… . General Introduction 1 β… -1. Introduction 2 β… -2. Skin carcinogenesis and chemoprevention 4 β… -3. Role of Noxs and its downstream signaling pathways in UV-induced skin carcinogenesis 5 β… -4. Role of EGFR and its downstream signaling pathways in UV-induced skin carcinogenesis 8 β… -5. Role of PTP-ΞΊ as Nox and EGFR signal transmitters in skin cancer 11 β… -6. Preventive botanical extracts and phytochemicals in UV-induced skin damages by NADPH oxidase regulation 13 β… -7. Preventive botanical extracts and phytochemicals in UV-induced skin damages via regulation of EGFR 17 β… -8. References 20 Chapter β…‘. Preventive Effect of Rhus javanica Extract on UVB-induced Skin Inflammation and Photoaging 29 β…‘-1. Introduction 31 β…‘-2. Materials and Methods 34 β…‘-2-1. Materials 34 β…‘-2-2. Sample preparation and extraction procedure 34 β…‘-2-3. Cell culture, UVB exposure and viability assay 35 β…‘-2-4. Animal experiments 35 β…‘-2-5. MMP-1 promoter assay 36 β…‘-2-6. Western blot assay 37 β…‘-2-7. EGFR kinase assay 38 β…‘-2-8. Immunohistochemical analysis 38 β…‘-2-9. Metabolite extraction 39 β…‘-2-10. Chromatograph 39 β…‘-2-11. Statistical analysis 39 β…‘-3. Results 41 β…‘-3-1. RJE inhibits UVB-induced MMP-1 promoter activity in HaCaT cells 41 β…‘-3-2. RJE inhibits UVB-induced phosphorylation of MAPKKs/MAPKs, Akt, EGFR, Src and PKD/PKCΞΌ in HaCaT cells 43 β…‘-3-3. RJE inhibits UVB-induced wrinkle formation and COX-2 and MMP-13 expression in the SKH-1 hairless mouse 48 β…‘-3-4. Identification and quantification of phenolic compounds by LC-MS/MS and effect of RJE compounds on UVB-induced MMP-1 promoter activity 52 β…‘-4. Discussion 57 β…‘-5. Conclusions 60 β…‘-6. References 61 Chapter β…’. Preventive Effect of Curcuma zedoaria Extract on UVBinduced Skin Inflammation and Photoaging 65 β…’-1. Introduction 67 β…’-2. Materials and Methods 70 β…’-2-1. Materials 70 β…’-2-2. Sample preparation and extraction procedure 70 β…’-2-3. Cell culture, UVB exposure, and viability assay 73 β…’-2-4. Animal experiments 73 β…’-2-5. MMP-1 promoter assay 74 β…’-2-6. Western blot assay 75 β…’-2-7. Immunohistochemical analysis 75 β…’-2-8. Metabolite extraction 76 β…’-2-9. Chromatograph 76 β…’-2-10. Statistical analysis 77 β…’-3. Results 78 β…’-3-1. CZE inhibits UVBinduced MMP1 promoter activity, as well as COX2 and MMP13 expression in HaCaT cells 78 β…’-3-2. CZE inhibits UVBinduced phosphorylation of MAPKK/MAPK, Akt, EGFR, and Src in HaCaT cells 81 β…’-3-3. CZE inhibits UVBinduced wrinkle formation and COX2 and MMP13 expression in SKH1 hairless mice 84 β…’-3-4. Identification and quantification of phenolic compounds by LCMS/MS and effect of CZE compounds on UVBinduced MMP1 promoter activity 89 β…’-4. Discussion 94 β…’-5. Conclusions 98 β…’-6. References 99 Chapter β…£. Syringic Acid Prevents Skin Carcinogenesis via Regulation of Nox and EGFR Signaling 104 β…£-1. Introduction 106 β…£-2. Materials and Methods 109 β…£-2-1. Materials 109 β…£-2-2. Cell culture, UVB exposure and viability assay 109 β…£-2-3. Animal experiments 110 β…£-2-4. MMP-1 promoter assay 111 β…£-2-5. PGE2 assay 111 β…£-2-6. Western blot assay 112 β…£-2-7. Measurement of ROS 113 β…£-2-8. PTP-ΞΊ immunoprecipitation 113 β…£-2-9. Histological analysis 114 β…£-2-10. Statistical analysis 114 β…£-3. Results 115 β…£-3-1. Syringic acid inhibits UVB-induced COX-2 and MMP-1 expression, PGE2 production, and MMP-1 promoter activity in HaCaT cells 115 β…£-3-2. Syringic acid inhibits UVB-induced phosphorylation of MAPKs, MAPKKs, and EGFR in HaCaT cells 118 β…£-3-3. Syringic acid inhibits the UVB-induced oxidization of PTP-ΞΊ in HaCaT cells 121 β…£-3-4. Syringic acid and NAC inhibit UVB-induced intracellular ROS generation in HaCaT cells 124 β…£-3-5. Syringic acid prevents UVB-induced skin tumorigenesis in SKH-1 hairless mice 128 β…£-3-6. Syringic acid inhibits UVB-induced COX-2 and MMP-13 expression in SKH-1 hairless mice 131 β…£-4. Discussion 135 β…£-5. Conclusions 139 β…£-6. References 140 ꡭ문초둝 146λ°•

    Population Pharmacokinetics and Pharmacogenetics of Tacrolimus in the Early Post-kidney Transplantation Period

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (석사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : μ•½ν•™κ³Ό, 2013. 2. μ˜€μ •λ―Έ.TacrolimusλŠ” 이식 ν›„ κ±°λΆ€λ°˜μ‘ μ–΅μ œλ₯Ό μœ„ν•˜μ—¬ μ‚¬μš©λ˜λŠ” λ©΄μ—­μ–΅μ œμ œμ΄λ‹€. ν˜ˆμ€‘ 농도가 ν™˜μžμ˜ μž₯κΈ° μƒμ‘΄μœ¨κ³Ό μž„μƒμ  μ§€ν‘œ 등에 μ—°κ΄€ μžˆμ–΄ ν˜ˆμ€‘ 농도λ₯Ό λ§žμΆ”λŠ” κ²ƒμ˜ μ€‘μš”μ„±μ΄ 읡히 μ•Œλ €μ Έ μžˆμœΌλ‚˜ μΉ˜λ£Œμ—­μ΄ 쒁고 개인 κ°„ 변이가 μ»€μ„œ 이λ₯Ό μ •ν™•ν•˜κ²Œ μ˜ˆμΈ‘ν•˜λŠ” 것에 어렀움이 μžˆλ‹€. Tacrolimus의 약동학에 영ν–₯ 인자둜 μ•Œλ €μ Έ μžˆλŠ” κ²ƒλ“€λ‘œλŠ” λ‚˜μ΄, 성별, 체쀑, hematocrit, 이식 ν›„ κΈ°κ°„ λ“±μ˜ μž„μƒ μ§€ν‘œμ™€ CYP3A5, ABCB1 λ“±μ˜ μœ μ „ν˜•μ΄ μžˆλ‹€. λ³Έ μ—°κ΅¬λŠ” 성인 ν™˜μžμ—μ„œ μ‹ μž₯ 이식 ν›„ 초기 2주의 ν˜ˆμ€‘ 농도에 λŒ€ν•΄ μœ μ „ν˜•μ„ κ³ λ €ν•œ 집단약동학 연ꡬλ₯Ό μ‹œν–‰ν•˜μ—¬ 이식 ν›„ 초기 κΈ°κ°„μ˜ 약동학에 영ν–₯을 μ£ΌλŠ” 인자λ₯Ό κ°λ³„ν•˜κ³  μ•½λ¬Ό 농도 μ˜ˆμΈ‘μ„ μœ„ν•œ λͺ¨λΈμ„ κ°œλ°œν•˜μ—¬, 이에 κΈ°λ°˜ν•œ μš©λŸ‰ μ œμ•ˆμ„ ν•˜κ³ μž ν•˜μ˜€λ‹€. 이식 ν›„ 15μΌκΉŒμ§€ μ‹œν–‰ν•œ μ΅œμ € λ†λ„μΉ˜λ₯Ό μˆ˜μ§‘ν•˜κ³  이와 ν•¨κ»˜ 이식 ν›„ 10-15일 사이 tacrolimus의 ν˜ˆμ€‘ 농도 μ‘°λ°€ μ±„ν˜ˆμ„ μ•½λ¬Ό νˆ¬μ•½ ν›„ 0.5, 1, 2, 4, 6, 12 μ‹œκ°„ 째에 μ‹œν–‰ν•˜μ—¬ ν•¨κ»˜ λΆ„μ„ν•˜μ˜€λ‹€. 동일 기간에 λŒ€ν•˜μ—¬ μž„μƒμ /μ‹€ν—˜μ‹€μ  검사λ₯Ό ν•¨κ»˜ μˆ˜μ§‘ν•˜μ˜€κ³ , λͺ¨λ“  연ꡬ λŒ€μƒ ν™˜μžμ—μ„œ CYP3A5와 ABCB1 μœ μ „ν˜•μ„ λΆ„μ„ν•˜μ—¬ λͺ¨λΈ 확립에 μ‚¬μš©ν•˜μ˜€λ‹€. λͺ¨λΈ κ°œλ°œμ—λŠ” NONMEM version 6을 μ΄μš©ν•˜μ˜€κ³ , λͺ¨λΈ κ²€μ¦μ—λŠ” visual prediction check와 bootstrap 2000회λ₯Ό μ‹œν–‰ν•˜μ˜€λ‹€. μ—°κ΅¬μ—λŠ” 전체 122λͺ…μ˜ ν™˜μžκ°€ ν¬ν•¨λ˜μ—ˆκ³ , 이 쀑 61λͺ…μ—μ„œ μ‘°λ°€ μ±„ν˜ˆμ„ μ‹œν–‰ν•˜μ˜€λ‹€. 데이터 뢄석 κ²°κ³Ό first-order absorption and elimination을 μ΄μš©ν•œ one-compartment model둜, lag time을 적용 κ²½μš°μ— κ°€μž₯ 잘 μ„€λͺ… λ˜μ—ˆλ‹€. λͺ¨λΈμ˜ 집단 ν΄λ¦¬μ–΄λŸ°μŠ€(CL/F)λŠ” 20.6 L/h둜 μΆ”μ‚° λ˜μ—ˆκ³ , 뢄포 용적(Vd/F)은 286 L, 흑수 μƒμˆ˜(Ka)λŠ” 4.41 h-1둜 계산 λ˜μ—ˆμœΌλ©° lag time은 0.25 hr 둜 κ³ μ •ν•˜μ˜€λ‹€. 이식 ν›„ 기간이 증가함에 따라 tacrolimus ν΄λ¦¬μ–΄λŸ°μŠ€λŠ” μ¦κ°€ν•˜μ˜€κ³  CYP3A5 μœ μ „ν˜• *3/*3을 λ³΄μœ ν•œ ν™˜μžλŠ” *1을 λ³΄μœ ν•œ ν™˜μžκ΅°λ³΄λ‹€ tacrolimus ν΄λ¦¬μ–΄λŸ°μŠ€κ°€ 36.7% κ°μ†Œν•˜μ˜€λ‹€. (p < 0.001) λ˜ν•œ 뢄포 μš©μ μ€ 체쀑에 λΉ„λ‘€ν•˜μ—¬ μ¦κ°€ν•˜λŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€. λ³Έ μ—°κ΅¬λŠ” μ‹ μž₯ 이식을 받은 ν•œκ΅­μΈ ν™˜μžμ—μ„œ 이식 ν›„ μ΄ˆκΈ°μ—μ„œ μ‘°λ°€ μ±„ν˜ˆκ³Ό μ΅œμ € λ†λ„μΉ˜ κ²°κ³Όλ₯Ό ν•¨κ»˜ μ΄μš©ν•˜μ—¬ tacrolimus의 κ°œμΈκ°„ 약동학 차이에 영ν–₯을 λ―ΈμΉ˜λŠ” μš”μΈμ„ κ°λ³„ν•˜μ˜€λ‹€. λ³Έ μ—°κ΅¬μ—μ„œ 개발된 λͺ¨λΈμ„ 톡해 보닀 μ ν•©ν•˜κ²Œ tacrolimus의 μš©λŸ‰μ„ μ˜ˆμΈ‘ν•  수 μžˆμ„ 것이며, μ΄λŠ” 개인맞좀 μ•½λ¬Όμš”λ²•μ˜ 기반이 될 것이닀.μš” μ•½ i λͺ© μ°¨ iii List of Tables iv List of Figures v μ„œ λ‘  1 연ꡬ 방법 4 연ꡬ κ²°κ³Ό 13 κ³  μ°° 17 μ°Έκ³ λ¬Έν—Œ 22 Tables & Figures 27 Abstract 40Maste

    λ² μ΄λΉ„λΆμ„ΈλŒ€μ˜ 은퇴후 μ£Όκ±°μ•ˆμ •μ„ μœ„ν•œ μ •μ±…λ°©μ•ˆ 연ꡬ(Housing policy directions for the retired bany-room generation in Korea)

    No full text
    λ…ΈνŠΈ : 이 μ—°κ΅¬λ³΄κ³ μ„œμ˜ λ‚΄μš©μ€ κ΅­ν† μ—°κ΅¬μ›μ˜ 자체 μ—°κ΅¬λ¬Όλ‘œμ„œ μ •λΆ€μ˜ μ •μ±…μ΄λ‚˜ κ²¬ν•΄μ™€λŠ” μƒκ΄€μ—†μŠ΅λ‹ˆλ‹€

    μ €μΆœμ‚° 좔세에 λŒ€μ‘ν•œ 주택 및 λ„μ‹œμ •μ±… λ°©ν–₯ 연ꡬ(2)(Housing and urban policy strategies responding to low fertility)

    No full text
    λ…ΈνŠΈ : 이 μ—°κ΅¬λ³΄κ³ μ„œμ˜ λ‚΄μš©μ€ κ΅­ν† μ—°κ΅¬μ›μ˜ 자체 μ—°κ΅¬λ¬Όλ‘œμ„œ μ •λΆ€μ˜ μ •μ±…μ΄λ‚˜ κ²¬ν•΄μ™€λŠ” μƒκ΄€μ—†μŠ΅λ‹ˆλ‹€
    corecore