24 research outputs found

    동적 μ—°κ²°μ£Όμ˜ λͺ¨ν˜•μ„ ν†΅ν•œ μ‚°μˆ  인지 λ‚œμ΄λ„ λͺ¨μ‚¬

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μΈλ¬ΈλŒ€ν•™ ν˜‘λ™κ³Όμ • 인지과학전곡,2019. 8. μž₯병탁.The present study aims to investigate similarities between how humans and connectionist models experience difficulty in addition and subtraction problems. Problem difficulty was operationalized by the number of carries involved in solving a given problem. I aimed to simulate this human arithmetic cognition, performing either addition or subtraction, by using the Jordan network, which is a connectionist model dynamically computing outputs through time. The Jordan network is a recurrent neural network whose hidden layer gets its inputs from an input at the current step and from the output at the previous step. Problem difficulty was measured in humans by response time, and in models by computational steps. The present study found that both humans and connectionist models experience difficulty similarly when solving binary addition and subtraction. Specifically, both agents found difficulty to be strictly increasing with respect to the number of carries. Furthermore, the models mimicked the increasing standard deviation of response time seen in humans. Another notable similarity is that problem difficulty increases more steeply in subtraction than in addition, for both humans and connectionist models. Further investigation on two model hyperparameters β€” confidence threshold and hidden dimension β€” shows higher confidence thresholds cause the model to take more computational steps to arrive at the correct answer. Likewise, larger hidden dimensions cause the model to take more computational steps to correctly answer arithmetic problems; however, this effect by hidden dimensions is negligible.λ³Έ μ—°κ΅¬λŠ” μ‚°μˆ  문제λ₯Ό ν’€ λ•Œ μ‚¬λžŒκ³Ό μ—°κ²°μ£Όμ˜ λͺ¨ν˜•μ΄ κ²ͺλŠ” 어렀움이 μœ μ‚¬ν•œμ§€λ₯Ό μ‘°μ‚¬ν•˜μ˜€λ‹€. 문제의 λ‚œμ΄λ„λŠ” 주어진 문제λ₯Ό ν•΄κ²°ν•˜λŠ”λ° μˆ˜λ°˜λ˜λŠ” 올림의 μˆ˜μ— 영ν–₯을 λ°›λŠ”λ‹€. 이 μ—°κ΅¬λŠ” μ‹œκ°„μ— 따라 λ™μ μœΌλ‘œ κ³„μ‚°ν•˜λŠ” μ—°κ²°μ£Όμ˜ λͺ¨ν˜•μΈ 쑰단 신경망(Jordan network)을 톡해, λ§μ…ˆ ν˜Ήμ€ λΊ„μ…ˆμ„ ν‘ΈλŠ” μ‚¬λžŒμ˜ 응닡 μ‹œκ°„μ„ λͺ¨μ‚¬ν•˜κ³ μž ν•˜μ˜€λ‹€. 쑰단 신경망은 은닉측이 ν˜„μž¬ μž…λ ₯κ°’κ³Ό 이전 μ˜ˆμΈ‘κ°’μ„ μž…λ ₯으둜 λ°›λŠ” μˆœν™˜ 신경망이닀. 이 μ—°κ΅¬μ—μ„œ 문제 λ‚œμ΄λ„λ₯Ό μ‚¬λžŒμ˜ 응닡 μ‹œκ°„μœΌλ‘œ, λͺ¨ν˜•μ˜ 계산 걸음 수둜 μΈ‘μ •ν•˜μ˜€λ‹€. 연ꡬ κ²°κ³Ό, μ‚¬λžŒκ³Ό μ—°κ²°μ£Όμ˜ λͺ¨ν˜• λͺ¨λ‘κ°€ 이진 λ§μ…ˆκ³Ό λΊ„μ…ˆμ„ ν’€ λ•Œ, 올림 μˆ˜κ°€ μ¦κ°€ν• μˆ˜λ‘ 어렀움을 κ²ͺμŒμ„ λ°œκ²¬ν•˜μ˜€λ‹€. ꡬ체적으둜, 두 μ‹€ν—˜ λŒ€μƒ λͺ¨λ‘λŠ” 올림 μˆ˜μ— 따라 문제 λ‚œμ΄λ„κ°€ κ°•ν•œ 증가(strictly increasing) κ²½ν–₯을 λ³΄μ˜€λ‹€. κ²Œλ‹€κ°€, λ¬Έμ œμ— 올림 μˆ˜κ°€ λ§Žμ•„μ§ˆμˆ˜λ‘ μ‚¬λžŒμ΄ 문제λ₯Ό ν‘ΈλŠ”λ° κ±Έλ¦¬λŠ” 응닡 μ‹œκ°„μ˜ ν‘œμ€€νŽΈμ°¨κ°€ μ¦κ°€ν•˜μ˜€λŠ”λ°, μ œμ•ˆν•œ λͺ¨ν˜•μ€ κ·Έ ν˜„μƒμ„ λͺ¨λ°©ν•˜μ˜€λ‹€. μ‚¬λžŒκ³Ό λͺ¨ν˜•μ˜ 또 λ‹€λ₯Έ μœ μ‚¬μ μ€ 올림 μˆ˜μ— λŒ€ν•œ 문제 λ‚œμ΄λ„κ°€ λ§μ…ˆλ³΄λ‹€ λΊ„μ…ˆμ—μ„œ 더 κ°€νŒŒλ₯΄κ²Œ μ¦κ°€ν–ˆλ‹€λŠ” μ μ΄μ—ˆλ‹€. λͺ¨ν˜•μ˜ 두 가지 ν•˜μ΄νΌ νŒŒλΌλ―Έν„° β€” 'μ‹ λ’° μž„κ³„κ°’'κ³Ό '은닉 차원' β€” 에 λŒ€ν•œ μΆ”κ°€ 쑰사 κ²°κ³Ό, μ‹ λ’° μž„κ³„κ°’μ΄ 컀질수둝 λͺ¨ν˜•μ΄ 정닡에 λ„λ‹¬ν•˜κΈ° μœ„ν•΄ 더 λ§Žμ€ 계산 걸음 수λ₯Ό κ°€μ§€μ—ˆλ‹€. ν•œνŽΈ, 은닉 차원이 컀질수둝 λͺ¨ν˜•μ΄ 정닡에 λ„λ‹¬ν•˜κΈ° μœ„ν•΄ 더 λ§Žμ€ 계산 걸음 수λ₯Ό μ·¨ν–ˆμ§€λ§Œ, μ¦κ°€μœ¨μ€ λ¬΄μ‹œν•  λ§Œν•œ μ •λ„μ΄μ—ˆλ‹€.Abstract i Contents iv List of Tables v List of Figures vi Chapter 1 Introduction 1 Chapter 2 Problem Sets 8 2.1 Operation Datasets 8 2.2 Carry Datasets 9 Chapter 3 Experiment 1: Humans 10 3.1 Participants 10 3.2 Materials 10 3.3 Procedure and Instruments 11 3.4 Results 13 3.4.1 Addition 13 3.4.2 Subtraction 13 Chapter 4 Experiment 2: Connectionist Models 15 4.1 Model 15 4.2 Measures 18 4.2.1 Accuracy 18 4.2.2 Answer Step 18 4.3 Training Settings 20 4.4 Results 20 4.4.1 Addition 21 4.4.2 Subtraction 22 Chapter 5 Discussion and Conclusion 27 References 31 ꡭ문초둝 35Maste

    Active Vibration Control of Honeycomb Sandwich Panel

    No full text
    Maste

    λ‚΄λΆ€λ…Έλ™μ‹œμž₯의 ν˜•μ„± 및 성격에 κ΄€ν•œ 연ꡬ : κΈ°μ•„ μžλ™μ°¨ 사둀λ₯Ό μ€‘μ‹¬μœΌλ‘œ

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :κ²½μ œν•™κ³Ό κ²½μ œν•™μ „κ³΅,1995.Maste

    企ζ₯­ζ”―配構造와 ο€―δ½Ώι—œδΏ‚ : 衷亞θ‡ͺε‹•θ»Š δΊ‹δΎ‹λ₯Ό δΈ­εΏƒμœΌλ‘œ

    No full text
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :κ²½μ œν•™λΆ€ κ²½μ œν•™μ „κ³΅,2001.Docto

    International students university acceptance and employment in Japan

    No full text

    의λ₯˜μ ν¬ μœ ν˜•ν™”μ™€ μ†ŒλΉ„μžμ˜ μ ν¬ν˜Όν•©μ• κ³ ν–‰λ™

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :의λ₯˜ν•™κ³Ό,2002.Maste
    corecore