9 research outputs found

    Evaluation of Navigational Safety of Ships on the Korean Coast

    Get PDF
    There are winds and waves in the sea, and they are changed frequently in accordance with the weather. By analyzing them which have the closest relation to the ship's safe voyage, evaluating the seakeeping performance and then taking a proper action, navigators should carry out safe navigation on the sea. The seakeeping performance can be defined as the ability of a ship to go to sea without any loss of performance, and successfully and safely execute her missions even in inclement weather conditions. A ship in seaways suffers continuous disturbances by irregular waves, and ship motions with irregular waves cannot be easily described as a system model which is adequate to a control system. But, in general, for seakeeping analysis, ship motions in irregular seas can be estimated by the superposition of the motion responses in regular wave components of the sea spectrum. After comparing and analyzing the winds and waves in major sea areas, this paper evaluates the navigational safety of ships on the Korean coast with potential dangerous seakeeping performance using the weather information provided by land. The conclusion is as follows: (1) It is possible that the safety of ships could be secured more accurately by evaluating the seakeeping performance of ships. (2) When the weather is bad, the departure of ships could be controlled by evaluating the navigational safety of ships. (3) When a ship is placed in commission in any area, this evaluation could be used to decide the type and size of ship in use.λͺ©μ°¨ Abstract = iii Nomenclature = v 제1μž₯ μ„œλ‘  = 1 1.1 μ—°κ΅¬μ˜ λ°°κ²½ 및 λͺ©μ  = 1 1.2 μ—°κ΅¬λ‚΄μš©κ³Ό 연ꡬ방법 = 2 제2μž₯ ν•œκ΅­ μ—°μ•ˆμ˜ 기상정보 = 4 2.1 ν‰μˆ˜κ΅¬μ—­ 제4ꡬ와 κ·Έ λΆ€κ·Όμ˜ 연해ꡬ역 = 8 2.2 ν‰μˆ˜κ΅¬μ—­ 제5ꡬ와 κ·Έ λΆ€κ·Όμ˜ 연해ꡬ역 = 17 2.3 ν‰μˆ˜κ΅¬μ—­ 제6ꡬ와 κ·Έ λΆ€κ·Όμ˜ 연해ꡬ역 = 21 2.4 ν‰μˆ˜κ΅¬μ—­ 제7ꡬ와 κ·Έ λΆ€κ·Όμ˜ 연해ꡬ역 = 26 2.5 ν‰μˆ˜κ΅¬μ—­ 제8ꡬ와 κ·Έ λΆ€κ·Όμ˜ 연해ꡬ역 = 32 2.6 ν‰μˆ˜κ΅¬μ—­ 제9ꡬ와 κ·Έ λΆ€κ·Όμ˜ 연해ꡬ역 = 37 2.7 ν‰μˆ˜κ΅¬μ—­ 제10ꡬ와 κ·Έ λΆ€κ·Όμ˜ 연해ꡬ역 = 43 2.8 ν‰μˆ˜κ΅¬μ—­ 제11ꡬ와 κ·Έ λΆ€κ·Όμ˜ 연해ꡬ역 = 48 제3μž₯ ν•­ν•΄ μ•ˆμ „μ„± 평가 방법 = 52 3.1 ν•΄μ–‘νŒŒ μŠ€νŽ™νŠΈλŸΌ = 52 3.2 λ‚΄ν•­μ„±λŠ₯ ν‰κ°€μš”μ†Œ = 53 3.3 λ‚΄ν•­μ„±λŠ₯의 ν‰κ°€μΉ˜μ™€ μœ„ν—˜λ„ = 56 3.4 μž„μ˜ ν•œ 개 μš”μ†Œμ— μ˜ν•œ ν•­ν•΄ μ•ˆμ „μ„± 평가 = 59 제4μž₯ μ—°μ•ˆ ν•­ν•΄ μ„ λ°•μ˜ μ•ˆμ „μ„± 평가 = 60 4.1 μˆ˜μΉ˜κ³„μ‚°μ˜ 쑰건 = 60 4.2 해역별 ν•­ν•΄ μ•ˆμ „μ„± 평가 = 62 4.3 μ„ ν˜•λ³„ ν•­ν•΄ μ•ˆμ „μ„± 평가 = 82 제5μž₯ κ²°λ‘  = 85 μ°Έκ³ λ¬Έν—Œ = 8

    κ°€μŠ€ λΆ„λ°° λ„€νŠΈμ›Œν¬ μ‹œμŠ€ν…œ μ΅œμ ν™”

    No full text
    μ΅œκ·Όμ— ν™˜κ²½μ˜€μ—Όκ³Ό μžμ›κ³ κ°ˆμ— μ˜ν•΄μ„œ 인λ₯˜ν™œλ™μ˜ μƒνƒœμ  영ν–₯을 μ΅œμ†Œν™”ν•˜λŠ” 지속가λŠ₯ν•œ μ‚°μ—…κ°œλ°œ(sustainable development)에 λ§Žμ€ 관심을 λ°›κ³  μžˆλ‹€. 이에 따라 화학곡μž₯을 ν™˜κ²½μΉœν™”μ μœΌλ‘œ λ³€ν™”μ‹œν‚€κΈ° μœ„ν•΄μ„œ 각 기업듀이 물질 및 μ—λ„ˆμ§€λ₯Ό μ΅œλŒ€ν•œ 효율적으둜 μ΄μš©ν•  수 μžˆλŠ” 곡정 섀계가 ν™œλ°œν•˜κ²Œ 이루어 지고 μžˆλ‹€. ν™”ν•™ 곡정 및 λ°˜λ„μ²΄ κ³΅μ •μ˜ 경우, 규λͺ¨κ°€ μ»€μ§€λ©΄μ„œ λ§Žμ€ μ„€λΉ„κ°€ λ³΅μž‘ν•˜κ²Œ μ–½ν˜€μžˆμ–΄μ„œ λ§Žμ€ μ—λ„ˆμ§€λ₯Ό μ†Œλͺ¨ν•˜κ²Œ λ˜μ–΄ μƒμ‚°λΉ„μš©μ˜ 증가λ₯Ό κ°€μ Έμ™”λ‹€. 특히 μ—λ„ˆμ§€ λΉ„μš©μ΄ 점차 μ¦κ°€ν•˜λ©΄μ„œ 이와 같은 μ—λ„ˆμ§€μ˜ λ‚­λΉ„λ₯Ό 쀄이고, νˆ¬μž…λœ μ—λ„ˆμ§€λ₯Ό μ΅œλŒ€ν•œ ν™œμš©ν•˜κΈ° μœ„ν•œ 방편으둜 μ—λ„ˆμ§€λ₯Ό νšŒμˆ˜ν•˜κ±°λ‚˜ μž¬ν™œμš©ν•˜λŠ” λ“± μ—λ„ˆμ§€ λΉ„μš© μ ˆκ°λ°©μ•ˆμ— 관심을 κ°–κ²Œ λ˜μ—ˆλ‹€. λ³Έ μ—°κ΅¬λŠ” κ°€μŠ€ λΆ„λ°° λ„€νŠΈμ›Œν¬ μ‹œμŠ€ν…œμ— λŒ€ν•΄μ„œ μ΄λŸ¬ν•œ μ—λ„ˆμ§€ λΉ„μš©μ„ μ ˆκ°ν•˜κ±°λ‚˜ 뢀산물을 μž¬ν™œμš©ν•˜κΈ° μœ„ν•œ 곡정섀계에 λŒ€ν•œ 방법둠을 μ œμ‹œν•˜κ³ μž ν•œλ‹€. 곡정섀계에 λŒ€ν•œ 방법둠은 기쑴에 λ§Žμ€ 연ꡬ가 이루어져 μ™”λ‹€. Chemical Process Design, product and process design, conceptual design and chemical engineering design λ“±μ˜ 제λͺ©μœΌλ‘œ 방법둠이 μ œμ‹œλ˜μ—ˆλ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” μ΄λŸ¬ν•œ 일반적인 frameworkλ₯Ό λ°”νƒ•μœΌλ‘œ modeling, simulation and optimization을 μœ„ν•œ Engineering Design Procedureλ₯Ό μ œμ•ˆν•˜κ³ , νŠΉμ •ν•œ Process structure에 λŒ€ν•΄μ„œ μ—λ„ˆμ§€λΉ„μš© 절감 및 λΆ€μ‚°λ¬Ό μž¬ν™œμš©μ„ μœ„ν•œ 사둀λ₯Ό μ μš©ν•˜μ—¬ 곡정섀계 μˆ˜ν–‰ν•˜μ˜€λ‹€. μ œμ•ˆλœ 방법둠은 douglas λ“± 화학곡정 μ„€κ³„μ—μ„œ μ‚¬μš©λ˜λŠ” μ˜μ‚¬κ²°μ • κ³Όμ •μ—μ„œ κ·Έ ꡬ쑰λ₯Ό μ°©μ•ˆν•˜μ˜€λ‹€. κ°€μŠ€ λΆ„λ°° λ„€νŠΈμ›Œν¬ μ‹œμŠ€ν…œμ€ 크게 두 κ°€μ§€λ‘œ λΆ„λ₯˜ν•œλ‹€. 곡μž₯λ‚΄μ˜ λΆ„λ°°μ‹œμŠ€ν…œκ³Ό 곡μž₯κ³Ό 곡μž₯ μ‚¬μ΄μ˜ λΆ„λ°°μ‹œμŠ€ν…œμœΌλ‘œ λ‚˜λˆŒ 수 μžˆλ‹€. 곡μž₯λ‚΄μ˜ λΆ„λ°° μ‹œμŠ€ν…œμ€ κ³΅μ •μ˜ modeling 에 μ΄ˆμ μ„ λ§žμΆ”μ–΄ Design procedureλ₯Ό μ§„ν–‰ν•œλ‹€. λ‹€μŒ 곡μž₯κ³Ό 곡μž₯ μ‚¬μ΄μ˜ λΆ„λ°°μ‹œμŠ€ν…œμ€ μ‚°μ—…λ‹¨μ§€λ‚΄μ˜ 곡μž₯κ³Ό 곡μž₯을 μ—°κ²°ν•˜λŠ”λ° μ΄ˆμ μ„ λ§žμΆ”μ–΄ Design Procedureλ₯Ό μ§„ν–‰ν•œλ‹€. μ΄λŸ¬ν•œ λ„€νŠΈμ›Œν¬ μ‹œμŠ€ν…œμ€ byproduct recycling network, water reuse network, mass integration, heat integration λ“±μœΌλ‘œ ꡬ뢄할 수 μžˆλ‹€. μœ„μ˜ 곡정섀계 λΆ€λΆ„ 쀑 곡μž₯λ‚΄μ˜ λΆ„λ°°μ‹œμŠ€ν…œμ— λŒ€ν•œ λΆ€λΆ„μœΌλ‘œ Compressor와 Chiller에 λŒ€ν•œ 곡정섀계λ₯Ό Chanpter2와 Chapter3μ—μ„œ 닀루고, 곡μž₯κ³Ό 곡μž₯ μ‚¬μ΄μ˜ λΆ„λ°°μ‹œμŠ€ν…œμ— λŒ€ν•œ λΆ€λΆ„μœΌλ‘œ Hydrogen Recycling Networkλ₯Ό Chapter4μ—μ„œ λ‚΄μš©μ„ 닀룬닀. μ œμ•ˆλœ 곡정섀계 μ‚¬λ‘€λŠ” μ‹€μ œ 곡정에 μ„±κ³΅μ μœΌλ‘œ μ μš©λ˜μ—ˆμœΌλ©°, 이둜 인해 μ—λ„ˆμ§€ 절감 및 μ›κ°€μ ˆκ°μ„ μ΄λ£¨μ—ˆλ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” LCDκ³΅μ •μ—μ„œ μ‚¬μš©λ˜λŠ” 압좕기와 냉동기에 λŒ€ν•œ 곡정섀계λ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€. μ‹€μ œ 곡정에 μ μš©ν•œ κ²°κ³Ό μ••μΆ•κΈ°μ˜ 경우 λͺ¨λΈ 정확도가 95%μ΄μƒμ΄μ—ˆμœΌλ©°, λƒ‰λ™κΈ°μ˜ 경우 type에 λ”°λΌμ„œ 80-97%의 정확도λ₯Ό λ³΄μ˜€λ‹€. 이λ₯Ό μ΄μš©ν•œ μ—λ„ˆμ§€ 절감 λ°©μ•ˆμœΌλ‘œ μ••μΆ•κΈ° μš΄μ „ κ°œμ„ μ„ 톡해 μ•½ 5%의 κ°œμ„ λœ μ—λ„ˆμ§€ μ†Œλͺ¨λŸ‰μ„ λ³΄μ˜€λ‹€. λ˜ν•œ μ„μœ ν™”ν•™λ‹¨μ§€λ‚΄ 곡μž₯κ°„ μˆ˜μ†Œ μž¬ν™œμš© λ„€νŠΈμ›Œν¬λ₯Ό μ„€κ³„ν•˜μ˜€λ‹€. μˆ˜μ†Œ ν•€μΉ˜λΆ„μ„μ„ ν†΅ν•˜μ—¬ κ΅ν™˜λ§ ꡬ성에 ν•„μš”ν•œ μ΅œμ†Œμ˜ μˆ˜μ†Œ μš”κ΅¬ 및 μ •μ œλŸ‰μ„ νŒŒμ•…ν•˜κ³ , λ„€νŠΈμ›Œν¬ ꡬ성에 ν•„μš”ν•œ λΉ„μš©κ³Ό 기타 μ œμ•½μ‘°κ±΄μœΌλ‘œ μ΅œμ ν™” 문제λ₯Ό κ΅¬μ„±ν•˜μ—¬ κ³΅κΈ‰μ²˜(source)와 μˆ˜μš”μ²˜(sink) 곡μž₯간에 졜적으둜 μˆ˜μ†Œλ₯Ό μž¬ν™œμš©ν•˜κΈ° μœ„ν•œ λ„€νŠΈμ›Œν¬λ₯Ό μ„€κ³„ν•˜μ˜€λ‹€. μ‹€μ œ μ‚°μ—…ν˜„μž₯μ—μ„œ μˆ˜μ†Œ μž¬ν™œμš© λ„€νŠΈμ›Œν¬κ°€ κ΅¬μ„±λ˜μ–΄ μ—°κ°„ 100μ–΅ μ΄μƒμ˜ 경제적인 효과λ₯Ό μ–»κ³  μžˆλ‹€. μ œμ•ˆλœ 방법둠은 κ°€μŠ€ λΆ„λ°° μ‹œμŠ€ν…œμ— 따라 λ‹€μ–‘ν•œ 곡정 섀계에 ν­λ„“κ²Œ 적용될 κ²ƒμœΌλ‘œ κΈ°λŒ€λœλ‹€.Gas is one of the essential utilities for operating chemical plants and is usually supplied by compressors of various types. For a large-scale chemical plant, the compression systems are interconnected to each other to form a complex gas-supply network and byproduct recycling network. A complete Engineering Process design includes a critical review of the idea that there should be any process structure, the invention or selection of an appropriate process, optimization of the process, and an economic analysis of its probable profitability. The principal goal of this thesis is to propose a systematic engineering design procedure to improve the profitability. In addition, this thesis is aimed to successfully apply the proposed methodology to an industrial process. In detail, the thesis offers a systematic engineering design procedure to design the process structure (unit, network, design) for industrial process. Chapter 1 provides an introduction of Engineering Process design to this study. Chapter 2 describes unit structure process design of the modeling and optimization of the Turbo-Compression chiller systems in LCD process. Chapter 3 describes unit structure process design of the Hybrid Compressor Model for Optimal Operation of Compressed Dry Air System in LCD Production Industry. Chapter 4 describes network structure process design of the Byproduct Hydrogen Network Design using PSA and Recycling Unit for the Petrochemical Complex. Chapter 5 presents the conclusions and an outline for future works. We believe that the proposed engineering design procedure can be successfully applied into many other process structures and that significant energy and cost savings can thus be expected from the consistently ensured process optimization.Docto

    A Study on the Evaluation of Ship's Performance

    No full text
    As a ship gets bigger and faster lately, ship's structure or cargoes might be often damaged and the ship might be cut in two in extreme conditions by a wave impact on its bow. In this paper, the ship's performance such as seakeeping, maneuvering, stability and boarding comfort was evaluated by the training ship HANBADA. The vertical acceleration, which is one of the factors for evaluating seakeeping performance, was measured under the various sea states by the hull stress monitoring system(HMS) on the bridge, and the results were compared with those of model test and theoretical studies. Then, we confirmed the seakeeping performance of T.S. HANBADA by comparing it with ITTC seakeeping criteria. This result will be a great help for the safe navigation by making it possible to estimate the possibility of work and the amount of risk under the various sea conditions with which it might confront, and the shipbuilding yard can be possible to construct the vessel with superior performance through these data measured on the actual ship. Various turning tests were carried out according to the rudder angle, turning direction, loading condition and the ship's speed, after that they were compared with the IMO maneuvering standards. And maneuvering indexes such as K and T were also obtained through the turning tests. T.S. HANBADA has the large superstructures above the water line, so she is supposed to have relatively large leeway or to be difficult to course keeping under the strong winds. These effects will be more significant on berthing, unberthing or proceeding on low-speed at harbour. Therefore, it was calculated the wind forces and moments acting on her, and then found out how much leeway and count rudder angle would be happened with the relative wind direction and velocity. Three or four typhoons are influencing on the Korean Peninsula in a year. Among them, typhoon 'Sara' in 1959, 'Rusa' in 2002 and 'Maemi' in 2003 accompanied with such a strong wind and heavy rain that they caused a catastrophic damage to the properties and/or lives. Especially typhoon 'Maemi' caused a lot of marine accidents such as sinking, stranding and collision etc. on the vessels at anchor in bay of Jinhae. If T.S. HANBADA will be begun with the influence of the typhoon, she usually escapes from the expected route or anchors at the bay of Jinhae. However, decisions of how to use the anchor and judgement of her safety at anchor depend on the experience of operators by this time. In this paper, the maximum permissible wind velocity was evaluated for keeping her on the safe conditions at anchor by comparing the holding power with the wind force on the hull. Vessels are often capsized because of the loss of stability. If the rolling is intense because of excessive stability, the ship's machinery and/or cargoes as well as the ship's hull may be damaged and crew and passengers feel uncomfortable. On the contrary, when the stability is not enough, the ship may be easily inclined due to winds and/or waves and also be easily capsized because she will not be recovered soon after the inclination. Therefore, it was calculated the stability for the several loading conditions and compared with the IMO stability criteria. Also, the maximum roll angle was analyzed with the various sea states measured for 2 years on T.S. HANBADA. And then, it was presented how to escape the excessive roll from the parametric rolling. When a vessel is underway in a heavy weather, passengers and crew have experience of seasickness which causes drowsiness, dizziness, headache, stomachache etc. In extreme conditions, they suffer from a serious trouble which is physiologically unrecoverable. Therefore it results in delay of spiritual activities or making errors from decrease of motivation, dropping off skills, poor recognition and poor judgement. In this paper, the international standards concerning about the occurrence of sickness and the possibility of works were analyzed, and the boarding comfort was evaluated by conducting several times of survey on cadets boarding on T.S. HANBADA. The result showed that one of the main factors of occurring the sickness was the vertical acceleration and the level was more than 0.2g. Also, it was presented the way how to reduce the sickness by changing the ship's speed and/or course in relation to the encounter period with the wave.제 1 μž₯ μ„œ λ‘  1 1.1 μ—°κ΅¬μ˜ λ°°κ²½ 및 λͺ©μ  1 1.2 κ΄€λ ¨ 연ꡬ 동ν–₯ 6 1.3 λ…Όλ¬Έμ˜ ꡬ성 8 제 2 μž₯ λŒ€μƒ μ„ λ°•μ˜ νŠΉμ„± 및 계츑 μ‹œμŠ€ν…œ 10 2.1 λŒ€μƒ μ„ λ°•μ˜ μ œμ› 및 νŠΉμ„± 10 2.2 μ£Όμš” μš΄ν•­ 싀적 12 2.3 선체응λ ₯ κ°μ‹œ μž₯치 15 2.3.1 선체응λ ₯ κ°μ‹œ μž₯치의 ꡬ성 16 2.3.2 데이터 계츑 및 λ””μŠ€ν”Œλ ˆμ΄ 18 제 3 μž₯ λ‚΄ν•­μ„±λŠ₯ 평가 23 3.1 μ‹€μ„  쑰사 25 3.1.1 ν•΄μƒμƒνƒœμ— λ”°λ₯Έ 가속도 비ꡐ 25 3.1.2 μ„ λ°•κ³Ό νŒŒλ„μ˜ λ§Œλ‚¨κ°μ— λ”°λ₯Έ 가속도 비ꡐ 37 3.1.3 μ—°μ•ˆν•­ν•΄μ™€ λŒ€μ–‘ν•­ν•΄μ˜ 가속도 비ꡐ 41 3.2 이둠계산 및 λͺ¨ν˜•μ‹œν—˜κ³Όμ˜ 비ꡐ뢄석 44 3.3 λ‚΄ν•­μ„±λŠ₯ 평가 50 3.3.1 λ‚΄ν•­μ„±λŠ₯ ν‰κ°€μš”μ†Œμ™€ κ·Έ μ‹œμŠ€ν…œμ  κ²°ν•© 51 3.3.2 λ‚΄ν•­μ„±λŠ₯ ν‰κ°€μš”μ†Œμ˜ λΆ„μ‚°μΉ˜ 53 3.3.3 λ‚΄ν•­μ„±λŠ₯ ν‰κ°€μš”μ†Œμ˜ λ°œμƒν™•λ₯  및 ν•œκ³„ν‘œμ€€νŽΈμ°¨ 54 3.3.4 λ‚΄ν•­μ„±λŠ₯ ν‰κ°€μš”μ†Œμ˜ ν‰κ°€μΉ˜ 55 3.3.5 λ‚΄ν•­μ„±λŠ₯ ν‰κ°€μš”μ†Œμ˜ μœ„ν—˜λ„ 및 μƒλŒ€μœ„ν—˜λ„ 55 3.3.6 λ‚΄ν•­μ„±λŠ₯μ§€ν‘œ 56 3.3.7 λ‚΄ν•­μ„±λŠ₯ 평가 κ²°κ³Ό 58 3.4 μš”μ•½ 60 제 4 μž₯ μ‘°μ’…μ„±λŠ₯ 평가 62 4.1 μ„ λ°• μ‘°μ’…μ„±λŠ₯ 계츑 μ‹œμŠ€ν…œ 64 4.2 IMO μ‘°μ’…μ„± κΈ°μ€€ 66 4.3 λŒ€μƒ μ„ λ°•μ˜ μ‘°μ’…μ„±λŠ₯ 71 4.3.1 λŒ€μƒ μ„ λ°•μ˜ μ„ νšŒμ„±λŠ₯ 72 4.3.2 λŒ€μƒ μ„ λ°•μ˜ μ‘°μ’…μ„± μ§€μˆ˜ 80 4.3.3 λŒ€μƒ μ„ λ°•μ˜ μ‹ μΉ¨λ‘œ 거리 85 4.4 풍압λ ₯의 영ν–₯을 κ³ λ €ν•œ μ‘°μ’…μ„±λŠ₯ 89 4.4.1 풍압λ ₯κ³Ό 유체λ ₯ μš΄λ™λ°©μ •μ‹ 89 4.4.2 ν‘œλ₯˜κ° 및 λŒ€μ‘νƒ€κ° 97 4.4.3 λŒ€μƒ μ„ λ°•μ˜ μ˜ˆμΈμ„  μ‚¬μš© κΈ°μ€€ 98 4.5 λŒ€μƒ μ„ λ°•μ˜ λ¬˜λ°• μ•ˆμ „μ„± 평가 103 4.5.1 νƒœν’μ˜ 영ν–₯ 103 4.5.2 μ™Έλ ₯에 λŒ€ν•œ 뢄석 106 4.5.3 파주λ ₯에 λŒ€ν•œ 뢄석 108 4.5.4 λŒ€μƒ μ„ λ°•μ˜ λ¬˜λ°• μ•ˆμ „μ„± 평가 119 4.6 μš”μ•½ 121 제 5 μž₯ 볡원성λŠ₯ 평가 123 5.1 μ„ λ°•μ˜ 볡원성 123 5.2 IMO 볡원성 κΈ°μ€€κ³Ό λŒ€μƒ μ„ λ°•μ˜ 볡원성 127 5.2.1 IMO 볡원성 κΈ°μ€€ 128 5.2.2 λŒ€μƒ μ„ λ°•μ˜ 볡원성 130 5.3 동쑰 νš‘μš” μš΄λ™ 139 5.4 μš”μ•½ 146 제 6 μž₯ μŠΉμ„ κ° 평가 148 6.1 인체 진동에 λŒ€ν•œ ꡭ제 ν‘œμ€€μ•ˆ 149 6.2 가속도 변화에 λ”°λ₯Έ μŠΉμ„ κ° 쑰사ㆍ뢄석 153 6.2.1 μŠΉμ„ κ° 쑰사 153 6.2.2 μŠΉμ„ κ° 뢄석 158 6.3 μŠΉμ„ κ° ν–₯상을 μœ„ν•œ μš΄ν•­ λ°©μ•ˆ 163 6.4 μš”μ•½ 167 제 7 μž₯ κ²° λ‘  168 參 考 ζ–‡ 獻 174 λΆ€

    A Study on a Vehicle Stability Control based on Wheel Lateral Force

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 기계항곡곡학뢀, 2014. 8. κΉ€μœ€μ˜.μ°¨λŸ‰μ˜ μžμ„Έ μ•ˆμ •μ„± μ œμ–΄ μ‹œμŠ€ν…œμΈ ESC(Electronic Stability Control)λŠ” 지λŠ₯ν˜•μžλ™μ°¨(Intelligent Vehicle)μ—μ„œλ„ κ°€μž₯ 핡심적인 μ£Όν–‰ μ•ˆμ „ μ‹œμŠ€ν…œμœΌλ‘œ λ―Έκ΅­, 유럽 λ“± 선진ꡭ 뿐 μ•„λ‹ˆλΌ κ΅­λ‚΄μ—μ„œλ„ μ•ˆμ „κ·œμ œμ— 따라 μ‹ μ°¨λΆ€ν„° λ‹¨κ³„μ μœΌλ‘œ 적용되고 μžˆλ‹€. μ°¨λŸ‰ λ‚΄ μ„Όμ„œ μ •λ³΄λ‘œλΆ€ν„° μ°¨λŸ‰μ˜ μžμ„Έ μ•ˆμ •μ„±μ„ νŒλ‹¨ν•˜κ³  λΈŒλ ˆμ΄ν¬μ™€ 엔진 토크 μ œμ–΄λ₯Ό 톡해 λ―Έλ„λŸ¬μ§μ„ μ–΅μ œν•˜λ©° μ„ νšŒ μ£Όν–‰ μ‹œ μ•ˆμ •μ„±μ„ ν™•λ³΄ν•˜λŠ” ESC μ‹œμŠ€ν…œμ€ μ£Όν–‰ 쀑 κ·Ήν•œ μœ„ν—˜ 상황 ν•˜μ—μ„œ 사고 νšŒν”Όμ™€ μ°¨λŸ‰μ˜ μ•ˆμ •μ μΈ 주행을 λ³΄μ‘°ν•œλ‹€. 이λ₯Ό μœ„ν•΄μ„œ κ΄€λ ¨ μ„Όμ„œ λΆ€ν’ˆμ˜ κΈ°λ―Όν•œ λ°˜μ‘κ³Ό μ œμ–΄κΈ° 및 μ—‘μΈ„μ—μ΄ν„°μ˜ μ •ν™•ν•œ λ™μž‘μ΄ ν•„μˆ˜μ μ΄λ‹€. ν˜„μž¬ μƒμš©ν™”λœ ESC μ‹œμŠ€ν…œμ€ μš΄μ „μžμ˜ μ‘°ν–₯μž…λ ₯κ³Ό μ°¨λŸ‰μ˜ 속도, λ°”λ”” 거동 μ •λ³΄λ‘œλΆ€ν„° μ°¨λŸ‰μ˜ μžμ„Έλ₯Ό μ˜ˆμΈ‘ν•˜λŠ”λ° 이에 λ”°λ₯Έ 계산 μ‹œκ°„, μ„œμŠ€νŽœμ…˜ λ°˜μ‘μ— λ”°λ₯Έ μ§€μ—°μ‹œκ°„ 등이 μˆ˜λ°˜λ˜λŠ” ν•œκ³„κ°€ 있으며, μ°¨μ„ΈλŒ€ ESC κΈ°μˆ λ‘œμ„œ μ°¨λŸ‰μ˜ μžμ„Έμ™€ μ§κ²°λ˜λŠ” νœ ν•˜μ€‘(wheel force)을 직접 μΈ‘μ •ν•˜μ—¬ μ°¨λŸ‰ μžμ„Έμ œμ–΄μ— λ°˜μ˜ν•˜λŠ” 연ꡬ가 μ§„ν–‰λ˜κ³  μžˆλ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” μƒμš© ESC μ‹œμŠ€ν…œμ—μ„œ μ‚¬μš©ν•˜λŠ” μ°¨λŸ‰ λ°”λ”” 거동 정보인 μš”μœ¨(yaw rate) 기반 μ œμ–΄μ™€ ν–₯ν›„ 개발이 μ˜ˆμƒλ˜λŠ” νœ ν•˜μ€‘ 정보 기반 μ œμ–΄μ˜ λ°˜μ‘μ‹œκ°„ 차이와 그에 λ”°λ₯Έ μ„±λŠ₯을 λΉ„κ΅ν•˜κ³  λΆ„μ„ν•˜μ˜€λ‹€. 이λ₯Ό μœ„ν•˜μ—¬ λŒ€μƒμ°¨λŸ‰μ— λŒ€ν•œ κ³ μ •λ„μ˜ μ°¨λŸ‰ 동역학λͺ¨λΈμ„ κ°œλ°œν•˜κ³ , μš”μœ¨ μ œμ–΄ ESC와 νœ ν•˜μ€‘ μ œμ–΄ ESC κ°„μ†Œ μ•Œκ³ λ¦¬μ¦˜μ„ μ œμ•ˆν•˜μ—¬ 해석적 뢄석(S/W simulation)을 μˆ˜ν–‰ν•˜μ˜€λ‹€. λ˜ν•œ RCP(Rapid Control Prototyping) ν”Œλž«νΌ 기반의 μ‹œν—˜ μ°¨λŸ‰μ„ κ°œλ°œν•΄ μ‹€μ°¨μ‹œν—˜μ„ μˆ˜ν–‰ν•¨μœΌλ‘œμ¨ 상기 μ•Œκ³ λ¦¬μ¦˜μ˜ 효과λ₯Ό κ²€μ¦ν•˜μ˜€λ‹€. 그리고 μš”μœ¨ μ œμ–΄ ESC와 νœ ν•˜μ€‘ μ œμ–΄ ESC의 μ„±λŠ₯ 차이λ₯Ό μ’€ 더 λ³΄κΈ°μœ„ν•΄ 기쑴의 ESC ν‘œμ€€ μ‹œν—˜ λͺ¨λ“œμ— κΈ°λ°˜ν•œ μ΅œμ•… 상황 μ‹œν—˜ μ‹œλ‚˜λ¦¬μ˜€λ₯Ό μ œμ•ˆν•˜μ—¬ ESC μ•Œκ³ λ¦¬μ¦˜μ˜ 효과λ₯Ό ν‰κ°€ν–ˆλ‹€. λ³Έ μ—°κ΅¬μ˜ μ£Όμš” κ²°κ³ΌλŠ” λ‹€μŒκ³Ό κ°™λ‹€. 첫째둜 ν˜„μž¬ μƒμš© ESC μ‹œμŠ€ν…œμ— μΌλ°˜ν™”λœ μš”μœ¨ μ œμ–΄ ESCλŠ” ꡬ쑰적으둜 μ„Όμ„œ 정보λ₯Ό μ·¨λ“ν•˜λŠ” λ°˜μ‘μ‹œκ°„ 지연이 λ°˜λ“œμ‹œ μˆ˜λ°˜λ¨μ— 따라 μ„±λŠ₯을 ν–₯μƒμ‹œν‚€λŠ”λ° ν•œκ³„κ°€ 있으며, 반면 νœ ν•˜μ€‘ 기반 μ œμ–΄ ESCλŠ” μš”μœ¨ μ œμ–΄ ESC와 λΉ„κ΅ν•˜μ—¬ μƒλŒ€μ μœΌλ‘œ μ‘λ‹΅μ‹œκ°„μ΄ 맀우 λΉ λ₯΄λ©΄μ„œ μ°¨λŸ‰ μžμ„Έ μ•ˆμ •μ„± μ œμ–΄ μΈ‘λ©΄μ—μ„œλ„ μš°μˆ˜ν•¨μ„ 해석적 뢄석 방법과 μ‹€μ°¨ μ‹œν—˜ 방법을 톡해 μ •λŸ‰μ μœΌλ‘œ ν™•μΈν•˜μ˜€λ‹€. λ‘˜μ§Έλ‘œ νœ ν•˜μ€‘ 기반 μ œμ–΄ ESCλŠ” 보닀 λΉ λ₯Έ μ œμ–΄ κ°œμž…μœΌλ‘œ μžμ„Έ μ•ˆμ •μ„±μ„ λ³΅μ›μ‹œν‚€λŠ” κ³Όμ •μ—μ„œ μ œλ™λ ₯ κ°œμž…μ΄ 크게 쀄어듀며 μ΄λŸ¬ν•œ 결과둜 주행쀑 NVH(Noise, Vibration and Harshness) νŠΉμ„±λ„ ν–₯μƒλ˜λ©° ESC μž‘λ™ 쀑에 μš΄μ „μžκ°€ λŠλ‚„ 수 μžˆλŠ” λΆˆμΎŒκ°μ„ 쀄여쀄 수 μžˆμŒμ„ 확인할 수 μžˆμ—ˆλ‹€. λ˜ν•œ 졜근 κ³ κΈ‰μ°¨λŸ‰μ„ μ€‘μ‹¬μœΌλ‘œ ADAS(Advanced Driver Assistance System) μž₯착이 ν™•λŒ€λ¨μ— 따라 ESC μ‹œμŠ€ν…œμ— 보닀 높은 λ‚΄κ΅¬μˆ˜λͺ…을 μš”κ΅¬ν•˜λŠ” μƒν™©μ—μ„œ, μ œλ™λ ₯ κ°œμž…μ„ 쀄여쀄 κ°€λŠ₯성이 높은 νœ ν•˜μ€‘ μ œμ–΄ ESC 개발의 ν•„μš”μ„±μ΄ μ¦λŒ€ν•˜λŠ” 것과도 λΆ€ν•©ν•œλ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ 기쑴의 ESC μ‹œμŠ€ν…œλΏλ§Œ μ•„λ‹ˆλΌ ν–₯ν›„ 개발될 μ°¨μ„ΈλŒ€ ESCλ‚˜ ν†΅ν•©μ„€μ‹œμ œμ–΄(UCC, Unified Chassis Control)처럼 점점 κ³ λ„ν™”λ˜λŠ” λŠ₯동 μ„€μ‹œ μ œμ–΄μ‹œμŠ€ν…œμ˜ 효과λ₯Ό ν‰κ°€ν•˜κΈ° μ ν•©ν•œ μƒˆλ‘œμš΄ μ„±λŠ₯ μ§€ν‘œλ‘œμ„œ 경둜 μ΄νƒˆ 거리(path departure distance)와 μš”κ°(yaw angle)을 μ œμ•ˆν•˜μ˜€λ‹€. 그리고 이듀 μ„±λŠ₯ μ§€ν‘œλ‘œ 비ꡐ해봀을 λ•Œ 횑방ν–₯ νœ ν•˜μ€‘ μ œμ–΄ ESCλŠ” 보닀 더 μ΅œμ•…μ˜ μ£Όν–‰μƒν™©μ—μ„œ μ°¨λŸ‰μ˜ μžμ„Έμ œμ–΄ μ„±λŠ₯ ν–₯상 정도가 보닀 ν¬λ‹€λŠ” 사싀을 ν™•μΈν•˜μ˜€λ‹€.ꡭ문초둝 i List of Tables vii List of Figures ix Nomenclature xvii 제1μž₯ μ„œ λ‘  1 1.1 연ꡬ λ°°κ²½ 1 1.2 μ„ ν–‰ 연ꡬ 및 동ν–₯ 10 1.2.1 μ°¨λŸ‰ μžμ„Έ μ•ˆμ •μ„± μ œμ–΄ 기술 10 1.2.2 μ°¨λŸ‰ μžμ„Έ μ•ˆμ •μ„± μ„Όμ‹± 기술 26 1.3 연ꡬ λͺ©μ  35 1.4 연ꡬ μš”μ•½ 37 제2μž₯ μ°¨λŸ‰ 동역학 해석 39 2.1 μ°¨λŸ‰ 동역학 λͺ¨λΈ 39 2.1.1 μ°¨λŸ‰ 동역학λͺ¨λΈ 개발 39 2.1.2 μ°¨λŸ‰ 동역학λͺ¨λΈ 검증 44 2.2 μ°¨λŸ‰ 동적 μ•ˆμ •μ„± 평가 46 2.2.1 μ°¨λŸ‰ 동적 μ•ˆμ •μ„± 평가 방법 46 2.2.2 μ°¨λŸ‰ 동적 μ•ˆμ •μ„± 해석 평가 50 2.3 κ³ μ°° 56 제3μž₯ 해석 기반 μ°¨λŸ‰ μžμ„Έμ œμ–΄ μ•Œκ³ λ¦¬μ¦˜ 효과 뢄석 58 3.1 μ°¨λŸ‰ λ°”λ”” μžμ„Έμ •λ³΄ 기반 μ œμ–΄ μ•Œκ³ λ¦¬μ¦˜ 58 3.2 μ°¨λŸ‰ λ°”λ”” μžμ„Έμ •λ³΄ 기반 μ œμ–΄ 응닡 해석 62 3.2.1 μš”μœ¨ μ œμ–΄μ— λ”°λ₯Έ μ°¨λŸ‰ μžμ„Έμ œμ–΄ 효과 62 3.2.2 μ‹œκ°„ 지연에 λ”°λ₯Έ μ°¨λŸ‰ μžμ„Έμ œμ–΄ 효과 67 3.3 횑방ν–₯ νœ ν•˜μ€‘ 정보 기반 μ œμ–΄ μ•Œκ³ λ¦¬μ¦˜ 75 3.4 횑방ν–₯ νœ ν•˜μ€‘ 정보 기반 μ œμ–΄ 응닡 해석 83 3.5 μžμ„Έμ œμ–΄λ₯Ό μœ„ν•œ μ£Όμš” λ³€μˆ˜ 뢄석 90 3.6 κ³ μ°° 97 제4μž₯ μ‹€μ°¨κΈ°λ°˜ μžμ„Έμ œμ–΄ μ•Œκ³ λ¦¬μ¦˜ 효과 뢄석 101 4.1 μ•Œκ³ λ¦¬μ¦˜ κ΅¬ν˜„μš© μ‹œν—˜ μ°¨λŸ‰ 개발 101 4.2 μ°¨λŸ‰ 거동 평가 μ‹€μ°¨μ‹œν—˜ 111 4.3 μ•Œκ³ λ¦¬μ¦˜μ— λ”°λ₯Έ μ°¨λŸ‰ 거동 νŠΉμ„± 뢄석 117 4.4 κ³ μ°° 127 제5μž₯ μ΅œμ•…μƒν™© μ‹œλ‚˜λ¦¬μ˜€ 생성 및 μ•Œκ³ λ¦¬μ¦˜ 평가 129 5.1 ν•΄μ„κΈ°λ°˜ μ΅œμ•…μƒν™© μ‹œλ‚˜λ¦¬μ˜€ 생성 129 5.1.1 μ΅œμ•…μƒν™© λ„μΆœμ„ μœ„ν•œ ν”„λ‘œμ‹œμ Έ 130 5.1.2 μ΅œμ•…μƒν™© μ£Όν–‰ μ‹œλ‚˜λ¦¬μ˜€ λ„μΆœ 136 5.2 μ΅œμ•…μƒν™© μ‹œλ‚˜λ¦¬μ˜€μ— λ”°λ₯Έ μ•Œκ³ λ¦¬μ¦˜ 평가 138 5.3 μ°¨λŸ‰ μžμ„Έ μ•ˆμ •μ„± 평가 μ§€ν‘œ 143 5.4 κ³ μ°° 154 제6μž₯ κ²°λ‘  및 ν–₯ν›„ 연ꡬ 과제 156 Bibliography 159 Abstract 165 Appendix 168Docto

    Development of Hydrogen Recycling Network Design for Petrochemical Complex and Eco-Industrial Park

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사) --μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :화학생물곡학뢀,2007.Maste
    corecore