22 research outputs found
The legislature versus political parties under the early phase of President Moo-hyun Roh' s term(2003-2005)
노무현 후보의 대선 공약과 당선자 시절 화두는 정치개혁이었다. 이를 포괄적으로 반영한 노무현 정권의 명칭이 국민 참여정부였으며, 노무현 정치개혁의 핵심은 정당개혁이었다. 본 논문의 목적은 노무현 집권 전반기 여당이 어떠한 정당조직을 지니고 있는지, 그러한 정당조직이 의회정치와 관련하여 어떠한 정치적 함의가 있는지를 살펴보는 것이다. 한국의 정치과정에서 국회-정당간의 관계란 특수한 환경에 있다. 입법부 선거를 통해서 선택된 정당이나 국회의원들이 입법부로서 對행정부 기능보다는, 국회 내에서 여당과 야당을 구분하여 對행정부 기능을 수행한다. 최근 대부분의 연구들은 한국 국회 운영의 자율성, 전문성, 책임성을 파행과 비능률로 몰고 가는 외부 요인이 결구 국회 밖의 정당이 모든 것을 지배하는 체제라고 주장한다. 하지만, 제도화된 정당이 없는 한국의 현실에선 의회 원내중심정치와 더불어 정당조직의 다양한 발전을 통한 정당정치의 중요성이 동시에 강조되어야 한다. President Moo-hyun Roh pledged the political reform in which political party reform has been the first option to be realized. The aim of this paper is to illustrate the party reform and to analyze what it is going on in the early phase of Roh's term with regard to the relationship between the National Assembly and political parties. As far as Korean politics has been concerned, legislative politics has not been represented by the relationship of the Legislature versus the Administration, but by that of Government party versus Opposition party. We need to take into the simultaneous consideration of party-centered politics through improving party organizations as well as legislative-centered politics, when we recognize that there been no 'institutionalized political parties' in the Korean political system.본 논문은 2005년도 서울대학교 한국행정연구소 학술연구비 지원에 의한 것임
A Structural Analysis on Composite Factors, Visitors' Evaluation and Intent of Revisits in a Food Festival - The Case of the 15th Namdo Food Festival in South Korea -
자동 암호기 행동 모형의 경로결정 전 모의실험을 통한 자율 특징학습
학위논문(석사) - 한국과학기술원 : 전기및전자공학과, 2014.8, [ vii, 57 p ]This paper assesses the feasibility of deep learning hardware by demonstrating an auto-encoder behavior model on pre-route simulation. Many recent deep learning literature has focused on learning high-level abstraction of unlabeled raw data by unsupervised fea-ture learning. However, the computation complexity and the slowness of the learning pro-cess due to large amounts of training data required better algorithms to be developed. Addi-tionally, using FPGAs rather than serial computing CPUs could efficiently overcome these computational drawbacks. However, the design effort for FPGA implementations of deep learning algorithms remains challenging and time consuming. In order to check the feasibil-ity of designing deep learning architectures on FPGA, we designed a behavior model of auto-encoder and performed pre-route simulation using VerilogHDL in MODELSIM. We successfully obtained a cycle-accurate result of the first hidden layer’s parameters. More specifically, we extracted latent representations of the hidden layer using the Kyoto natural images and remodeled MNIST image databases. Also, we evaluated the classification per-formance on MNIST by using the pre-route of the single auto-encoder and SOFTMAX classifier. This paper shows how pre-route simulation can help the designing process of unsupervised learning algorithms on hardware by providing the cycle-accurate result.한국과학기술원 : 전기및전자공학과
