24 research outputs found
λμ μ°κ²°μ£Όμ λͺ¨νμ ν΅ν μ°μ μΈμ§ λμ΄λ λͺ¨μ¬
νμλ
Όλ¬Έ(μμ¬)--μμΈλνκ΅ λνμ :μΈλ¬Έλν νλκ³Όμ μΈμ§κ³Όνμ 곡,2019. 8. μ₯λ³ν.The present study aims to investigate similarities between how humans and connectionist models experience difficulty in addition and subtraction problems. Problem difficulty was operationalized by the number of carries involved in solving a given problem. I aimed to simulate this human arithmetic cognition, performing either addition or subtraction, by using the Jordan network, which is a connectionist model dynamically computing outputs through time. The Jordan network is a recurrent neural network whose hidden layer gets its inputs from an input at the current step and from the output at the previous step. Problem difficulty was measured in humans by response time, and in models by computational steps. The present study found that both humans and connectionist models experience difficulty similarly when solving binary addition and subtraction. Specifically, both agents found difficulty to be strictly increasing with respect to the number of carries. Furthermore, the models mimicked the increasing standard deviation of response time seen in humans. Another notable similarity is that problem difficulty increases more steeply in subtraction than in addition, for both humans and connectionist models. Further investigation on two model hyperparameters β confidence threshold and hidden dimension β shows higher confidence thresholds cause the model to take more computational steps to arrive at the correct answer. Likewise, larger hidden dimensions cause the model to take more computational steps to correctly answer arithmetic problems; however, this effect by hidden dimensions is negligible.λ³Έ μ°κ΅¬λ μ°μ λ¬Έμ λ₯Ό ν λ μ¬λκ³Ό μ°κ²°μ£Όμ λͺ¨νμ΄ κ²ͺλ μ΄λ €μμ΄ μ μ¬νμ§λ₯Ό μ‘°μ¬νμλ€. λ¬Έμ μ λμ΄λλ μ£Όμ΄μ§ λ¬Έμ λ₯Ό ν΄κ²°νλλ° μλ°λλ μ¬λ¦Όμ μμ μν₯μ λ°λλ€. μ΄ μ°κ΅¬λ μκ°μ λ°λΌ λμ μΌλ‘ κ³μ°νλ μ°κ²°μ£Όμ λͺ¨νμΈ μ‘°λ¨ μ κ²½λ§(Jordan network)μ ν΅ν΄, λ§μ
νΉμ λΊμ
μ νΈλ μ¬λμ μλ΅ μκ°μ λͺ¨μ¬νκ³ μ νμλ€. μ‘°λ¨ μ κ²½λ§μ μλμΈ΅μ΄ νμ¬ μ
λ ₯κ°κ³Ό μ΄μ μμΈ‘κ°μ μ
λ ₯μΌλ‘ λ°λ μν μ κ²½λ§μ΄λ€. μ΄ μ°κ΅¬μμ λ¬Έμ λμ΄λλ₯Ό μ¬λμ μλ΅ μκ°μΌλ‘, λͺ¨νμ κ³μ° κ±Έμ μλ‘ μΈ‘μ νμλ€. μ°κ΅¬ κ²°κ³Ό, μ¬λκ³Ό μ°κ²°μ£Όμ λͺ¨ν λͺ¨λκ° μ΄μ§ λ§μ
κ³Ό λΊμ
μ ν λ, μ¬λ¦Ό μκ° μ¦κ°ν μλ‘ μ΄λ €μμ κ²ͺμμ λ°κ²¬νμλ€. ꡬ체μ μΌλ‘, λ μ€ν λμ λͺ¨λλ μ¬λ¦Ό μμ λ°λΌ λ¬Έμ λμ΄λκ° κ°ν μ¦κ°(strictly increasing) κ²½ν₯μ 보μλ€. κ²λ€κ°, λ¬Έμ μ μ¬λ¦Ό μκ° λ§μμ§μλ‘ μ¬λμ΄ λ¬Έμ λ₯Ό νΈλλ° κ±Έλ¦¬λ μλ΅ μκ°μ νμ€νΈμ°¨κ° μ¦κ°νμλλ°, μ μν λͺ¨νμ κ·Έ νμμ λͺ¨λ°©νμλ€. μ¬λκ³Ό λͺ¨νμ λ λ€λ₯Έ μ μ¬μ μ μ¬λ¦Ό μμ λν λ¬Έμ λμ΄λκ° λ§μ
λ³΄λ€ λΊμ
μμ λ κ°νλ₯΄κ² μ¦κ°νλ€λ μ μ΄μλ€. λͺ¨νμ λ κ°μ§ νμ΄νΌ νλΌλ―Έν° β 'μ λ’° μκ³κ°'κ³Ό 'μλ μ°¨μ' β μ λν μΆκ° μ‘°μ¬ κ²°κ³Ό, μ λ’° μκ³κ°μ΄ 컀μ§μλ‘ λͺ¨νμ΄ μ λ΅μ λλ¬νκΈ° μν΄ λ λ§μ κ³μ° κ±Έμ μλ₯Ό κ°μ§μλ€. ννΈ, μλ μ°¨μμ΄ μ»€μ§μλ‘ λͺ¨νμ΄ μ λ΅μ λλ¬νκΈ° μν΄ λ λ§μ κ³μ° κ±Έμ μλ₯Ό μ·¨νμ§λ§, μ¦κ°μ¨μ 무μν λ§ν μ λμ΄μλ€.Abstract i
Contents iv
List of Tables v
List of Figures vi
Chapter 1 Introduction 1
Chapter 2 Problem Sets 8
2.1 Operation Datasets 8
2.2 Carry Datasets 9
Chapter 3 Experiment 1: Humans 10
3.1 Participants 10
3.2 Materials 10
3.3 Procedure and Instruments 11
3.4 Results 13
3.4.1 Addition 13
3.4.2 Subtraction 13
Chapter 4 Experiment 2: Connectionist Models 15
4.1 Model 15
4.2 Measures 18
4.2.1 Accuracy 18
4.2.2 Answer Step 18
4.3 Training Settings 20
4.4 Results 20
4.4.1 Addition 21
4.4.2 Subtraction 22
Chapter 5 Discussion and Conclusion 27
References 31
κ΅λ¬Έμ΄λ‘ 35Maste
λ°΄λκ°μ΄ μ‘°μ λ μ μ₯ λ Έλλ₯Ό κ°λ μ ν ννμ μ ν ν¬ν λ°©μ λΈλν νλμ λ©λͺ¨λ¦¬ μμμ μ΄λ μ΄ : 곡μ λ° μ λ’°μ± μλ λμ λ°©λ²
Thesis(doctors) --μμΈλνκ΅ λνμ :μ κΈ°. μ»΄ν¨ν°κ³΅νλΆ,2010.2.Docto
λ΄λΆλ Έλμμ₯μ νμ± λ° μ±κ²©μ κ΄ν μ°κ΅¬ : κΈ°μ μλμ°¨ μ¬λ‘λ₯Ό μ€μ¬μΌλ‘
νμλ
Όλ¬Έ(μμ¬)--μμΈλνκ΅ λνμ :κ²½μ νκ³Ό κ²½μ νμ 곡,1995.Maste
δΌζ₯ζ―ι ζ§ι μ ο€―δ½ΏιδΏ : θ΅·δΊθͺεθ» δΊδΎλ₯Ό δΈεΏμΌλ‘
νμλ
Όλ¬Έ(λ°μ¬)--μμΈλνκ΅ λνμ :κ²½μ νλΆ κ²½μ νμ 곡,2001.Docto
μλ₯μ ν¬ μ ννμ μλΉμμ μ ν¬νΌν©μ κ³ νλ
νμλ
Όλ¬Έ(μμ¬)--μμΈλνκ΅ λνμ :μλ₯νκ³Ό,2002.Maste