8 research outputs found

    Micromechanical Modeling and Experiments of Crystal Plasticity: From Single Crystals to Homogenized Polycrystals

    No full text
    Doctor์ตœ๊ทผ ์ œํŠธ ์—”์ง„ ๋ฐ ๋ฐœ์ „๊ธฐ์˜ ํ„ฐ๋นˆ ๋‚ ๊ฐœ ์ œ์ž‘์— ์ด์šฉ๋˜๋Š” ๋‹จ๊ฒฐ์ •ํ•ฉ๊ธˆ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ MEMS(microelectromechanical systems),NEMS(nanoelectromechan-ical systems) ์ œ์ž‘์— ์ด์šฉ๋˜๋Š” ๊ธˆ, ์•Œ๋ฃจ๋ฏธ๋Š„,๋‹ˆ์ผˆ ๋“ฑ์˜ ๋‹จ๊ฒฐ์ •, ๋งˆ์ดํฌ๋กœ ๋˜๋Š” ๋‚˜๋…ธ ํฌ๊ธฐ์˜ ๊ฒฐ์ •๋ฆฝ์„ ๊ฐ€์ง„๋‹ค๊ฒฐ์ •์žฌ์˜ ์ˆ˜์š”๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๋Š” ์ถ”์„ธ์ด๋‹ค. ์ฃผ๊ธฐ์ ์ธ๊ฒฉ์ž๊ตฌ์กฐ(lattice structure)๋ฅผ ๊ฐ€์ง„ ๊ฒฐ์ •์งˆ ์žฌ๋ฃŒ์˜ ๋ณ€ํ˜• ๊ฑฐ๋™ ์ค‘๋‚˜ํƒ€๋‚˜๋Š” ๊ฒฉ์ž ์žฌ๋ฐฐ์—ด์— ์˜ํ•œ ์ด๋ฐฉ์„ฑ, ๋ฏธ์‹œ ์ „๋‹จ๋ฐด๋“œ, ๊ฒฐ์ •๋ฆฝ ์„ธ๋ถ„ํ™”๋“ฑ์˜ ๋ณ€ํ˜• ๊ธฐ๊ตฌ๋Š” ์ฃผ๋กœ ๋‹จ๊ฒฐ์ • ๋˜๋Š” ์•„๊ฒฐ์ •๋ฆฝ ์ˆ˜์ค€์—์„œ ์ด๋ฃจ์–ด์ง„๋‹ค.๋”ฐ๋ผ์„œ, ๋‹จ๊ฒฐ์ • ๋ฐ ๋‹ค๊ฒฐ์ •์งˆ ์žฌ๋ฃŒ์˜ ๋ณ€ํ˜• ๊ฑฐ๋™์„ ์ •ํ™•ํžˆ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ๊ตฌ์„ฑ ๋ชจ๋ธ์˜ ๊ฐœ๋ฐœ๊ณผ ๊ฒฐ์ •๋ฆฝ ๋‚ด๋ถ€์˜ ๋ณ€ํ˜•๋ฅ  ๋ถ„ํฌ๋ฅผ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•œ์‹คํ—˜๊ธฐ๋ฒ•์˜ ๊ฐœ๋ฐœ์€ ๋‹จ๊ฒฐ์ •์žฌ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋‹ค๊ฒฐ์ •์žฌ์˜ ๋ฌผ์„ฑ ์˜ˆ์ธก ๋ฐ ๋ฏธ์†Œ๊ตฌ์กฐ๋ฌผ์˜ ์‹ ๋ขฐ์„ฑ ํ‰๊ฐ€์— ํฐ ๋„์›€์ด ๋œ๋‹ค.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฒฐ์ •์งˆ ์žฌ๋ฃŒ์˜ ๋ถˆ๊ท ์ผํ•œ ๋ณ€ํ˜• ๊ฑฐ๋™์„ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•œ๊ฒฐ์ •๋ฆฝ ์ˆ˜์ค€(grain-level)์—์„œ์˜ ๋ฏธ์†Œ์—ญํ•™์  ๋ชจ๋ธ๋ง, ์ˆ˜์น˜ํ•ด์„ ๋ฐ ์‹คํ—˜๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋‹ค๊ฒฐ์ •์žฌ์˜ ๋ณ€ํ˜• ๊ฑฐ๋™์„ ๋‚˜ํƒ€๋‚ด๊ธฐ ์œ„ํ•œ ๊ตฌ์„ฑ๋ชจ๋ธ์€ ์Šน๋ฒ•๋ถ„ํ•ด(multiplicative decomposition)์— ๊ธฐ์ดˆํ•œ ๊ณ ์ „์ ์ธ๊ฒฐ์ •์†Œ์„ฑ๋ชจ๋ธ(crystal plasticity model)์ด๋ฉฐ ๋ณ€ํ˜• ์ค‘ ์ง‘ํ•ฉ ์กฐ์ง์˜๋ฐœ์ „์„ ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ตฌ์„ฑ ๋ชจ๋ธ์€ ํ›„๋ฐฉ ์˜ค์ผ๋Ÿฌ๋ฒ•(backward Eulermethod)์„ ์ด์šฉํ•˜์—ฌ ์œ ํ•œ์š”์†Œ ํ”„๋กœ๊ทธ๋žจ์ธ ABAQUS์˜ ์‚ฌ์šฉ์ž ์ •์˜์„œ๋ธŒ๋ฃจํ‹ด(UMAT, VUMAT, UEL)์œผ๋กœ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๋ชจ๋ธ ๋ฐ ํ•ด์„๊ธฐ๋ฒ•์€ ๋‹จ๊ฒฐ์ • ๋ฐ ๋‹ค๊ฒฐ์ •์žฌ์˜ ๋ถˆ๊ท ์ผํ•œ ๋ณ€ํ˜• ๊ฑฐ๋™์„ ๊ด€์ฐฐํ•˜๊ธฐ ์œ„ํ•œ์‹คํ—˜๊ณผ ์—ฐ๊ณ„ํ•˜์—ฌ ๊ฒฐ์ •๋ฆฝ ์ˆ˜์ค€์˜ ๋ณ€ํ˜• ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•ด์‚ฌ์šฉ๋˜์—ˆ๋‹ค.๋Œ€๋ณ€ํ˜• ์••์ถ•์‹œ ์•Œ๋ฃจ๋ฏธ๋Š„ ๋‹จ๊ฒฐ์ • ํ‘œ๋ฉด์— ๋ฐœ์ƒํ•˜๋Š” ๋ถˆ๊ท ์ผํ•œ ๋ณ€ํ˜•๋ฅ ๋ถ„ํฌ๋ฅผ ๋””์ง€ํ„ธ ํ™”์ƒ๊ด€๋ จ(DIC, digital image correlation) ๊ธฐ๋ฒ•์„์ ์šฉํ•˜์—ฌ ์ธก์ •ํ•˜์˜€์œผ๋ฉฐ, ๊ฒฐ์ •์†Œ์„ฑ ์œ ํ•œ์š”์†Œ(CPFEM, crystal plasticityfinite element) ๊ฒฐ๊ณผ์™€ ๋น„๊ตํ•˜์˜€๋‹ค. ์ด๋กœ๋ถ€ํ„ฐ ๋‹จ๊ฒฐ์ •์˜ ์ด๋ฐฉ์„ฑ ๋ณ€ํ˜•๊ฑฐ๋™์„ ์ •ํ™•ํžˆ ์ธก์ •ํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ์ œ์•ˆ๋œ ๊ตฌ์„ฑ ๋ชจ๋ธ ๋ฐ ํ•ด์„ ๊ธฐ๋ฒ•์˜ํƒ€๋‹น์„ฑ์„ ๊ฒ€์ฆํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.๋‹จ๊ฒฐ์ •์˜ ๋‚˜๋…ธ์••์ž…(nanoindentation) ์‹คํ—˜์œผ๋กœ๋ถ€ํ„ฐ ์••์ž…๋ถ€ ์ฃผ๋ฉด์—๋ฐœ์ƒํ•˜๋Š” pile-up ํŒจํ„ด์˜ ์ด๋ฐฉ์„ฑ ๋ฐ ๋ณ€ํ˜• ์ค‘ ํ™œ์„ฑํ™”๋˜๋Š” ์Šฌ๋ฆฝ๊ณ„๋ฅผ์›์žํ˜„๋ฏธ๊ฒฝ(AFM, atomic force microscope)์„ ์ด์šฉํ•˜์—ฌ ์ธก์ •ํ•˜์˜€๋‹ค.๊ฒฐ์ •์†Œ์„ฑ ์œ ํ•œ์š”์†Œ๋ชจ๋ธ์€ ์‹คํ—˜์—์„œ ๊ด€์ฐฐ๋˜๋Š” (001), (011), (111)ํ‘œ๋ฉด์— ๋ฐœ์ƒํ•˜๋Š” pile-up์˜ 4์ค‘, 2์ค‘, 6์ค‘ ๋Œ€์นญ์„ฑ์„ ์ž˜ ์˜ˆ์ธกํ•˜์˜€๋‹ค.์••์ž…๋ถ€ ์ฃผ๋ณ€์— ๋ฐœ์ƒํ•˜๋Š” ์ด๋Ÿฌํ•œ ์„œ๋กœ ๋‹ค๋ฅธ ํŒจํ„ด์€ ๊ฒฐ์ •ํ•™์ ์ด๋ฐฉ์„ฑ(crystallographic anisotropy)์— ์˜ํ•ด ์„ค๋ช…๋  ์ˆ˜ ์žˆ๋‹ค.๊ฒฐ์ •๋ฆฝ์˜ ์ดˆ๊ธฐ ๋ฐฉ์œ„์™€ ๊ฒฐ์ •๋ฆฝ ๊ฐ„์˜ ์ƒํ˜ธ ์ž‘์šฉ์ด ๋‹ค๊ฒฐ์ •์žฌ์˜ ๊ฑฐ์‹œ์ ์ธ๋ณ€ํ˜• ๊ฑฐ๋™์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์—ฐ๊ตฌํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์กฐ๋Œ€ํ•œ ์ฃผ์ƒํ˜•๊ฒฐ์ •๋ฆฝ(columnar grain)์„ ๊ฐ€์ง„ ๋‹ค๊ฒฐ์ •์žฌ์˜ ํ‰๋ฉด ๋ณ€ํ˜• ์••์ถ• ์‹คํ—˜์„์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์‹œํŽธ ๋‚ด๋ถ€์˜ ๊ฐ ๊ฒฐ์ •๋ฆฝ์˜ ํ˜•์ƒ ๋ณ€ํ™”, ์Šฌ๋ฆฝ๊ณ„์˜ ๋ฐœ๋‹ฌ ๋ฐ์ง‘ํ•ฉ ์กฐ์ง์˜ ๋ฐœ์ „์€ electron backscattered diffraction(EBSD)์™€์ „๊ณ„๋ฐฉ์‚ฌํ˜• ์ฃผ์‚ฌ์ „์žํ˜„๋ฏธ๊ฒฝ(FE-SEM, field-emission scanning electronmicroscope)์„ ์ด์šฉํ•˜์—ฌ ์ธก์ •ํ•˜์˜€๋‹ค. ์ดˆ๊ธฐ ๋ฐฉ์œ„์— ์˜ํ•œ Taylor ๊ณ„์ˆ˜๊ฐ€๋‚ฎ์€ ๊ฒฐ์ •๋ฆฝ์˜ ๊ฒฝ์šฐ ๊ฑฐ์‹œ์ ์ธ ์™ธ๋ถ€ ๋ณ€ํ˜•๋Ÿ‰์„ ํฌ๊ฒŒ ์ดˆ๊ณผํ•˜๋Š” ๋ณ€ํ˜•๋ฅ ์„๋‚˜ํƒ€๋‚ด๋ฉฐ ๊ฒฐ์ • ๋ฐฉ์œ„๋„ ํฌ๊ฒŒ ํšŒ์ „ํ•œ๋‹ค. ๋˜ํ•œ, Taylor ๊ณ„์ˆ˜๊ฐ€ ๋†’์€๊ฒฐ์ •๋ฆฝ๊ณผ ๋งŒ๋‚˜๋Š” ๊ฒฐ์ •๋ฆฝ๊ณ„์—์„œ ์ „๋‹จ ๋ฐด๋“œ๊ฐ€ ๋ฐœ์ƒํ•˜๊ฒŒ ๋˜๊ณ , ์ด๋ ‡๊ฒŒ์ง‘์ค‘๋œ ๋ณ€ํ˜•์€ ๋‹ค๊ฒฐ์ •์žฌ ์ „์ฒด์˜ ์—ฐ์„ฑ์„ ํฌ๊ฒŒ ๊ฐ์†Œ์‹œํ‚ค๊ฒŒ ๋œ๋‹ค.๋งˆ์ง€๋ง‰์œผ๋กœ FCC ๋‹จ๊ฒฐ์ • ์žฌ๋ฃŒ์˜ ๊ธฐ๊ณต์˜ ์„ฑ์žฅ ๊ณผ ํ•ฉ์ฒด์— ๋Œ€ํ•œ ๊ฒฐ์ •ํ•™์ ๋ฐฉํ–ฅ๊ณผ ์‘๋ ฅ ๋‹ค์ถ•์„ฑ์˜ ์˜ํ–ฅ์„ ์†๋„์˜์กด์„ฑ ๊ฒฐ์ •์†Œ์„ฑ๋ชจ๋ธ์„ ์ ์šฉํ•œ 3์ฐจ์› ์œ ํ•œ์š”์†Œ ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ํ•ด์„ํ•˜์˜€๋‹ค. ์ด๋กœ๋ถ€ํ„ฐ ๊ทœ์น™์ ์ธ๊ฒฉ์ž๊ตฌ์กฐ๋กœ ์ธํ•ด ๊ฐ•ํ•œ ์ด๋ฐฉ์„ฑ ๊ฑฐ๋™์„ ๋ณด์ด๋Š” ๋‹จ๊ฒฐ์ • ์žฌ๋ฃŒ์˜ ๊ฒฝ์šฐ์—๋„์‘๋ ฅ ๋‹ค์ถ•์„ฑ(stress triaxiality)์€ ๊ธฐ๊ณต์˜ ์„ฑ์žฅ๋ฐฉํ–ฅ๊ณผ ๋ฐœ์ „ ๋ชจ์Šต,ํ•ฉ์ฒด์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ธ์ž์ž„์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ๋‹จ๊ฒฐ์ •์žฌ๋ฃŒ๋Š”๊ฒฐ์ •ํ•™์  ๋ฐฉํ–ฅ์„ฑ์— ์˜ํ•ด ๋ณ€ํ˜• ์ด๋ ฅ์ด ํฌ๊ฒŒ ๋‹ฌ๋ผ์ง€๋‚˜, ๊ธฐ๊ณต์ด ์กด์žฌํ•˜๋Š”๊ฒฝ์šฐ์— ๋„ ๊ฒฐ์ •ํ•™์  ๋ฐฉํ–ฅ์— ๋”ฐ๋ฅธ ๋ณ€ํ˜• ๋ชจ๋“œ์—๋Š” ํฌ๊ฒŒ ์˜ ํ–ฅ์„ ์ฃผ์ง€์•Š๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.In this thesis, the micromechanical constitutive modeling,numerical simulation and experiments of crystalline materials arepresented at the grain-level to elucidate heterogeneous plasticdeformation. The model is formulated based on the classicalframework of the crystal plasticity model referred to themultiplicative decomposition and incorporate the effect of textureevolutions. The fully implicit backward Euler method is employedfor the time-integration of the constitutive model. The crystalplasticity model is implemented into the user subroutines (UMAT,VUMAT and UEL) of a finite element program ABAQUS. Theseconstitutive equations have been incorporated in a Taylor-typemodel and a finite element model for considering large deformationand rotation. The developed numerical strategy is compared withanalytical and experimental results such as the stress-straincurves and the pole-figure representations.The heterogeneous inter- and intragranular deformation ofpolycrystalline materials are analysed in connection with a seriesof experiments of both single crystals and multicrystals:The in-plane strain fields of an aluminium single crystal aremeasured by using the digital image correlation (DIC) techniqueand compared with the crystal plasticity finite element (CPFEM)results. This shows the anisotropic response of the single crystaland the validity of the current constitutive modeling framework atthe single crystal level.The anisotropic pile-up patterns around nanoindents and theircrystallographic analysis in terms of the active slip systems andlocal texture evolutions are presented for nanoindentationexperiments of single crystals. The experiments as well as thesimulations show that the pile-up patterns on the surfaces of(001)-, (011)- and (111)-oriented single crystals have four-,two-, and six-fold symmetry, respectively. The different pile-uppatterns can be explained in terms of the strong crystallographicanisotropy of the out-of-plane displacements around the indents.Deformation response of an OFHC copper multicrystal which consistsof large columnar grains are is investigated to examineheterogeneous distribution of deformation patterns in each grainof the sample. The evolution of the crystallographic orientationin each grain was measured by the electron backscattereddiffaction (EBSD) system in a field emission scanning electronmicroscope (FE-SEM). Also, finite element calculations areconducted to extract the history of the active slip systems duringdeformation. These combined numerical modeling and experiments ofmulticrystals identify the effect of the intrinsic grainorientation and the interaction effect among neighboring grains onthe overall deformation behavior of polycrystalline materials.Finally, the unit cell analysis has been conducted to study theeffect of stress triaxialities, crystallographic orientations andinitial void volume fractions on the growth and coalescence ofvoids in f.c.c. single crystals. The numerical results showed thatthe stress triaxiality and the deformation mode specified by thecrystallographic orientation have a competitive effect on theevolution of voids. For the low level of stress triaxiality, thedeformation mode is mainly determined by the crystallographicorientation. For high stress triaxiality, however, the deviationfrom the specified deformation mode is large even for incipientvoid growth and the void growth rate is mainly determined bystress triaxiality and the initial void volume fraction
    corecore