24 research outputs found

    μœ„μƒ μ΅œμ μ„€κ³„λ₯Ό ν™œμš©ν•œ μΊ”ν‹Έλ ˆλ²„μ‹ 헬리데크 ꡬ쑰 섀계 및 해석

    Get PDF
    ν—¬λ¦¬λ°ν¬λŠ” μ„ λ°• 및 ν•΄μ–‘κ΅¬μ‘°λ¬Όμ—μ„œ 운용 인원과 물자 μˆ˜μ†‘μ— ν•„μš”ν•œ 헬리μ½₯ν„°μ˜ 이착λ₯™μ— μ‚¬μš©λ˜λŠ” κ΅¬μ‘°λ¬Όλ‘œμ„œ, λΉ„μƒμ‹œμ—λ„ νƒˆμΆœμ„ μœ„ν•΄ λ§ˆμ§€λ§‰κΉŒμ§€ 남아 μžˆμ–΄μ•Ό ν•˜λŠ” ν•„μˆ˜μ‹œμ„€ μ€‘μ˜ ν•˜λ‚˜μ΄λ‹€. μ΄λŸ¬ν•œ ν—¬λ¦¬λ°ν¬λŠ” ν•΄μ–‘κ΅¬μ‘°λ¬Όμ˜ μ’…λ₯˜λ‚˜ νƒ‘μž¬ μœ„μΉ˜μ— 따라 λ‹€μ–‘ν•œ ν˜•νƒœκ°€ μ‘΄μž¬ν•œλ‹€. 일반적으둜 μ„ λ°•μ—μ„œλŠ” μƒκ°‘νŒμ˜ 일뢀λ₯Ό ν—¬λ¦¬λ°ν¬λ‘œ μ‚¬μš©ν•˜λŠ” κ²½μš°κ°€ λ§Žμ§€λ§Œ, ν•΄μ–‘ν”ŒλžœνŠΈλŠ” νƒ‘μ‚¬μ΄λ“œμ— λ‹€μ–‘ν•œ 곡정섀비가 μ„€μΉ˜λ˜λ©° μ΄λŸ¬ν•œ μ‹œμ„€κ³Ό 헬리μ½₯ν„°μ˜ μΆ©λŒμ„ 미연에 λ°©μ§€ν•˜κΈ° μœ„ν•΄ ν•΄μ–‘ν”ŒλžœνŠΈμ˜ μ™ΈλΆ€λ‘œ λŒμΆœλ˜λŠ” ν˜•νƒœμΈ μΊ”ν‹Έλ ˆλ²„μ‹ 헬리데크λ₯Ό μ‚¬μš©ν•˜λŠ” 것이 보닀 νš¨κ³Όμ μ΄λ‹€. ν•œνŽΈ μœ„μƒ μ΅œμ μ„€κ³„λŠ” 주어진 섀계 μ˜μ—­ λ‚΄μ—μ„œ μ œμ•½μ‘°κ±΄μ— 따라 ꡬ쑰 λΆ€μž¬μ˜ 배치λ₯Ό κ²°μ •ν•˜λŠ” λ°©λ²•μœΌλ‘œ, λ³Έ λ…Όλ¬Έμ—μ„œλŠ” 이λ₯Ό ν™œμš©ν•œ μΊ”ν‹Έλ ˆλ²„μ‹ ν—¬λ¦¬λ°ν¬μ˜ ꡬ쑰 섀계에 λŒ€ν•΄ 닀룬닀. 일반적으둜 ν—¬λ¦¬λ°ν¬λŠ” μ„ κΈ‰μ˜ κ·œμ •μ— 따라 μ„€κ³„ν•˜κ±°λ‚˜ 기쑴의 섀계λ₯Ό κ·ΈλŒ€λ‘œ μ‚¬μš©ν•˜λŠ” κ²½μš°κ°€ 많기 λ•Œλ¬Έμ— κ³Όλ„ν•œ μ•ˆμ „μ„±μ΄ κ³ λ €λœλ‹€. λ”°λΌμ„œ 헬리데크λ₯Ό κ΅¬μ„±ν•˜λŠ” ν•˜λΆ€ 트러슀 λΆ€μž¬μ— μœ„μƒ μ΅œμ μ„€κ³„ 기법을 μ μš©ν•˜μ—¬ 기쑴보닀 재료 μ‚¬μš©λŸ‰μ„ μ€„μ΄λŠ” λ™μ‹œμ— κ΅¬μ‘°μ μœΌλ‘œλ„ μ•ˆμ „ν•œ 섀계λ₯Ό μ–»λŠ” 것이 λ³Έ μ—°κ΅¬μ˜ μ΅œμ’… λͺ©μ μ΄λ‹€. μœ„μƒ μ΅œμ μ„€κ³„λ₯Ό 톡해 얻어진 λΆ€μž¬μ˜ 배치λ₯Ό ν† λŒ€λ‘œ μƒμš© ν”„λ‘œκ·Έλž¨μΈ ANSYSλ₯Ό μ‚¬μš©ν•΄ 초기 μœ ν•œμš”μ†Œ λͺ¨λΈμ„ μƒμ„±ν•˜κ³ , 헬리μ½₯ν„°μ˜ λ‹€μ–‘ν•œ μ°©λ₯™ 상황 및 ν’ν•˜μ€‘μ„ κ³ λ €ν•œ ꡬ쑰해석을 μˆ˜ν–‰ν•˜μ˜€λ‹€. λ˜ν•œ κ·Έ 해석 κ²°κ³Όλ₯Ό λŒ€ν‘œμ  헬리데크 섀계 κ·œμ •μΈ DNV-OS-E401κ³Ό CAP-437을 ν† λŒ€λ‘œ κ²€μ¦ν•˜μ˜€μœΌλ©°, 이λ₯Ό λ°”νƒ•μœΌλ‘œ 각 ꡬ쑰 λΆ€μž¬μ— λ°œμƒν•˜λŠ” 응λ ₯이 재료의 ν—ˆμš© 응λ ₯을 μ΄ˆκ³Όν•˜μ§€ μ•Šλ„λ‘ ν•˜λŠ” λΆ€μž¬μ˜ μ„ΈλΆ€ 단면 κ·œκ²©μ„ κ²°μ •ν•˜μ˜€λ‹€. μ΅œμ’…μ μœΌλ‘œ 얻어진 졜적λͺ¨λΈμ— λŒ€ν•˜μ—¬ μ„ ν˜• μ’Œκ΅΄ν•΄μ„μ„ μˆ˜ν–‰ν•˜μ˜€μœΌλ©° μ„ ν˜• μ’Œκ΅΄ν•΄μ„μ„ 톡해 얻어진 1μ°¨ λͺ¨λ“œ ν˜•μƒμ„ μ΄ˆκΈ°κ²°ν•¨μœΌλ‘œ μ μš©ν•˜μ—¬ λΉ„μ„ ν˜• μ’Œκ΅΄ν•΄μ„μ„ μˆ˜ν–‰ν•˜μ˜€λ‹€. 이λ₯Ό 톡해 ꡬ쑰적으둜 μ•ˆμ „ν•˜λ©΄μ„œλ„ κ²½λŸ‰ν™”λœ 헬리데크 섀계λ₯Ό μ–»μ—ˆμœΌλ©°, μž¬λ£ŒλΉ„ κ°μ†Œλ₯Ό ν†΅ν•œ 원가 절감 νš¨κ³Όλ„ 얻을 수 μžˆλ‹€.|Helideck is a structure used for the landing and take-off of helicopters for transporting operating personnel and goods of ships and offshore structures. This is one of the essential facilities that must remain safe for an escape in emergency situation. Helidecks have several shapes depending on the type of offshore structures or the installation location. Generally, in ships, a part of an upper deck is often used as a helideck. However, offshore structures are equipped with various process facilities on the topside, so that it is more effective to use a cantilever-type helideck to prevent potential collisions between these facilities and the helicopter. Meanwhile, topology optimization is a numerical method that determines the placement of structural members according to prescribed constraints. In this thesis, the structural design of a cantilever-type helideck is studied using the topology optimization. Generally, the conventional helideck is designed in accordance with the requirements from classification, and excessive safety is usually taken into account. Therefore, it is the final objective of this study to apply the topology optimization to the truss members of the helideck in order to reduce the material usage while maintaining required safety. Then, finite element model is created from the optimal layout of truss structures of the optimized helideck, and structural analysis is performed under various combinations of landing positions and wind directions. The analysis results are verified based on the representative helideck design regulations such as DNV-OS-E401 and CAP-437. Also, the detailed cross section dimensions of the structural members are determined so that the maximum stress at each structure member does not exceed the allowable stress of the structural material. In addition, linear buckling analysis is performed on the final optimal model, and nonlinear buckling analysis is also performed by applying the first mode shape obtained from the linear buckling analysis as an initial imperfection. Finally, the optimal helideck design gives significant decrease in the total weight of the helideck, while satisfying regulations and requirements from classification discussed in this work.1. μ„œ λ‘  1 1.1 연ꡬ λ°°κ²½ 1 1.2 연ꡬ 동ν–₯ 3 1.3 연ꡬ λ²”μœ„ 5 2. 헬리데크 λͺ¨λΈλ§ 6 2.1 ν—¬λ¦¬λ°ν¬μ˜ 기본ꡬ쑰 6 2.2 μœ„μƒ μ΅œμ μ„€κ³„λ₯Ό μ΄μš©ν•œ 트러슀 배치 8 3. 헬리데크 μ„€κ³„ν•˜μ€‘ μ‚°μ • 16 3.1 헬리μ½₯ν„° μ°©λ₯™ν•˜μ€‘ μ‚°μ • 16 3.2 ν’ν•˜μ€‘ μ μš©λ°©λ²• 20 4. 헬리데크 ꡬ쑰해석 23 4.1 일반 μ°©λ₯™μ‘°κ±΄μ—μ„œμ˜ ꡬ쑰해석 25 4.2 비상 μ°©λ₯™μ‘°κ±΄μ—μ„œμ˜ ꡬ쑰해석 29 5. 헬리데크 상세섀계 32 5.1 λΆ€μž¬ μ„ΈλΆ€ 단면 치수 κ²°μ • 32 5.2 λͺ¨λΈλ³„ 총 μ€‘λŸ‰ 비ꡐ 38 6. 헬리데크 μ’Œκ΅΄ν•΄μ„ 39 6.1 고유치 μ’Œκ΅΄ν•΄μ„ 41 6.2 λΉ„μ„ ν˜• μ’Œκ΅΄ν•΄μ„ 43 7. κ²° λ‘  47 μ°Έκ³ λ¬Έν—Œ 49Maste

    곑면벽 제트 λ²„λ„ˆ μƒλ‹¨μ˜ ν˜•μƒμ— λ”°λ₯Έ μ˜ˆν˜Όν•©ν™”μ—Όμ˜ μ•ˆμ •ν™”νŠΉμ„±μ— κ΄€ν•œ μ‹€ν—˜μ  연ꡬ

    Full text link
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :기계곡학과,1999.Maste

    A Study on the Standardization for Information -Linkage among Public Logistics Information Systems

    Full text link
    corecore