24 research outputs found
μμ μ΅μ μ€κ³λ₯Ό νμ©ν μΊνΈλ λ²μ ν¬λ¦¬λ°ν¬ ꡬ쑰 μ€κ³ λ° ν΄μ
ν¬λ¦¬λ°ν¬λ μ λ° λ° ν΄μꡬ쑰물μμ μ΄μ© μΈμκ³Ό λ¬Όμ μμ‘μ νμν ν¬λ¦¬μ½₯ν°μ μ΄μ°©λ₯μ μ¬μ©λλ ꡬ쑰물λ‘μ, λΉμμμλ νμΆμ μν΄ λ§μ§λ§κΉμ§ λ¨μ μμ΄μΌ νλ νμμμ€ μ€μ νλμ΄λ€. μ΄λ¬ν ν¬λ¦¬λ°ν¬λ ν΄μꡬ쑰물μ μ’
λ₯λ νμ¬ μμΉμ λ°λΌ λ€μν ννκ° μ‘΄μ¬νλ€. μΌλ°μ μΌλ‘ μ λ°μμλ μκ°νμ μΌλΆλ₯Ό ν¬λ¦¬λ°ν¬λ‘ μ¬μ©νλ κ²½μ°κ° λ§μ§λ§, ν΄μνλνΈλ νμ¬μ΄λμ λ€μν 곡μ μ€λΉκ° μ€μΉλλ©° μ΄λ¬ν μμ€κ³Ό ν¬λ¦¬μ½₯ν°μ μΆ©λμ λ―Έμ°μ λ°©μ§νκΈ° μν΄ ν΄μνλνΈμ μΈλΆλ‘ λμΆλλ ννμΈ μΊνΈλ λ²μ ν¬λ¦¬λ°ν¬λ₯Ό μ¬μ©νλ κ²μ΄ λ³΄λ€ ν¨κ³Όμ μ΄λ€.
ννΈ μμ μ΅μ μ€κ³λ μ£Όμ΄μ§ μ€κ³ μμ λ΄μμ μ μ½μ‘°κ±΄μ λ°λΌ ꡬ쑰 λΆμ¬μ λ°°μΉλ₯Ό κ²°μ νλ λ°©λ²μΌλ‘, λ³Έ λ
Όλ¬Έμμλ μ΄λ₯Ό νμ©ν μΊνΈλ λ²μ ν¬λ¦¬λ°ν¬μ ꡬ쑰 μ€κ³μ λν΄ λ€λ£¬λ€. μΌλ°μ μΌλ‘ ν¬λ¦¬λ°ν¬λ μ κΈμ κ·μ μ λ°λΌ μ€κ³νκ±°λ κΈ°μ‘΄μ μ€κ³λ₯Ό κ·Έλλ‘ μ¬μ©νλ κ²½μ°κ° λ§κΈ° λλ¬Έμ κ³Όλν μμ μ±μ΄ κ³ λ €λλ€. λ°λΌμ ν¬λ¦¬λ°ν¬λ₯Ό ꡬμ±νλ νλΆ νΈλ¬μ€ λΆμ¬μ μμ μ΅μ μ€κ³ κΈ°λ²μ μ μ©νμ¬ κΈ°μ‘΄λ³΄λ€ μ¬λ£ μ¬μ©λμ μ€μ΄λ λμμ ꡬ쑰μ μΌλ‘λ μμ ν μ€κ³λ₯Ό μ»λ κ²μ΄ λ³Έ μ°κ΅¬μ μ΅μ’
λͺ©μ μ΄λ€.
μμ μ΅μ μ€κ³λ₯Ό ν΅ν΄ μ»μ΄μ§ λΆμ¬μ λ°°μΉλ₯Ό ν λλ‘ μμ© νλ‘κ·Έλ¨μΈ ANSYSλ₯Ό μ¬μ©ν΄ μ΄κΈ° μ νμμ λͺ¨λΈμ μμ±νκ³ , ν¬λ¦¬μ½₯ν°μ λ€μν μ°©λ₯ μν© λ° ννμ€μ κ³ λ €ν ꡬ쑰ν΄μμ μννμλ€. λν κ·Έ ν΄μ κ²°κ³Όλ₯Ό λνμ ν¬λ¦¬λ°ν¬ μ€κ³ κ·μ μΈ DNV-OS-E401κ³Ό CAP-437μ ν λλ‘ κ²μ¦νμμΌλ©°, μ΄λ₯Ό λ°νμΌλ‘ κ° κ΅¬μ‘° λΆμ¬μ λ°μνλ μλ ₯μ΄ μ¬λ£μ νμ© μλ ₯μ μ΄κ³Όνμ§ μλλ‘ νλ λΆμ¬μ μΈλΆ λ¨λ©΄ κ·κ²©μ κ²°μ νμλ€. μ΅μ’
μ μΌλ‘ μ»μ΄μ§ μ΅μ λͺ¨λΈμ λνμ¬ μ ν μ’κ΅΄ν΄μμ μννμμΌλ©° μ ν μ’κ΅΄ν΄μμ ν΅ν΄ μ»μ΄μ§ 1μ°¨ λͺ¨λ νμμ μ΄κΈ°κ²°ν¨μΌλ‘ μ μ©νμ¬ λΉμ ν μ’κ΅΄ν΄μμ μννμλ€. μ΄λ₯Ό ν΅ν΄ ꡬ쑰μ μΌλ‘ μμ νλ©΄μλ κ²½λνλ ν¬λ¦¬λ°ν¬ μ€κ³λ₯Ό μ»μμΌλ©°, μ¬λ£λΉ κ°μλ₯Ό ν΅ν μκ° μ κ° ν¨κ³Όλ μ»μ μ μλ€.|Helideck is a structure used for the landing and take-off of helicopters for transporting operating personnel and goods of ships and offshore structures. This is one of the essential facilities that must remain safe for an escape in emergency situation. Helidecks have several shapes depending on the type of offshore structures or the installation location. Generally, in ships, a part of an upper deck is often used as a helideck. However, offshore structures are equipped with various process facilities on the topside, so that it is more effective to use a cantilever-type helideck to prevent potential collisions between these facilities and the helicopter.
Meanwhile, topology optimization is a numerical method that determines the placement of structural members according to prescribed constraints. In this thesis, the structural design of a cantilever-type helideck is studied using the topology optimization. Generally, the conventional helideck is designed in accordance with the requirements from classification, and excessive safety is usually taken into account. Therefore, it is the final objective of this study to apply the topology optimization to the truss members of the helideck in order to reduce the material usage while maintaining required safety.
Then, finite element model is created from the optimal layout of truss structures of the optimized helideck, and structural analysis is performed under various combinations of landing positions and wind directions. The analysis results are verified based on the representative helideck design regulations such as DNV-OS-E401 and CAP-437. Also, the detailed cross section dimensions of the structural members are determined so that the maximum stress at each structure member does not exceed the allowable stress of the structural material. In addition, linear buckling analysis is performed on the final optimal model, and nonlinear buckling analysis is also performed by applying the first mode shape obtained from the linear buckling analysis as an initial imperfection. Finally, the optimal helideck design gives significant decrease in the total weight of the helideck, while satisfying regulations and requirements from classification discussed in this work.1. μ λ‘ 1
1.1 μ°κ΅¬ λ°°κ²½ 1
1.2 μ°κ΅¬ λν₯ 3
1.3 μ°κ΅¬ λ²μ 5
2. ν¬λ¦¬λ°ν¬ λͺ¨λΈλ§ 6
2.1 ν¬λ¦¬λ°ν¬μ 기본ꡬ쑰 6
2.2 μμ μ΅μ μ€κ³λ₯Ό μ΄μ©ν νΈλ¬μ€ λ°°μΉ 8
3. ν¬λ¦¬λ°ν¬ μ€κ³νμ€ μ°μ 16
3.1 ν¬λ¦¬μ½₯ν° μ°©λ₯νμ€ μ°μ 16
3.2 ννμ€ μ μ©λ°©λ² 20
4. ν¬λ¦¬λ°ν¬ ꡬ쑰ν΄μ 23
4.1 μΌλ° μ°©λ₯쑰건μμμ ꡬ쑰ν΄μ 25
4.2 λΉμ μ°©λ₯쑰건μμμ ꡬ쑰ν΄μ 29
5. ν¬λ¦¬λ°ν¬ μμΈμ€κ³ 32
5.1 λΆμ¬ μΈλΆ λ¨λ©΄ μΉμ κ²°μ 32
5.2 λͺ¨λΈλ³ μ΄ μ€λ λΉκ΅ 38
6. ν¬λ¦¬λ°ν¬ μ’κ΅΄ν΄μ 39
6.1 κ³ μ μΉ μ’κ΅΄ν΄μ 41
6.2 λΉμ ν μ’κ΅΄ν΄μ 43
7. κ²° λ‘ 47
μ°Έκ³ λ¬Έν 49Maste
곑면벽 μ νΈ λ²λ μλ¨μ νμμ λ°λ₯Έ μνΌν©νμΌμ μμ ννΉμ±μ κ΄ν μ€νμ μ°κ΅¬
νμλ
Όλ¬Έ(μμ¬)--μμΈλνκ΅ λνμ :κΈ°κ³κ³΅νκ³Ό,1999.Maste