2 research outputs found
Recurrence-associated gene signature in patients with stage I non-small-cell lung cancer
Recurrent gene mutations and fusions in cancer patients are likely to be associated with cancer progression or recurrence by Vogelstein et al. (Science (80-)340, 1546-1558 (2013)). In this study, we investigated gene mutations and fusions that recurrently occurred in early-stage cancer patients with stage I non-small-cell cancer (NSCLC). Targeted exome sequencing was performed to profile the variants and confirmed their fidelity at the gene and pathway levels through comparison with data for stage I lung cancer patients, which was obtained from The Cancer Genome Atlas (TCGA). Next, we identified prognostic gene mutations (ATR, ERBB3, KDR, and MUC6), fusions (GOPC-ROS1 and NTRK1-SH2D2A), and VEGF signaling pathway associated with cancer recurrence. To infer the functional implication of the recurrent variants in early-stage cancers, the extent of their selection pattern was investigated, and they were shown to be under positive selection, implying a selective advantage for cancer progression. Specifically, high selection scores were observed in the variants with significantly high risks for recurrence. Taken together, the results of this study enabled us to identify recurrent gene mutations and fusions in a stage I NSCLC cohort and to demonstrate positive selection, which had implications regarding cancer recurrence
Longitudinal change of genetic variations in cetuximab-treated metastatic colorectal cancer
Recurrent gene mutations and copy number alterations in cancer patients are presumably associated with resistance to targeted therapy. In the present study, we assessed the gene mutations and copy number alterations that recurrently occurred in cetuximab-treated patients with metastatic colorectal cancer (mCRC). Targeted next-generation sequencing was performed in the tumor samples obtained pre-and postcetuximab treatment to assess the variations that occurred during cetuximab treatment. Moreover, we identified the emergent gene mutations (CDK6, EPHA3, ERCC2, MYC, PCMTD1, PIK3CA, PRIM2, RICTOR, and ZNRF3) and copy number alterations (ARAF, BCL2, BRCA2, EGFR, MYC, and SMAD4) that were recurrently observed only in postprogression samples and not in pretreatment or posttreatment samples from patients revealing clinical response. Furthermore, to identify the feasible candidate variations implicated in treatment resistance, we examined the variants with clonal expansion during treatment and discovered PCBP1 as a variant associated with posttreatment progression. Various recurrent mutations were enriched in the TGF-beta signaling pathway. Collectively, we identified recurrent variations in mCRC samples exhibiting post-cetuximab progression. Additionally, future studies are required to evaluate the therapeutic potential of these variations. (c) 2021 Elsevier Inc. All rights reserved
