5 research outputs found

    Titanium and water-rich metamorphic olivine in high-pressure serpentinites from the Voltri Massif (Ligurian Alps, Italy): evidence for deep subduction of high-field strength and fluid-mobile elements

    Get PDF
    Titanium- and water-rich metamorphic olivine (Fo 86-88) is reported from partially dehydrated serpentinites from the Voltri complex, Ligurian Alps. The rocks are composed of mostly antigorite and olivine in addition to magnetite, chlorite, clinopyroxene and Ti-clinohumite. In situ secondary ion mass spectrometry (SIMS) data show that metamorphic olivine has very high and strongly correlated H2O (up to 0.7 wt%) and TiO2 contents (up to 0.85 wt%). Ti-rich olivine shows colourless to yellow pleochroism. Olivine associated with Ti-clinohumite contains low Ti, suggesting that Ti-rich olivine is not the breakdown product of Ti-clinohumite. Fourier transform infrared spectroscopy (FTIR) absorption spectra show peaks of serpentine, Ti-clinohumite and OH-related Si vacancies. Combining FTIR and SIMS data, we suggest the presence of clustered planar defects or nanoscale exsolutions of Ti-clinohumite in olivine. These defects or exsolutions contain more H2O (x similar to 0.1 in the formula 4Mg(2)SiO(4)center dot(1-x)Mg(OH, F)(2)center dot xTiO(2)) than Ti-clinohumite in the sample matrix (x = 0.34-0.46). In addition to TiO2 and H2O, secondary olivine contains significant Li (2-60 ppm), B (10-20 ppm), F (10-130 ppm) and Zr (0.9-2.1 ppm). It is enriched in B-11 (delta B-11 = +17 to +23 parts per thousand). Our data indicate that secondary olivine may play a significant role in transporting water, high-field strength and fluid-mobile elements into the deeper mantle as well as introduce significant B isotope anomalies. Release of hydrogen from H2O-rich olivine subducted into the deep mantle may result in strongly reduced mantle domains.OAIID:oai:osos.snu.ac.kr:snu2014-01/102/0000043439/1SEQ:1PERF_CD:SNU2014-01EVAL_ITEM_CD:102USER_ID:0000043439ADJUST_YN:YEMP_ID:A076886DEPT_CD:3345CITE_RATE:3.476FILENAME:de hoog et al-14-cmp-titanium- and water-ric.pdfDEPT_NM:์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€SCOPUS_YN:NCONFIRM:

    Characterization of olivine fabrics and mylonite in the presence of fluid and implications for seismic anisotropy and shear localization

    Get PDF
    The Lindas Nappe, Bergen Arc, is located in western Norway and displays two high-grade metamorphic structures. A Precambrian granulite facies foliation is transected by Caledonian fluid-induced eclogite-facies shear zones and pseudotachylytes. To understand how a superimposed tectonic event may influence olivine fabric and change seismic anisotropy, two lenses of spinel lherzolite were studied by scanning electron microscope (SEM) and electron back-scattered diffraction (EBSD) techniques. The granulite foliation of the surrounding anorthosite complex is displayed in ultramafic lenses as a modal variation in olivine, pyroxenes, and spinel, and the Caledonian eclogite-facies structure in the surrounding anorthosite gabbro is represented by thin (< 1 cm) garnet-bearing ultramylonite zones. The olivine fabrics in the spinel bearing assemblage were E-type and B-type and a combination of A-and B-type lattice preferred orientations (LPOs). There was a change in olivine fabric from a combination of A-and B-type LPOs in the spinel bearing assemblage to B-and E-type LPOs in the garnet lherzolite mylonite zones. Fourier transform infrared (FTIR) spectroscopy analyses reveal that the water content of olivine in mylonite is much higher (approximately 600 ppm H/Si) than that in spinel lherzolite (approximately 350 ppm H/Si), indicating that water caused the difference in olivine fabric. Fabric strength of olivine gets weaker as the grain size reduced, and as a result, calculated seismic properties for the two deformation stages reveal that P-and S-velocity anisotropies are significantly weaker in the mylonite. Microtextures and LPO data indicate that the deformation mechanism changed from dominant dislocation creep in spinel lherzolite to dislocation creep accompanied by grain-boundary sliding in mylonite. Shear localization in the mylonite appears to be originated from the grain size reduction through (1) enhanced dynamic recrystallization of olivine in the presence of water and (2) Zener pinning of clinopyroxene or (3) by ultracomminution during the pseudotachylyte stage.OAIID:oai:osos.snu.ac.kr:snu2014-01/102/0000043439/3SEQ:3PERF_CD:SNU2014-01EVAL_ITEM_CD:102USER_ID:0000043439ADJUST_YN:YEMP_ID:A076886DEPT_CD:3345CITE_RATE:2.921FILENAME:jung_et_al_2014_eps.pdfDEPT_NM:์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€SCOPUS_YN:YCONFIRM:

    ์ค‘๊ตญ ํŠนํ—ˆ๋ฒ•์ƒ ์ง๋ฌด๋ฐœ๋ช…์ œ๋„์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋ฒ•ํ•™๊ณผ, 2013. 8. ์ •์ƒ์กฐ.ํŠนํ—ˆ์ œ๋„์˜ ๋ชฉ์  ์ค‘ ํ•˜๋‚˜๊ฐ€ ๋ฐœ๋ช…์ฐฝ์กฐ์˜ ํ™œ์šฉ์„ ์ด‰์ง„ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ตœ์ดˆ์˜ ํŠนํ—ˆ์ œ๋„๋Š” ๊ฐœ์ธ์—๊ฒŒ๋งŒ ๋ฐœ๋ช…์ฐฝ์กฐ์˜ ์†Œ์œ ๊ถŒ์„ ๋ถ€์—ฌํ•˜์˜€์ง€๋งŒ, ๊ณผํ•™๊ธฐ์ˆ ์ด ๋ถ€๋‹จํžˆ ๋ฐœ์ „ํ•˜๊ณ  ๋ฐœ๋ช… ์ž์ฒด๊ฐ€ ์ ์ฐจ ๋ณต์žกํ•ด์ง์— ๋”ฐ๋ผ ์„ ์ง„์ ์ธ ๊ธฐ์ˆ ์„ ์™„์„ฑํ•˜๋Š”๋ฐ ์ง€์‹๊ณผ ๊ธฐ์ˆ ๋งŒ ๋ณด์œ ํ•˜๋ฉด ๋˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ์—ฌ๋Ÿฌ ์—ฐ๊ตฌ๊ฐœ๋ฐœ์ธ๋ ฅ๋“ค์ด ๋Šฅ๋™์ ์œผ๋กœ ํ•ฉ์ž‘ํ•˜๋Š” ๊ฒƒ๊ณผ ๊ธฐ๊ณ„์‹œ์„ค, ์ž๋ฃŒ, ์ž๊ธˆ, ์ •๋ณด, ์‹คํ—˜์‹ค ๋“ฑ ๋ฌผ์งˆ๊ธฐ์ˆ ์กฐ๊ฑด์„ ๋งˆ๋ จํ•˜๋Š” ๊ฒƒ๋„ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ์ด๋กœ ์ธํ•˜์—ฌ, ํ˜„์žฌ ์‚ฌํšŒ์—์„œ ์—ฐ๊ตฌ๊ฐœ๋ฐœ์ธ๋ ฅ์ด ๋‹จ๋…์œผ๋กœ ๋ฐœ๋ช…์ฐฝ์กฐ๋ฅผ ์™„์„ฑํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์ ์ฐจ ์ค„์–ด๋“ค๊ณ  ๋‹จ์œ„(ๅ•ไฝ) ์˜ ์—…๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ฑฐ๋‚˜ ๋‹จ์œ„์˜ ๋ฌผ์งˆ๊ธฐ์ˆ ์กฐ๊ฑด์„ ์ด์šฉํ•˜์—ฌ ์™„์„ฑํ•œ ๋ฐœ๋ช…์ฐฝ์กฐ๊ฐ€ ๋Œ€ํญ ๋Š˜์–ด๋‚ฌ๋‹ค. ์ด์— ํ˜„์žฌ ์ฒจ๋‹จ๊ธฐ์ˆ ๋ ฅ์„ ๊ฐ–์ถ˜ ๋ฐœ๋ช…์ฐฝ์กฐ๋ฅผ ์™„์„ฑํ•˜๋Š” ๊ฒƒ์€ ๋ฐœ๋ช…์ž 1์ธ์˜ ํž˜๋งŒ์œผ๋กœ๋Š” ๊ฑฐ์˜ ๋ถˆ๊ฐ€๋Šฅํ•œ ์ƒํ™ฉ์ด๋‹ค. ๋”ฐ๋ผ์„œ ์ค‘๊ตญ์€ ์—ฌ๋Ÿฌ ๋‚˜๋ผ์˜ ์ž…๋ฒ•๊ฒฝํ—˜์„ ์ฐธ๊ณ ํ•˜๊ณ  ์ค‘๊ตญ์˜ ํ˜„์‹ค์ƒํ™ฉ๊ณผ ๊ด€๋ จ์ง€์–ด, ๋‹จ์œ„์˜ ์—…๋ฌด์™€ ๊ด€๋ จ๋œ ๋ฐœ๋ช…์„ ์กฐ์ ˆํ•˜๊ณ  ๋ฐœ๋ช…์˜ ๊ถŒ๋ฆฌ๊ท€์†, ๋‹น์‚ฌ์ž๊ฐ€ ๋ณด์œ ํ•  ๊ถŒ๋ฆฌ์™€ ๋ถ€๋‹ดํ•  ์˜๋ฌด๋ฅผ ๋ช…ํ™•ํžˆ ํ•˜๋ฉฐ, ๋ฐœ๋ช…์ž ๊ถŒ์ต๋ณดํ˜ธ์˜ ์ ˆ์ฐจ์™€ ์‹ค์ œ ๋‚ด์šฉ์„ ๊ฐœ์„ ํ•˜๋Š” ๊ฒƒ์„ ํ†ตํ•ด์„œ, ๋‹จ์œ„์™€ ๋ฐœ๋ช…์ž๊ฐ€ ๊ธฐ์ˆ ํ˜์‹ ํ™œ๋™์— ํˆฌ์ž…๋˜๋Š” ๊ฒƒ์„ ๊ฒฉ๋ คํ•˜๊ณ  ์ง๋ฌด๋ฐœ๋ช…์˜ ์™„์„ฑ๊ณผ ํ™œ์šฉ์„ ์ด‰์ง„ํ•ด์•ผ ํ•  ๊ฒƒ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์šฐ์„  ํŠนํ—ˆ๋ฒ•์ƒ ์ง๋ฌด๋ฐœ๋ช…์— ๊ด€ํ•œ ์ž…๋ฒ•์ด๋ก ์„ ์‚ดํŽด๋ณด๊ณ , ๋‹ค์Œ ์ค‘๊ตญ์—์„œ์˜ ํŠนํ—ˆ๋ฒ•์ƒ ์ง๋ฌด๋ฐœ๋ช…์— ๊ด€ํ•œ ๊ทœ์ •๊ณผ ํŒ๋ก€๋“ค์„ ๊ณ ์ฐฐํ•˜๋ฉด์„œ ๊ทธ ๋ฌธ์ œ์ ๋“ค์„ ๋ถ„์„ํ•˜๊ณ  ๊ฐœ์„ ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•˜๊ฒ ๋‹ค. ์ œ1์žฅ ์„œ ๋ก  1 ์ œ1์ ˆ ์—ฐ๊ตฌ์˜ ๋ชฉ์  1 ์ œ2์ ˆ ์—ฐ๊ตฌ์˜ ๋ฒ”์œ„ 3 ์ œ2์žฅ ์ง๋ฌด๋ฐœ๋ช…์ œ๋„์— ๊ด€ํ•œ ์ผ๋ฐ˜๋ก  4 ์ œ1์ ˆ ํŠนํ—ˆ๋ฒ•์ƒ ์ง๋ฌด๋ฐœ๋ช… 4 โ… . ์„œ์„ค 4 โ…ก. ์ง๋ฌด๋ฐœ๋ช…์ œ๋„์˜ ๊ฐœ๋… ๋ฐ ํŠน์ง• 5 1. ์ง๋ฌด๋ฐœ๋ช…์˜ ๊ฐœ๋… 5 2. ์ง๋ฌด๋ฐœ๋ช…์ œ๋„์˜ ํŠน์ง• 6 โ…ข. ์ง๋ฌด๋ฐœ๋ช…์ œ๋„ ์ž…๋ฒ•๊ณผ ์ด๋ก ์—ฐ๊ตฌํ˜„ํ™ฉ 7 1. ์ง๋ฌด๋ฐœ๋ช… ๋ฒ”์œ„ 7 2. ์ง๋ฌด๋ฐœ๋ช…์˜ ๊ถŒ๋ฆฌ๊ท€์† 8 3. ์ง๋ฌด๋ฐœ๋ช…๊ณผ ๊ด€๋ จ๋œ ๋ณด์ƒ 10 โ…ฃ. ์†Œ๊ฒฐ 11 ์ œ2์ ˆ ์ง๋ฌด๋ฐœ๋ช…์ œ๋„์˜ ๋น„๊ต์—ฐ๊ตฌ 11 โ… . ๋…์ผ ํŠนํ—ˆ๋ฐœ๋ช…์ œ๋„ 12 1. ์ง๋ฌด๋ฐœ๋ช…์˜ ๊ท€์†๊ณผ ์ข…์—…์›์˜ ์‹ ๊ณ ์˜๋ฌด 12 2. ์‚ฌ์šฉ์ž์˜ ์ฒญ๊ตฌ๊ถŒ 13 3. ๋ฐœ๋ช…์ž ๋ณด์ƒ 13 โ…ก. ๋ฏธ๊ตญ ํŠนํ—ˆ๋ฐœ๋ช…์ œ๋„ 14 1. ์ข…์—…์› ๋ฐœ๋ช… 15 1) ์„œ๋น„์Šค ๋ฐœ๋ช…(Service invention) 15 2) Shop right 16 2. ์ข…์—…์› ๋ฐœ๋ช…์˜ ๊ท€์† 17 1) ๊ณ„์•ฝ 17 2) ์ฝ”๋จผ๋กœ 18 3) ์ฃผ๋ฒ• 19 โ…ข. ํ•œ๊ตญ ํŠนํ—ˆ๋ฐœ๋ช…์ œ๋„ 20 1. ๋‹จ์ผ๋ฒ• ์ œ์ • 20 2. ์ง๋ฌด๋ฐœ๋ช…์˜ ๋ฒ”์œ„์™€ ๊ถŒ๋ฆฌ๋ฐฐ๋ถ„ 21 3. ๋ณด์ƒ์„ ๋ฐ›์„ ๊ถŒ๋ฆฌ 22 โ…ฃ. ์†Œ๊ฒฐ 23 ์ œ3์žฅ ์ค‘๊ตญ ํŠนํ—ˆ๋ฒ•์ƒ ์ง๋ฌด๋ฐœ๋ช…์ œ๋„ 24 ์ œ1์ ˆ ์ง๋ฌด๋ฐœ๋ช…์˜ ์—ฐํ˜ 24 โ… . ์ค‘๊ตญ ์ง๋ฌด๋ฐœ๋ช…์ œ๋„์˜ ๋ฐœ์ „๊ณผ ๊ฐœ์ • 24 1. ์ง๋ฌด๋ฐœ๋ช… ๊ถŒ๋ฆฌ๊ท€์†์— ๊ด€ํ•œ ๊ฐœ์ • 25 2. ์ง๋ฌด๋ฐœ๋ช… ์žฅ๋ ค, ๋ณด์ˆ˜์— ๊ด€ํ•œ ๊ฐœ์ • 25 โ…ก. ์ง๋ฌด๋ฐœ๋ช…์— ๋Œ€ํ•œ ์ด‰์ง„์—ญํ•  27 ์ œ2์ ˆ ์ง๋ฌด๋ฐœ๋ช…๊ณผ ๊ธฐํƒ€ ๋ฐœ๋ช…์˜ ์ฐจ์ด 29 โ… . ์ง๋ฌด๋ฐœ๋ช…๊ณผ ้ž์ง๋ฌด๋ฐœ๋ช… 29 1. ้ž์ง๋ฌด๋ฐœ๋ช…์˜ ์ •์˜ 29 2. ์ง๋ฌด๋ฐœ๋ช…๊ณผ ้ž์ง๋ฌด๋ฐœ๋ช…๊ฐ„์˜ ์ฐจ์ด 30 โ…ก. ์ง๋ฌด๋ฐœ๋ช…๊ณผ ์œ„์ž„๋ฐœ๋ช… 31 1. ์œ„์ž„๋ฐœ๋ช…์˜ ์ •์˜ 31 2. ์ง๋ฌด๋ฐœ๋ช…๊ณผ ์œ„์ž„๋ฐœ๋ช…๊ฐ„์˜ ์ฐจ์ด 31 โ…ข. ์ง๋ฌด๋ฐœ๋ช…๊ณผ ํ•ฉ์ž‘๋ฐœ๋ช… 32 1. ํ•ฉ์ž‘๋ฐœ๋ช…์˜ ์ •์˜ 32 2. ์ง๋ฌด๋ฐœ๋ช…๊ณผ ํ•ฉ์ž‘๋ฐœ๋ช…๊ฐ„์˜ ์ฐจ์ด 33 โ…ฃ. ์†Œ๊ฒฐ 33 ์ œ3์ ˆ ์ง๋ฌด๋ฐœ๋ช…์˜ ๋ฒ”์œ„์™€ ๊ถŒ๋ฆฌ๊ท€์† 34 โ… . ๋ฐœ๋ช…์ž, ์„ค๊ณ„์ž์˜ ์ž๊ฒฉ 36 1. ์‹ค์งˆ์  ํŠน์ง• 36 2. ์ฐฝ์กฐ์  ๊ณตํ—Œ 37 3. ๊ด€๋ จํŒ๋ก€ 38 1) ์ •๋…„ํ‡ด์งํ•œ ํ›„ ๋ณต์งํ•˜์—ฌ ๋ฐœ๋ช…์„ ํ•œ ๊ฒฝ์šฐ 39 2) ์ฃผ์ฃผ๋กœ ์žˆ๋Š” ๋™์•ˆ ๋ฐœ๋ช…์„ ํ•œ ๊ฒฝ์šฐ 40 3) ์†Œ๊ฒฐ 40 โ…ก. ๋ณธ ๋‹จ์œ„์˜ ๊ฐœ๋… 41 1. ๊ณ ์šฉ๊ด€๊ณ„ ์กด์žฌ ์—ฌ๋ถ€ 41 2. ๋‹จ์œ„ ๋ž€ 42 3. ์ž„์‹œ๊ทผ๋ฌด๋‹จ์œ„ ํฌํ•จ ์—ฌ๋ถ€ 42 โ…ข. ๋ณธ ๋‹จ์œ„์˜ ์ž„๋ฌด๋ฅผ ์ง‘ํ–‰ํ•˜์—ฌ ์™„์„ฑํ•œ ๋ฐœ๋ช…์ฐฝ์กฐ 43 1. ๋ณธ์ง ์—…๋ฌด์˜ ์ •์˜์™€ ํŒ๋‹จ 44 2. ๋ณธ์ง ์—…๋ฌด ์™ธ์˜ ๊ธฐํƒ€ ์ž„๋ฌด๋ฅผ ์ดํ–‰ํ•˜์—ฌ ์™„์„ฑํ•œ ๋ฐœ๋ช…์ฐฝ์กฐ 45 1) ๋ณธ์ง ์—…๋ฌด ์™ธ์˜ ๊ธฐํƒ€ ์ž„๋ฌด๋ฅผ ์ดํ–‰ํ•˜์—ฌ ์™„์„ฑํ•œ ๋ฐœ๋ช…์ฐฝ์กฐ์˜ ์œ ํ˜• 45 2) ๊ด€๋ จํŒ๋ก€ 46 3. ๋ณธ ๋‹จ์œ„๋ฅผ ๋– ๋‚œ ํ›„ 1๋…„ ๋‚ด์— ์™„์„ฑํ•œ ๋ฐœ๋ช…์ฐฝ์กฐ 47 1) 1๋…„ ๊ธฐ๊ฐ„ ๊ด€๋ จ ๋…ผ์˜ 47 2) ๋ณธ ๋‹จ์œ„๋ฅผ ๋– ๋‚œ 1๋…„ ํ›„์— ํŠนํ—ˆ์ถœ์›์‹œ ์ง๋ฌด๋ฐœ๋ช…์— ํ•ด๋‹น๋˜๋Š”์ง€ ์—ฌ๋ถ€ 48 ๊ฐ€. ๋ฒ•์  ๊ฒ€ํ†  48 ๋‚˜. ๊ด€๋ จํŒ๋ก€ 49 ๋‹ค. ํ•ด๊ฒฐ๋ฐฉ์•ˆ 50 3) ๋ฐœ๋ช…์„ ์™„์„ฑํ•œ ์‹œ๊ฐ„์— ๊ด€ํ•œ ์ถ”์ • 50 4) ์‹ ๊ทœ ๋‹จ์œ„์˜ ๋ฌผ์งˆ๊ธฐ์ˆ ์กฐ๊ฑด์„ ์ด์šฉํ•˜๊ณ  ๊ธฐ์กด๋‹จ์œ„์™€ ๋™์ผํ•œ ์—ฐ๊ตฌ๊ฐœ๋ฐœ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜์—ฌ ์™„์„ฑํ•œ ๋ฐœ๋ช… 51 ๊ฐ€. ์ƒํ™ฉ์„ค๋ช… ๋ฐ ๊ฒ€ํ†  51 ๋‚˜. ๊ด€๋ จํŒ๋ก€ 52 ๋‹ค. ๊ด€๋ จ ๋ฒ•๋ฅ ๊ทœ์ • 53 ๋ผ. ํ•ด๊ฒฐ๋ฐฉ์•ˆ 53 4. ์†Œ๊ฒฐ 54 โ…ฃ. ์ฃผ๋กœ ๋ณธ ๋‹จ์œ„์˜ ๋ฌผ์งˆ๊ธฐ์ˆ ์กฐ๊ฑด์„ ์ด์šฉํ•˜์—ฌ ์™„์„ฑํ•œ ๋ฐœ๋ช…์ฐฝ์กฐ 55 1. ๋ฌผ์งˆ๊ธฐ์ˆ ์กฐ๊ฑด์— ๊ด€ํ•œ ์ดํ•ด 55 1) ๋ฌผ์งˆ๊ธฐ์ˆ ์กฐ๊ฑด์˜ ์ •์˜ 55 2) ๊ธฐ์ˆ ์กฐ๊ฑด๊ณผ ๋ฌผ์งˆ์กฐ๊ฑด 56 3) ๊ด€๋ จํŒ๋ก€ 57 2. ๋ฌผ์งˆ๊ธฐ์ˆ ์กฐ๊ฑด์˜ ์ด์šฉ์— ๊ด€ํ•œ ๊ฒ€ํ†  58 1) ์ฃผ์š” ์ด์šฉ์— ๊ด€ํ•œ ์ดํ•ด 58 2) ์ฃผ์š” ์ด์šฉ์ด ์•„๋‹Œ ์ƒํ™ฉ 59 3) ๊ด€๋ จํŒ๋ก€ 61 โ…ค. ๋‹จ์œ„์™€ ๋ฐœ๋ช…์ž ๊ฐ„์— ์ฒด๊ฒฐํ•œ ๊ณ„์•ฝ 62 1. ๊ณ„์•ฝ์˜ ์ ์šฉ๋ฒ”์œ„ 62 2. ๋ณธ ๋‹จ์œ„์˜ ๋ฌผ์งˆ๊ธฐ์ˆ ์กฐ๊ฑด์„ ์ด์šฉ์— ๋Œ€ํ•œ ์ดํ•ด 63 1) ๋ณธ ๋‹จ์œ„์˜ ๋ฌผ์งˆ๊ธฐ์ˆ ์กฐ๊ฑด์„ ์ด์šฉ์— ๋Œ€ํ•œ 3๊ฐ€์ง€ ๊ด€์  63 2) ์ง๋ฌด๋ฐœ๋ช…๋งŒ ้ž์ง๋ฌด๋ฐœ๋ช…์œผ๋กœ ์•ฝ์ • ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ์ฃผ์žฅํ•˜๋Š” ๊ด€์  64 3) ้ž์ง๋ฌด๋ฐœ๋ช…๋งŒ ์ง๋ฌด๋ฐœ๋ช…์œผ๋กœ ์•ฝ์ • ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ์ฃผ์žฅํ•˜๋Š” ๊ด€์  65 4) ์ง๋ฌด๋ฐœ๋ช…์„ ้ž์ง๋ฌด๋ฐœ๋ช…์œผ๋กœ, ้ž์ง๋ฌด๋ฐœ๋ช…์„ ์ง๋ฌด๋ฐœ๋ช…์œผ๋กœ ๋ชจ๋‘ ์•ฝ์ • ๊ฐ€๋Šฅํ•˜๋‹ค๊ณ  ์ฃผ์žฅํ•˜๋Š” ๊ด€์  66 5) ์†Œ๊ฒฐ 67 ์ œ4์ ˆ ๋ฐœ๋ช…์ž, ์„ค๊ณ„์ž์˜ ์„œ๋ช…๊ถŒ 68 โ… . ๋ฐœ๋ช…์ž, ์„ค๊ณ„์ž์—๊ฒŒ ์„œ๋ช…๊ถŒ ๋ถ€์—ฌ 68 โ…ก. ์„œ๋ช…๊ถŒ์„ ๋ถ€์—ฌ๋ฐ›์„ ์ ๊ฒฉ์กฐ๊ฑด 70 โ…ข. ์„œ๋ช…๊ถŒ์˜ ํฌ๊ธฐ 71 ์ œ5์ ˆ ์ง๋ฌด๋ฐœ๋ช… ๋ณด์ƒ์ œ๋„ 71 โ… . ์—ฐํ˜ 71 โ…ก. ์ œ16์กฐ์˜ ํ•จ์˜ ๋ฐ ์ž…๋ฒ•๋ชฉ์  74 1. ์ œ16์กฐ์˜ ํ•จ์˜ 74 1) ๋ฒ•๋ฅ  ๊ทœ์ • 74 2) ๊ด€๋ จํŒ๋ก€ 75 2. ์ œ16์กฐ ์ž…๋ฒ•๋ชฉ์  77 โ…ข. ์žฅ๋ คโ€ข๋ณด์ˆ˜์˜ ๋ฒ•์ •ํ‘œ์ค€ 78 1. ์žฅ๋ คโ€ข๋ณด์ˆ˜ ํ‘œ์ค€์˜ ๊ฐœ์ •์— ๊ด€ํ•œ ์ œ์•ˆ 78 2. ์•ฝ์ •์šฐ์„ ์›์น™ 79 1) ์žฅ๋ ค, ๋ณด์ˆ˜์˜ ์•ฝ์ •์— ๊ด€ํ•œ ๊ทœ์ • 79 2) ์•ฝ์ •์˜ ๋ถ„๋ฅ˜ 80 3) ์žฅ๋ ค, ๋ณด์ˆ˜ ์ง€๊ธ‰๋ฐฉ์‹์˜ ์•ฝ์ •์„ ํ—ˆ์šฉ 81 4) ๊ด€๋ จํŒ๋ก€ 81 3. ์žฅ๋ ค, ๋ณด์ˆ˜์˜ ๋ฒ•์ •ํ‘œ์ค€ 83 1) ์žฅ๋ ค์˜ ๋ฒ•์ •ํ‘œ์ค€๊ณผ ๊ด€๋ จํŒ๋ก€ 83 ๊ฐ€. ์žฅ๋ ค์˜ ๋ฒ•์ •ํ‘œ์ค€ 83 ๋‚˜. ๊ด€๋ จํŒ๋ก€ 84 2) ๋ณด์ˆ˜์˜ ๋ฒ•์ •ํ‘œ์ค€๊ณผ ๊ด€๋ จํŒ๋ก€ 85 ๊ฐ€.๋ณด์ˆ˜์˜ ๋ฒ•์ •ํ‘œ์ค€ 85 ๋‚˜. ๊ด€๋ จํŒ๋ก€ 87 4. ์•ฝ์ •๊ณผ ์žฅ๋ ค, ๋ณด์ˆ˜์˜ ๋ฒ•์ •ํ‘œ์ค€๊ฐ„์˜ ๊ด€๊ณ„ 88 1) ์•ฝ์ •์˜ ํ•ฉ๋ฆฌ์„ฑ 88 2) ์žฅ๋ ค, ๋ณด์ˆ˜ ๋ฒ•์ •ํ‘œ์ค€์˜ ์ ์šฉ๋ฒ”์œ„์™€ ์—ญํ•  89 3๏ผ‰์†Œ๊ฒฐ 90 ์ œ4์žฅ ์ค‘๊ตญ ์ง๋ฌด๋ฐœ๋ช…์ œ๋„์˜ ๋ฌธ์ œ์  ๋ฐ ๊ทธ ๊ฐœ์„ ๋ฐฉ์•ˆ 92 ์ œ1์ ˆ ์ค‘๊ตญ ์ง๋ฌด๋ฐœ๋ช…์ œ๋„์˜ ๋ฌธ์ œ์  92 โ… . ์ง๋ฌด๋ฐœ๋ช…์ œ๋„ ๊ด€๋ จ ์ ˆ์ฐจ์ ์ธ ๊ถŒ๋ฆฌ ๋ฏธ๋น„ 92 โ…ก. ์ง๋ฌด๋ฐœ๋ช…์ œ๋„์— ๋Œ€ํ•œ ์‚ฌ์šฉ์ž์˜ ๋‚ฎ์€ ์ดํ•ด๋„ 93 1. ์‚ฌ์šฉ์ž์˜ ๋‚ฎ์€ ์ธ์‹ 93 2. ์ง๋ฌด๋ฐœ๋ช…์˜ ้ž์ง๋ฌด๋ฐœ๋ช…ํ™” 94 โ…ข. ๋ฐœ๋ช…์ž, ์„ค๊ณ„์ž์˜ ๊ถŒ์ต๋ณด์žฅ ๊ฒฐ์—ฌ 95 โ…ฃ. ์ง๋ฌด๋ฐœ๋ช…ํŠนํ—ˆ์˜ ๋‚ฎ์€ ์‹ค์‹œ์œจ 96 โ…ค. ์†Œ๊ฒฐ 97 ์ œ2์ ˆ ์ค‘๊ตญ ์ง๋ฌด๋ฐœ๋ช…์ œ๋„์˜ ๋ฌธ์ œ์ ์— ๋Œ€ํ•œ ๊ฐœ์„ ๋ฐฉ์•ˆ 98 โ… . ์ ˆ์ฐจ์ ์ธ ๊ถŒ๋ฆฌ์˜ ๋ถ€์—ฌ 98 โ…ก. ๋ฐœ๋ช…์ž, ์„ค๊ณ„์ž์—๊ฒŒ ์•Œ ๊ถŒ๋ฆฌ ๋ถ€์—ฌ 99 โ…ข. ์•ฝ์ •์šฐ์„ ์— ๋Œ€ํ•œ ์ œํ•œ 99 โ…ฃ. ์žฅ๋ ค, ๋ณด์ˆ˜์˜ ๊ถŒ์ต ๋ณด์žฅ 100 1. ์•ฝ์ •์„ ํ†ตํ•œ ์žฅ๋ ค, ๋ณด์ˆ˜์˜ ๊ถŒ์ต ๋ณด์žฅ 100 2. ์žฅ๋ ค, ๋ณด์ˆ˜์˜ ๋ฒ•์ • ์ตœ์ €์•ก์ˆ˜ ๊ฐœ์ • ํ•„์š” 101 โ…ค. ์ง๋ฌด๋ฐœ๋ช…์ œ๋„ ๊ด€๋ จ ๋ฒŒ์น™ ์ถ”๊ฐ€ 102 โ…ฅ. ๋‚ฎ์€ ์‹ค์‹œ์œจ์— ๊ด€ํ•œ ๋Œ€์ฑ… 103 โ…ฆ. ์†Œ๊ฒฐ 104 ์ œ5์žฅ ๊ฒฐ๋ก  105 ์ฐธ๊ณ  ๋ฌธํ—Œ 107 ไธญๆ–‡ๆ‘˜่ฆ 111Maste

    Deformation microstructures of olivine and chlorite in chlorite peridotites from Almklovdalen in the Western Gneiss Region, SW Norway and implications for seismic anisotropy

    No full text
    Chlorite peridotites from Almklovdalen in SW Norway were studied to understand the deformation processes and seismicanisotropy in the upper mantle. The lattice preferred orientation (LPO) of olivine and chlorite was determined using electronbackscattered diffraction (EBSD)/scanning electron microscope. A sample with abundant garnet showed [100] axes ofolivine aligned sub-parallel to lineation, and [010] axes aligned subnormal to foliation: A-type LPO. Samples rich in chloriteshowed different olivine LPOs. Two samples showed [001] axes aligned sub-parallel to lineation, and [010] axes alignedsubnormal to foliation: B-type LPO. Two other samples showed [100] axes aligned sub-parallel to lineation, and [001] axesaligned subnormal to foliation: E-type LPO. Chlorite showed a strong LPO characterized by [001] axes aligned subnormalto foliation with a weak girdle subnormal to lineation. Fourier transform infrared (FTIR) spectroscopy of the specimensrevealed that the olivines with A-type LPO contain a small amount (170 ppm H/Si) of water. In contrast, the olivines withB-type LPOs contain a large amount (340 ppm H/Si) of water.The seismic anisotropy of the olivine and chlorite was calculated. Olivine showed Vp anisotropy of up to 3.8% and amaximum Vs anisotropy of up to 2.7%. However, the chlorite showed a much stronger Vp anisotropy, up to 21.1%, and amaximum Vs anisotropy of up to 31.7%. A sample with a mixture of 25% of olivine and 75% of chlorite can produce a Vpanisotropy of 14.2% and a maximum Vs anisotropy of 22.9%. Because chlorite has a wide stability field at high pressureand high temperature in subduction zone, the strong LPO of chlorite can be a source of the observed trench-normal ortrench-parallel seismic anisotropy in the mantle wedge as well as in subducting slabs depending on the dipping angle of slabin a subduction zone where chlorite is stable.OAIID:oai:osos.snu.ac.kr:snu2014-01/102/0000043439/5SEQ:5PERF_CD:SNU2014-01EVAL_ITEM_CD:102USER_ID:0000043439ADJUST_YN:NEMP_ID:A076886DEPT_CD:3345CITE_RATE:2.628FILENAME:kim & jung_2014_deformation microstructures.pdfDEPT_NM:์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€SCOPUS_YN:YCONFIRM:

    Microstructural evolution of the Yugu peridotites in the Gyeonggi Massif, Korea: Implications for olivine fabric transition in mantle shear zones

    No full text
    Large-scale emplaced peridotite bodies may provide insights into plastic deformation process and tectonic evolution in the mantle shear zone. Due to the complexity of deformation microstructures and processes in natural mantle rocks, the evolution of pre-existing olivine fabrics is still not well understood. In this study, we examine well-preserved transitional characteristics of microstructures and olivine fabrics developed in a mantle shear zone from the Yugu peridotite body, the Gyeonggi Massif, Korean Peninsula. The Yugu peridotite body predominantly comprises spinel harzburgite together with minor Iherzolite, dunite, and clinopyroxenite. We classified highly deformed peridotites into four textural types based on their microstructural characteristics: proto-mylonite; proto-mylonite to mylonite transition; mylonite; and ultra-mylonite. Olivine fabrics changed from A-type (proto-mylonite) via D-type (mylonite) to E-type (ultra-mylonite). Olivine fabric transition is interpreted as occurring under hydrous conditions at low temperature and high strain, because of characteristics such as Ti-clinohumite defects (and serpentine) and fluid inclusion trails in olivine, and a hydrous mineral (pargasite) in the matrix, especially in the ultra-mylonitic peridotites. Even though the ultra-mylonitic peridotites contained extremely small (24-30 mu m) olivine neoblasts, the olivine fabrics showed a distinct (E-type) pattern rather than a random one. Analysis of the lattice preferred orientation strength, dislocation microstructures, recrystallized grain-size,and deformation mechanism maps of olivine suggest that the proto-mylonitic, mylonitic, and ultra-mylonitic peridotites were deformed by dislocation creep (A-type), dislocation-accommodated grain-boundary sliding (D-type), and combination of dislocation and diffusion creep (E-type), respectively. (c) 2017 Published by Elsevier B.V.OAIID:RECH_ACHV_DSTSH_NO:T201708460RECH_ACHV_FG:RR00200001ADJUST_YN:EMP_ID:A076886CITE_RATE:2.693FILENAME:Park and Jung-17-Tectono-Mocrostructural evolution of the Yugu peridotites.pdfDEPT_NM:์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€EMAIL:[email protected]_YN:YFILEURL:https://srnd.snu.ac.kr/eXrepEIR/fws/file/9247cc1a-1916-466f-8e2c-0fdca3005b42/linkN
    corecore