5 research outputs found
๋ฅ๋ฌ๋์ ์์์ฒ๋ฆฌ๋ฅผ ์ฌ์ฉํ ์๋ ์๋ฐฉ์ฅ๋น
ํ์๋
ผ๋ฌธ(๋ฐ์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :์์ฐ๊ณผํ๋ํ ํ๋๊ณผ์ ๊ณ์ฐ๊ณผํ์ ๊ณต,2020. 2. ๊ฐ๋ช
์ฃผ.It is a highly crucial task to protect people and properties at fire scenes through early detection and suppression. For this aim, it is necessary for fire apparatus to swiftly move to fire scene by early detection. In addition, performing fire suppression after swift and accurate fire scene detection are required.
Recently, researches on the method to determine whether fire has occurred or not through image processing by using deep learning and the method to determine the possibility of flame existence and unmanned vehicle are actively being conducted. This study introduces the method to determine fire occurrence through unmanned surveillance camera and suppressing it by unmanned fire fighting truck.
First of all, Chapter 1 mentions recent research trends related to this study. Chapter 2 introduces the method regarding determining fire occurrence. The deep learning model used for fire detection constructed architecture by effectively using modified DCR block and CMFC block. By using multi-scale prediction based on flame size, determination of fire occurrence was more accurate and alarm malfunction rate was lower than existing methods. Chapter 3 suggested the method to determine road areas in which driving is possible so that unmanned fire fighting trucks can move fast and avoid obstacles. Chapter 4 suggested the method to perform vanishing point determination - a preprocess of lane recognition - so that driving in current lane is possible in road area. Afterward, fire occurrence area has to be identified once unmanned fire fighting truck arrives at a scene. Chapter 5 suggested fire segmentation model which identifies fire occurrence area through semantic segmentation. Lastly, the models used in performing such methods are generally known to require vast amounts of computations and memory. Therefore, Chapter 6 suggested a lightweight fire segmentation model which can be used in mobile devices.
The suggested methods have been identified of their validity through respective experiments. Also, accuracy was identified based on evaluation metrics suitable for respective experiments. Through this, the proposed methods suggested in respective chapters have been identified to have greater accuracy compared to the recently published methods which used the algorithm-based method and using the deep learning method.ํ์ฌํ์ฅ์์๋ ํ์ฌ๋ฅผ ์ด๊ธฐ์ ๋ฐ๊ฒฌํ๊ณ ์ง์์ ํตํด ํ์ฌ๋ก๋ถํฐ ์ธ๋ช
๊ณผ ์ฌ์ฐ์ ๋ณดํธํ๋ ๊ฒ์ ์๋นํ ์ค์ํ ์
๋ฌด์ด๋ค. ์ด๋ฅผ ์ํด์๋ ํ์ฌ๋ฅผ ์ด๊ธฐ์ ๊ฐ์งํ์ฌ ํ์ฌํ์ฅ์ผ๋ก ์๋ฐฉ์์ค์ด ๋น ๋ฅด๊ฒ ์ถ๋ํ๋ ๊ฒ์ด ํ์ํ๋ค. ๋ํ, ํ์ฌ๋ฐ์ ์ง์ญ์ ๋น ๋ฅด๊ณ ์ ํํ๊ฒ ํ๋จํ์ฌ ํ์ฌ์ง์์ ์ํํ๋ ๊ฒ์ด ์๊ตฌ๋๋ค.
์ต๊ทผ, ๋ฅ๋ฌ๋์ ์ฌ์ฉํ ์์์ฒ๋ฆฌ๋ฅผ ํตํด ํ์ฌ๋ฐ์ ์ฌ๋ถ๋ฅผ ํ๋จํ๋ ๋ฐฉ๋ฒ๊ณผ, ํ์ผ์ ์กด์ฌ๊ฐ๋ฅ์ฑ์ ํ๋จํ๋ ๊ธฐ๋ฒ ๋ฐ ๋ฌด์ธ์๋์ฐจ๋ฅผ ์ฌ์ฉํ ํ์ฌ์ง์์ ๋ํ ์ฐ๊ตฌ๊ฐ ํ๋ฐํ ์งํ๋๊ณ ์๋ค. ์ด ๋
ผ๋ฌธ์์๋ ๋ฌด์ธ ๊ฐ์์นด๋ฉ๋ผ๋ฅผ ํตํด ํ์ฌ์ฌ๋ถ๋ฅผ ํ๋จํ ๋ค, ํ์ฌํ์ฅ์ผ๋ก ๋ฌด์ธ ์๋ฐฉ์ฐจ๊ฐ ์ถ๋ํ์ฌ ํ์ฌ๋ฅผ ์ง์ํ๊ธฐ ์ํ ๋ช๊ฐ์ง ๊ธฐ๋ฒ์ ๋ํ์ฌ ์๊ฐํ๋ค.
๋จผ์ , 1์ฅ์์๋ ์ด ๋
ผ๋ฌธ๊ณผ ๊ด๋ จ๋ ์ต๊ทผ ์ฐ๊ตฌ๋ํฅ์ ๋ํด ์ธ๊ธํ๋ค. ๊ทธ๋ฆฌ๊ณ 2์ฅ์์๋ ํ์ฌ๋ฐ์ ์ฌ๋ถ ํ๋ณ์ ๋ํ ๊ธฐ๋ฒ์ ์๊ฐํ๋ค. ํ์ฌ๊ฐ์ง๋ฅผ ์ํด ์ฌ์ฉ๋ ๋ฅ๋ฌ๋ ๋ชจ๋ธ์ modified DCR block ๊ณผ CMFC block ์ ํจ๊ณผ์ ์ผ๋ก ์ฌ์ฉํ์ฌ architecture๋ฅผ ๊ตฌ์ฑํ์๋ค. ์ด๋ฅผ ํตํด, ํ์ผ์ ํฌ๊ธฐ์ ๋ฐ๋ผ multi-scale prediction์ ์ฌ์ฉํจ์ผ๋ก์จ ๊ธฐ์กด์ ๊ธฐ๋ฒ์ ๋นํด ๋ ์ ํํ ํ์ฌ๋ฐ์์ฌ๋ถ ํ๋ณ๊ณผ, ๋ ๋ฎ์ ๊ฒฝ๋ณด ์ค์๋์จ์ ์ํํ๋ ๊ฒ์ ํ์ธํ์๋ค. 3์ฅ์์๋ ํ์ฌํ์ฅ์ผ๋ก ์ถ๋ํ๋ฉด์, ๋น ๋ฅด๊ฒ ์ด๋ํด์ผ ํ๋ ๋ฌด์ธ์๋ฐฉ์ฐจ๊ฐ ์ฅ์ ๋ฌผ ํํผ๊ฐ ๊ฐ๋ฅํ ์ ์๋๋ก ์ฃผํ์ด ๊ฐ๋ฅํ ๋๋ก์์ญ์ ํ๋ณํ๋ ๊ธฐ๋ฒ์ ์ ์ํ์๋ค. 4์ฅ์์๋, ์ด๋ ์ค ์ฃผํ๊ฐ๋ฅํ ๋๋ก์์ญ์์ ํ์ฌ ์ฐจ์ ์ ์ ์งํ๋ฉฐ ์ฃผํ ๊ฐ๋ฅํ๋๋ก, ์ฐจ์ ์ธ์์ ์ ์ฒ๋ฆฌ ๊ณผ์ ์ธ ์์ค์ ํ๋ณ์ ์ํํ๋ ๊ธฐ๋ฒ์ ์ ์ํ์๋ค. ์ดํ, ํ์ฌํ์ฅ์ ๋ฌด์ธ์๋ฐฉ์ฐจ๊ฐ ๋์ฐฉํ๋ฉด ํ์ฌ๋ฐ์ ์์ญ์ ํ๋ณํด์ผ ํ๋ค. 5์ฅ์์๋ semantic segmentation์ ํตํด ์ด๋ฌํ ํ์ฌ๋ฐ์ ์์ญ์ ํ์ธํ ์ ์๋๋ก ํ๋ fire segmentation ๋ชจ๋ธ์ ์ ์ํ์๋ค. ๋ง์ง๋ง์ผ๋ก, ์ด๋ฌํ ๊ธฐ๋ฒ๋ค์ด ์ํ๋๋ ๋ฐ ์ฌ์ฉ๋๋ ๋ชจ๋ธ๋ค์ ์ ์ฒด์ ์ผ๋ก ๋ง์ ์ฐ์ฐ๋๊ณผ ๋ฉ๋ชจ๋ฆฌ๋ฅผ ์๊ตฌํ๋ ๊ฒ์ด ์ ์๋ ค์ ธ ์๋ค. ๋ฐ๋ผ์ 6์ฅ์์๋ ๋ชจ๋ฐ์ผ ์ฅ์น์์ ์ฌ์ฉํ ์ ์๋ ์์ค์ ๊ฒฝ๋ํ๋ fire segmentation ๋ชจ๋ธ์ ์ ์ํ์๋ค.
์ ์ํ ๊ธฐ๋ฒ์ ๊ฐ๊ฐ์ ์คํ์ ํตํด ํ๋น์ฑ์ ํ์ธํ์๋ค. ๊ทธ๋ฆฌ๊ณ , ๊ฐ ์คํ์ ๋ง๋ ํ๊ฐ์งํ๋ฅผ ํตํด ์ ํ๋๋ฅผ ํ์ธํ์๋ค. ์ด๋ฅผ ํตํด, ๊ฐ ์ฅ์์ ์ ์ํ ๊ธฐ๋ฒ๋ค์ ๋ชจ๋ ์ต๊ทผ์ ๋ฐํ๋ ์๊ณ ๋ฆฌ์ฆ ๊ธฐ๋ฐ์ ๊ธฐ๋ฒ๊ณผ, ๋ฅ๋ฌ๋์ ์ฌ์ฉํ ๊ธฐ๋ฒ๋ค์ ๋นํด ๋์ ์ ํ๋๋ฅผ ๊ฐ๋ ๊ฒ์ ํ์ธํ์๋ค.1 INTRODUCTION 1
1.1 Recent research on deep learning 1
1.2 Application: Deep learning in real life 7
1.2.1 Fire Detection 7
1.2.2 Road Segmentation 9
1.2.3 Vanishing Point Detection 10
1.2.4 Fire Segmentation 13
1.2.5 Model Compression for Fire Segmentation 14
1.3 Scenario for Automatic Fire Fighting Apparatus 16
2 Fire Detection 19
2.1 Related Work 19
2.2 Proposed Method for Fire Detection 23
2.2.1 Modified DCR block and CMFC block 23
2.2.2 Proposed Architecture for Fire Detection 24
2.2.3 Experimental Result 24
3 Road Segmentation 32
3.1 Related work 32
3.2 Proposed Method for Road Segmentation 34
3.3 Experimental Result 37
3.3.1 Data Augmentation 38
3.3.2 Evaluation 38
4 Vanishing Point Detection 42
4.1 Related Work 42
4.2 Proposed Method for Vanishing Point Detection 47
4.2.1 Proposed Architecture 47
4.2.2 Experimental Result 50
5 Fire Segmentation 54
5.1 Proposed Method for Fire Segmentation 54
5.2 Experimental Result 57
5.2.1 Result: FiSmo dataset 57
5.2.2 Result: Corsican Fire Database 61
6 Model Compression for Fire Segmentation 63
6.1 Related Work 63
6.2 Squeezed Model for Fire Segmentation 65
6.2.1 Proposed Architecture 65
6.2.2 Experimental Results 68
7 Conclusion 72
Abstract (In Korean) 84Docto