12 research outputs found

    TP53, PCNT ๊ทธ๋ฆฌ๊ณ  CEP215 ๊ฒฐํ• ์„ธํฌ์ฃผ์—์„œ ๊ณผ๋ณต์ œ ์ค‘์‹ฌ๋ฆฝ์˜ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ƒ๋ช…๊ณผํ•™๋ถ€, 2021. 2. ์ด๊ฑด์ˆ˜.The centrosome is a subcellular organelle that functions as a major microtubule organizing center in most animal cells. It is composed of centrioles and surrounding pericentriolar material (PCM). During mitosis, centrosomes function as spindle poles to pull a set of chromosomes into daughter cells, and abnormality in centrosome numbers leads to spindle pole disorder. Therefore, the centriole number has to be tightly regulated during the cell cycle for successful cell division. In fact, centrosome amplification is often observed in many cancer cells. In my dissertation, I generated HeLa cell lines in which the TP53, PCNT and CEP215 genes are deleted and observed the phenotypes related to centriole behavior during the cell cycle. In chapter I, I observed centriolar phenotypes in the CEP215 deleted cells. CEP215 is a major PCM protein that recruits the ฮณ-tubulin ring complex for microtubule organization. In my dissertation research, I observed that daughter centrioles were prematurely separated from the mother centrioles in CEP215 knockout cells. I also generated TP53, PCNT and CEP215 triple knockout cells and observed centriole amplification as well as precocious centriole separation. Based on the observations, I propose that CEP215 is involved in maintaining the mother and daughter centriole association during mitosis. In chapter II, I studied centriolar phenotypes in the TP53, PCNT and CEP215 triple knockout cells. I observed the unscheduled amplification of centrioles in the triple knockout cells during mitosis. The amplified centrioles lack the ability to function as the template for centriole assembly during the subsequent S phase. They also lack the ability to organize microtubules. Nonetheless, I do not rule out the possibility that the amplified centrioles may occasionally disturb bipolar spindle pole formation during mitosis. My works propose a novel mechanism by which supernumerary centrioles are generated in the cells depleted of PCM in the mitotic centrosomes.์ค‘์‹ฌ์ฒด๋Š” ๋™๋ฌผ ์„ธํฌ์—์„œ ๋ฏธ์„ธ ์†Œ๊ด€์„ ํ˜•์„ฑํ•˜๋Š” ์ฃผ์š” ๊ธฐ๊ด€์œผ๋กœ, ์ค‘์‹ฌ๋ฆฝ๊ณผ ์ค‘์‹ฌ๊ตฌ๋กœ ์ด๋ฃจ์–ด์ ธ์žˆ๋‹ค. ์ค‘์‹ฌ๊ตฌ๋Š” ๋ฏธ์„ธ ์†Œ๊ด€์˜ ๋ง๋‹จ์— ์ง‘์ ํ•˜์—ฌ ์„ธํฌ๋‚ด ๋ฏธ์„ธ์†Œ๊ด€ ๋ง์„ ๊ตฌ์ถ•ํ•˜๋Š” ์—ญํ• ์„ ํ•˜๊ณ , ์ค‘์‹ฌ๋ฆฝ์€ ์ด๋Ÿฌํ•œ ์ค‘์‹ฌ๊ตฌ๋ฅผ ๋ชจ์œผ๋Š” ์ค‘์ถ”์˜ ์—ญํ• ์„ ํ•œ๋‹ค. ์ค‘์‹ฌ์ฒด์˜ ๋ณต์ œ๋Š” ์„ธํฌ ์ฃผ๊ธฐ์™€ ๋ฐ€์ ‘ํ•˜๊ฒŒ ์—ฐ๊ด€๋˜์–ด์žˆ๋‹ค. DNA ๋ณต์ œ ์ฃผ๊ธฐ์™€ ๋น„์Šทํ•˜๊ฒŒ S๊ธฐ ๋™์•ˆ์—๋Š” ์ค‘์‹ฌ๋ฆฝ์˜ ๊ฐœ์ˆ˜๊ฐ€ 2๊ฐœ์—์„œ 4๊ฐœ๋กœ ๋Š˜์–ด๋‚˜๊ณ  M๊ธฐ์—๋Š” ๋‘๊ฐœ์˜ ์ค‘์‹ฌ์ฒด๊ฐ€ ์„ธํฌ์˜ ์–‘๋์œผ๋กœ ์ด๋™ํ•ด ์–‘๊ทน์„ฑ ๋ฐฉ์ถ”์‚ฌ๋ฅผ ํ˜•์„ฑํ•œ๋‹ค. ์ค‘์‹ฌ์ฒด๋Š” ๊ฐ„๊ธฐ ๋™์•ˆ์—๋Š” ์„ธํฌ์˜ ๋ชจ์–‘, ์„ธํฌ ๋‚ด ์šด ์ˆ˜์†ก์„ ์šฉ์ดํ•˜๊ฒŒ ํ•˜๊ณ  ์ค‘๊ธฐ ๋™์•ˆ์—๋Š” ์„ธํฌ ๋ถ„์—ด์— ์ค‘์ถ”์ ์ธ ์—ญํ• ์„ ํ•œ๋‹ค. ๋ฏธ์„ธ ์†Œ๊ด€์„ ๋งŒ๋“œ๋Š” ์—ญํ• ์€ ์ค‘์‹ฌ๊ตฌ์—์„œ ์ด๋ฃจ์–ด์ง€์ง€๋งŒ ์ด๋Ÿฌํ•œ ์ค‘์‹ฌ๊ตฌ๋ฅผ ๋ชจ์œผ๋Š”๊ฒŒ ์ค‘์‹ฌ๋ฆฝ์ด๊ธฐ ๋•Œ๋ฌธ์— ์ค‘์‹ฌ๋ฆฝ ๊ฐœ์ˆ˜์˜ ์ด์ƒ์€ ์„ธํฌ์˜ ์ค‘๊ธฐ์— ํŠนํžˆ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•˜๊ณ  ์ด๋Š” ์—ผ์ƒ‰์ฒด ์ˆ˜ ์ด์ƒ, invapodopia๋ฅผ ์œ ๋ฐœํ•˜์—ฌ ์•”๊ณผ ๋ฐ€์ ‘ํ•˜๊ฒŒ ์—ฐ๊ด€๋˜์–ด ์žˆ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์ค‘์‹ฌ์ฒด์˜ ์ฃผ์š” ๋‹จ๋ฐฑ์งˆ์ธ CEP215์™€ PCNT๊ฐ€ ๋™์‹œ์— ๊ฒฐ์‹ค๋œ ์ƒํ™ฉ์—์„œ ์ด์˜ ํ‘œํ˜„ํ˜•์„ ๊ด€์ฐฐํ•จ์œผ๋กœ์จ ์ด๋“ค ๋‹จ๋ฐฑ์งˆ๋“ค์˜ ๊ธฐ๋Šฅ์„ ์ด์ฒด์ ์œผ๋กœ ์ดํ•ดํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ œ 1์žฅ์—์„œ๋Š” ์ค‘์‹ฌ์ฒด ์ฃผ์š” ๋‹จ๋ฐฑ์งˆ์ธ CEP215์˜ ์„ธํฌ๋ถ„์—ด๊ธฐ์— ์ค‘์‹ฌ๋ฆฝ ๊ฒฐํ•ฉ๊ณผ ์ƒˆ๋กœ์šด ์ค‘์‹ฌ๋ฆฝ ๋ณต์ œ์— ์žˆ์–ด์„œ์˜ ์ค‘์š”์„ฑ์— ๋Œ€ํ•˜์—ฌ ์—ฐ๊ตฌํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. CEP215๋Š” ๊ธฐ์กด knockdown์‹คํ—˜์œผ๋กœ ๋ฐํ˜€์ง„ ๋ฐ”์— ์˜ํ•˜๋ฉด ฮณ-tubulin์˜ ์ค‘์‹ฌ์ฒด๋กœ์˜ ๋ฐ€์ง‘์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค๊ณ  ๋ฐํ˜€์ ธ ์žˆ๊ณ , ์ค‘๊ธฐ์— ์ค‘์‹ฌ์ฒด์˜ ๊ฒฐํ•ฉ์— ์ค‘์š”ํ•˜๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. CEP215์˜ ์œ ์ „์ž๊ฐ€ ์•„์˜ˆ ๋ฐœํ˜„ํ•˜์ง€ ์•Š๋Š” ์„ธํฌ ์ฃผ๋ฅผ ์ œ์ž‘ํ•ด ์ด๋ฅธ ์ค‘๊ธฐ๋ฅผ ๊ด€์ฐฐํ•œ ๊ฒฐ๊ณผ, ์ค‘์‹ฌ๋ฆฝ์˜ ์ด๊ฒฉ ํ˜„์ƒ์„ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. CEP215์˜ ๋‹ค์–‘ํ•œ ๋ฐœํ˜„ ์–ต์ œ ํ‘œํ˜„ํ˜•์„ ๊ด€์ฐฐํ•œ ๊ฒฐ๊ณผ ์ด ์ด๊ฒฉ ํ˜„์ƒ์—๋Š” CEP215์™€ PCNT์˜ ๊ฒฐํ•ฉ์ด ์ค‘์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ CEP215์™€ PCNT์˜ ๋™์‹œ ๊ฒฐํ• ์„ธํฌ ์ฃผ๋ฅผ ์ œ์ž‘, ๊ด€์ฐฐํ•œ ๊ฒฐ๊ณผ์—์„œ๋Š” CEP215๊ฐ€ ์ƒˆ๋กœ์šด ์ค‘์‹ฌ๋ฆฝ์„ ํ˜•์„ฑ์‹œํ‚ฌ ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๋Š” ๊ฒƒ์— ์žˆ์–ด ์ค‘์š”ํ•จ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ œ 2์žฅ์—์„œ๋Š” CEP215์™€ PCNT์˜ ๋™์‹œ ๊ฒฐํ• ์„ธํฌ ์ฃผ์—์„œ ๋ณด์ด๋Š” ๊ณผ ๋ณต์ œ ์ค‘์‹ฌ๋ฆฝ๋“ค์ด ์–ธ์ œ ๋งŒ๋“ค์–ด์ง€๋Š”์ง€, ์ด ์ค‘์‹ฌ๋ฆฝ๋“ค์ด ์–ด๋–ป๊ฒŒ ๋˜๋Š”์ง€ ์—ฐ๊ตฌํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. PLK4๋ฅผ ๊ณผ ๋ฐœํ˜„ ์‹œ์ผœ ๋งŒ๋“ค์–ด์ง€๋Š” ๊ณผ ๋ณต์ œ ์ค‘์‹ฌ๋ฆฝ๋“ค๊ณผ ์„ธํฌ ์ฃผ๊ธฐ ๋™์•ˆ ๋น„๊ต ๋ถ„์„ํ•˜์˜€๋‹ค. ์ค‘์‹ฌ์ฒด ๋‹จ๋ฐฑ์งˆ๋“ค์ด ์—†์–ด์ง€๋ฉด์„œ ๋งŒ๋“ค์–ด์ง€๋Š” ์ด ๊ณผ ๋ณต์ œ ๋œ ์ค‘์‹ฌ๋ฆฝ๋“ค์€ M๊ธฐ์— ํ˜•์„ฑ๋˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์˜€์œผ๋ฉฐ, PLK4๊ฐ€ ๊ณผ ๋ฐœํ˜„๋˜๋ฉด์„œ ๋งŒ๋“ค์–ด์ง€๋Š” ์ค‘์‹ฌ๋ฆฝ๋“ค์€ S๊ธฐ ๋™์•ˆ ์ฆํญ๋˜๋Š” ๊ฒƒ์„ ๊ด€์ฐฐ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ knockout ์„ธํฌ ์ฃผ์˜ ๊ณผ ๋ณต์ œ ์ค‘์‹ฌ๋ฆฝ๋“ค์€ PLK4 ๊ณผ ๋ฐœํ˜„์„ ํ†ตํ•ด ๋งŒ๋“ค์–ด์ง„ ๊ณผ ๋ณต์ œ ์ค‘์‹ฌ๋ฆฝ๋“ค๊ณผ ๋‹ค๋ฅด๊ฒŒ ์ƒˆ๋กœ์šด ์ค‘์‹ฌ๋ฆฝ์„ ๋งŒ๋“ค์ง€ ๋ชปํ•˜๋ฉฐ ๋ฏธ์„ธ์†Œ๊ด€๋„ ๋งŒ๋“ค์ง€ ๋ชปํ•˜๋Š” ๊ฒƒ์„ ๊ด€์ฐฐ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์ค‘์‹ฌ๊ตฌ์˜ ํŒŒ๊ดด๋„ ์ค‘์‹ฌ๋ฆฝ์˜ ๊ณผ ๋ณต์ œ ํ˜„์ƒ์„ ์•ผ๊ธฐ์‹œํ‚ฌ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋กœ ์ธํ•ด M๊ธฐ์— ๋งŒ๋“ค์–ด์ง„ ์ค‘์‹ฌ๋ฆฝ๋“ค์€ ์„ธํฌ์ฃผ๊ธฐ๋™์•ˆ ์ค‘์‹ฌ์ฒด๋กœ์„œ ์—ญํ• ์„ ํ•˜์ง€ ๋ชปํ•˜๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.ABSTRACT.......................................................................................................................................................i CONTENTS.....................................................................................................................................................iii LIST OF FIGURES............................................................................................................................................vii BACKGROUND AND PURPOSE.......................................................................................................................1 Background....................................................................................................................................................2 1. Centrosome................................................................................................................................................2 1.1. Centriole.................................................................................................................................................2 1.2. Pericentriolar material (PCM) ..................................................................................................................4 1.3. Function of centrosome...........................................................................................................................4 2. Centrosome cycle.......................................................................................................................................7 2.1. Centriole-to-centrosome conversion.........................................................................................................9 2.2. Centriole duplication initiation.................................................................................................................9 2.3. Procentriole elongateion........................................................................................................................11 2.4. Centrosome maturation and separation.................................................................................................11 2.5. Bipolar spindle formation.......................................................................................................................12 2.6. Centriole disengagement and separation...............................................................................................12 3. PCM proteins............................................................................................................................................14 3.1. Pericentrin (PCNT) .................................................................................................................................16 3.2. CDK5RAP2 (CEP215) ............................................................................................................................16 4. Centrosome and disease...........................................................................................................................17 4.1. Centrosome and microcephaly...............................................................................................................17 4.2. Centrosome and cancer.........................................................................................................................18 Purpose........................................................................................................................................................21 CHAPTER 1. Involvement of CEP215 in centriole engagement during mitosis................................................22 Abstract.......................................................................................................................................................23 Introduction.................................................................................................................................................24 Materials and Methodsโ€ฆ..............................................................................................................................26 Cell culture, generation of deleted cell lines and synchronization...................................................................26 Antibodies....................................................................................................................................................26 Immunostaining analysis...............................................................................................................................27 Immunoblot analysis.....................................................................................................................................28 Results.........................................................................................................................................................30 Generation of TP53; CEP215 deleted cell line...............................................................................................30 Deletion of CEP215 leads to premature centriole separation in early mitosis..................................................34 The interaction between CEP215 and PCNT is important in maintaining centriole integrity............................36 Generation of TP53; PCNT; CEP215 deleted cell line.....................................................................................40 Precocious centriole separation and amplification in the triple KO cells during M phase...........................................................................................................................................................41 Discussion....................................................................................................................................................48 CHAPTER 2. Identification of the fate of supernumerary centrioles in TP53; PCNT; CEP215 triple knockout cells..............................................................................................................................................................52 Abstract.......................................................................................................................................................53 Introduction.................................................................................................................................................54 Materials and Methods.................................................................................................................................56 Cell culture and synchronization...................................................................................................................56 Microtubule regrowth assay..........................................................................................................................56 Live cell observation......................................................................................................................................57 Antibodies....................................................................................................................................................57 Immunostaining analysis...............................................................................................................................58 Immunoblot analysis.....................................................................................................................................59 Results..........................................................................................................................................................61 Limited centriole assembly at S phase in the triple knockout cells...................................................................61 M phase centriole assembly in triple knockout cells.......................................................................................64 Centriole-to-centrosome conversion in the precociously separated centrioles.................................................69 Defective centriole-to-centrosome conversion in the triple KO cells................................................................69 Defective microtubule organization in the triple KO cells...............................................................................75 Discussion....................................................................................................................................................79 CONCLUSION...............................................................................................................................................84 REFERENCES................................................................................................................................................86 Abstract in Korean........................................................................................................................................99Docto

    ์‚ฌํšŒ์ ๊ธฐ์—… ์ฐฝ์—…์˜๋„ ์˜ํ–ฅ์š”์ธ ๋ฐ ์„ฑ๊ณผํ‰๊ฐ€์— ๊ด€ํ•œ ์„ธ ๊ฐ€์ง€ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ–‰์ •๋Œ€ํ•™์› ํ–‰์ •ํ•™๊ณผ(ํ–‰์ •ํ•™์ „๊ณต), 2023. 2. ์ด์ˆ˜์˜ .In using a mixed-method design, this dissertation is largely divided into three essays. As social enterprises have emerged over the past several decades as a potential policy tool in tackling social wicked problems, creating social value, and improving communities, social entrepreneurship has gained an increasing importance in Korea. Understanding the determinants of social entrepreneurial intention is critical for policymakers and educators as they can encourage young people to engage in social venturing as well as to nurture potential social entrepreneurs. Thus, the purpose of the first essay is to examine the antecedents that affect social entrepreneurial intention formation in Korean youths aged 15 to 26 years. In applying the extended Ajzens theory of planned behavior, I empirically investigate the relationship between three constructs โ€“ altruism, self-efficacy, and subjective norm โ€“ and the formation of social entrepreneurial intention using the Korean Youth Panel ranging from 2009 to 2020. Moreover, the moderating effect of career planning and self-esteem on the relationship between self-efficacy and social entrepreneurial intention is empirically tested. With growing number of social enterprises, these organizations contribute to job creation of vulnerable groups and increase social service delivery to those in need; however, some are skeptical with the sustainability and the lack of performances shown by social enterprises. In order to ensure the self-sufficiency of social enterprises, the second essay identifies factors that affect organizational performance. In applying resource-based view while considering the hybrid characteristics of social enterprises within the contextual legal framework of Korea, I examine both intangible and tangible resources that influence economic and social performances by social enterprises with CSES 2021 SPC data. The resources under study include firm size, subsidy, asset size, operational capability as well as two firm-level orientations which are social entrepreneurship orientation and competitive orientation. The third essay is a qualitative study that uses grounded theory that acts as a linking bridge in connecting the two previous essays. In using the entrepreneurial behavior (establishment of social enterprise) as the central phenomena, this essay presents two research questions. First question is who establishes a social enterprise. In other words, who becomes a social entrepreneur with a legal and operating social enterprise? And the second question is what are the paths that lead to success in social enterprise among those with established social enterprises? In other words, are the main paths that lead to superior social and economic performances? In answering these two questions, I conduct semi-structured interviews with 14 active social entrepreneurs. I present three factors that lead to the establishment of social enterprise and four paths that lead to success of these social enterprises. While each essay provides both theoretical and practical implications, the three essays as a whole are aimed in providing policy implications to promote the growth of social enterprises and to create social value.๋ณธ ๋…ผ๋ฌธ์€ ์‚ฌํšŒ์ ๊ธฐ์—… ์ฐฝ์—…๋™์ธ๊ณผ ์‚ฌ์—…์„ฑ๊ณผ ๊ฒฐ์ •์š”์ธ์„ ์‹ค์ฆ์  ํ†ต๊ณ„๋ถ„์„๊ณผ ๋ฉด์ ‘์กฐ์‚ฌ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•œ ์„ธ ๊ฐœ์˜ ์—์„ธ์ด๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. ์ง€๋‚œ ์ˆ˜์‹ญ๋…„๊ฐ„ ์‚ฌํšŒ์  ๊ธฐ์—…์€ ์‚ฌํšŒ๋ฌธ์ œ(social wicked problems) ํ•ด๊ฒฐ, ์‚ฌํšŒ์  ๊ฐ€์น˜ ์ฐฝ์ถœ, ์ง€์—ญ์‚ฌํšŒ๋ฅผ ๊ฐœ์„ ํ•˜๋Š” ์ •์ฑ…์ˆ˜๋‹จ์œผ๋กœ ๋ถ€์ƒํ•จ์— ๋”ฐ๋ผ ํ•œ๊ตญ์—์„œ ์‚ฌํšŒ์ ๊ธฐ์—… ์ฐฝ์—… ๋ฐ ์ง€์†๊ฐ€๋Šฅ์„ฑ์˜ ์ค‘์š”์„ฑ์ด ์ฆ๊ฐ€๋˜๊ณ  ์žˆ๋‹ค. ์ด์— ์‚ฌํšŒ์  ๊ธฐ์—…์˜ ์„ฑ์žฅ์ด ์ด‰์ง„๋˜๋ ค๋ฉด ์‚ฌํšŒ์  ๊ธฐ์—…์˜๋„๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ์•ˆ์„ ์ฐพ์•„์•ผ ํ•œ๋‹ค. ์‚ฌํšŒ์ ๊ธฐ์—… ์ฐฝ์—…์˜๋„ ์˜ํ–ฅ์š”์ธ์„ ์ดํ•ดํ•จ์œผ๋กœ ์ž ์žฌ์ ์ธ ์‚ฌํšŒ์  ๊ธฐ์—…๊ฐ€๋ฅผ ์œก์„ฑํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ํ•œ๊ตญ ์ฒญ๋…„๋“ค์˜ ๋…ธ๋™์ฐธ์—ฌ๋ฅผ ์žฅ๋ คํ•  ์ˆ˜ ์žˆ๋Š” ์ •์ฑ…์ ์ธ ์‹œ์‚ฌ์ ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ฒซ๋ฒˆ์งธ ์—์„ธ์ด์˜ ๋ชฉ์ ์€ 15-26์„ธ ํ•œ๊ตญ ์ฒญ๋…„๋“ค์˜ ์‚ฌํšŒ์ ๊ธฐ์—… ์˜์‚ฌํ˜•์„ฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์„ ํ–‰์š”์ธ์„ ์‚ดํŽด๋ณธ๋‹ค. Ajzen์˜ ๊ณ„ํš์  ํ–‰๋™์ด๋ก ์„ ํ™•์žฅํ•˜์—ฌ 2009๋…„๋ถ€ํ„ฐ 2020๋…„๊นŒ์ง€ ์ฒญ๋…„ํŒจ๋„์„ ํ™œ์šฉํ•˜์—ฌ ์ดํƒ€์ฃผ์˜, ์ž๊ธฐํšจ๋Šฅ๊ฐ, ์ฃผ๊ด€์  ๊ทœ๋ฒ”์ด๋ผ๋Š” ์„ธ ๊ฐ€์ง€ ์š”์†Œ์™€ ์‚ฌํšŒ์ ๊ธฐ์—…๊ฐ€์  ์˜๋„ํ˜•์„ฑ๊ณผ์˜ ๊ด€๊ณ„๋ฅผ ์‹ค์ฆ์ ์œผ๋กœ ์กฐ์‚ฌํ•œ๋‹ค. ๋˜ํ•œ ์ž๊ธฐํšจ๋Šฅ๊ฐ๊ณผ ์‚ฌํšŒ์ ๊ธฐ์—… ์ฐฝ์—…์˜๋„ ๊ด€๊ณ„์— ๋Œ€ํ•œ ์ง„๋กœ๊ณ„ํš๊ณผ ์ž์•„์กด์ค‘๊ฐ์˜ ์กฐ์ ˆํšจ๊ณผ๋ฅผ ์‹ค์ฆ์ ์œผ๋กœ ๊ฒ€์ฆํ•œ๋‹ค. ๋‘๋ฒˆ์งธ ์—์„ธ์ด๋Š” ์ž์›๊ธฐ๋ฐ˜์ด๋ก ์— ๊ทผ๊ฑฐํ•˜์—ฌ ์‚ฌํšŒ์  ๊ธฐ์—…์˜ ๊ฒฝ์ œ์  ๋ฐ ์‚ฌํšŒ์  ์„ฑ๊ณผ์— ๋Œ€ํ•œ ์˜ํ–ฅ์š”์ธ๋“ค์„ ์‹ค์ฆ์ ์œผ๋กœ ๋ถ„์„ํ•œ๋‹ค. ํ•œ๊ตญ์˜ ๋ฒ•์  ๋งฅ๋ฝ๊ณผ ์‚ฌํšŒ์ ๊ธฐ์—…์˜ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ, ์‚ฌ์—…์„ฑ๊ณผ ๊ฒฐ์ •์š”์ธ๋“ค์„ ๊ทœ๋ช…ํ•จ์œผ๋กœ์จ ๋ณธ์งˆ์ ์ธ ์ง€์†๊ฐ€๋Šฅ์„ฑ์„ ์ œ๊ณ ํ•  ์ˆ˜ ์žˆ๋Š” ์ •์ฑ…์  ๋ฐฉ์•ˆ์„ ๋ชจ์ƒ‰ํ•œ๋‹ค. ์‚ฌํšŒ์ ๊ฐ€์น˜์—ฐ๊ตฌ์› 2021๋…„ SPC ์ž๋ฃŒ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์‚ฌํšŒ์ ๊ธฐ์—…์˜ ๊ฒฝ์ œ์„ฑ๊ณผ์™€ ์‚ฌํšŒ์„ฑ๊ณผ์— ๋ชจ๋‘ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋ฌดํ˜•์˜ ์ž์›๊ณผ ์œ ํ˜•์˜ ์ž์›์„ ์กฐ์‚ฌํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ž์›๊ธฐ๋ฐ˜์ด๋ก ์— ๋”ฐ๋ฅด๋Š” ์š”์†Œ ์ค‘์— ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐ์—… ๊ทœ๋ชจ, ๋ณด์กฐ๊ธˆ, ์ž์‚ฐ ๊ทœ๋ชจ, ์šด์˜ ๋Šฅ๋ ฅ ๋ฟ๋งŒ ์•„๋‹Œ ์‚ฌํšŒ์ ์ •์‹ ์ง€ํ–ฅ์„ฑ ๋ฐ ๊ฒฝ์Ÿ์ง€ํ–ฅ์„ฑ์˜ ๋‘ ๊ฐ€์ง€ ๊ธฐ์—… ์ˆ˜์ค€์˜ ์ง€ํ–ฅ์„ฑ์— ์ดˆ์ ์„ ๋งž์ถ˜๋‹ค. ์„ธ ๋ฒˆ์งธ ์—์„ธ์ด๋Š” ๊ทผ๊ฑฐ์ด๋ก ์„ ์ ์šฉํ•˜์—ฌ ์—์„ธ์ด1๊ณผ ์—์„ธ์ด2๋ฅผ ์—ฐ๊ฒฐํ•˜๋Š” ๊ฐ€๊ต ์—ญํ• ์„ ํ•˜๋Š” ์งˆ์ ์—ฐ๊ตฌ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์‚ฌํšŒ์ ๊ธฐ์—…๊ฐ€์  ํ–‰๋™, ์ฆ‰ ์‚ฌํšŒ์  ๊ธฐ์—…์˜ ์„ค๋ฆฝ์„ ์ค‘์‹ฌํ˜„์ƒ์œผ๋กœ ํ™œ์šฉํ•˜์—ฌ ๋‘ ๊ฐ€์ง€ ์—ฐ๊ตฌ์งˆ๋ฌธ์„ ์ œ์‹œํ•œ๋‹ค. ์ฒซ๋ฒˆ์งธ ์งˆ๋ฌธ์€ ๋ˆ„๊ฐ€ ์‚ฌํšŒ์  ๊ธฐ์—…์„ ์„ค๋ฆฝํ•˜๋Š”์ง€ ๊ทธ๋ฆฌ๊ณ , ์ด๋Ÿฌํ•œ ์‚ฌํšŒ์ ๊ธฐ์—…์˜ ์„ฑ๊ณต์˜ ๊ฒฝ๋กœ๊ฐ€ ๋ฌด์—‡์ธ์ง€์— ๋Œ€ํ•ด ํƒ์ƒ‰ํ•œ๋‹ค. ์‚ฌํšŒ์  ๊ธฐ์—…๊ฐ€ 14๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ์‹ฌ์ธต์ ์ด๊ณ  ๋ฐ˜๊ตฌ์กฐ์ ์ธ ์ธํ„ฐ๋ทฐ๋ฅผ ์ง„ํ–‰ํ•˜์—ฌ ์‚ฌํšŒ์  ๊ธฐ์—…์˜ ์„ค๋ฆฝ์„ ์ด๋„๋Š” 3๊ฐ€์ง€ ์š”์†Œ์™€ ์ด๋Ÿฌํ•œ ์‚ฌํšŒ์  ๊ธฐ์—…์˜ ์„ฑ๊ณต์œผ๋กœ ์ด์–ด์ง€๋Š” 4๊ฐ€์ง€ ๊ฒฝ๋กœ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์„ธ ๊ฐ€์ง€ ์—ฐ๊ตฌ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ํ† ๋Œ€๋กœ ์‚ฌํšŒ์  ๊ธฐ์—… ์„ฑ์žฅ ๋ฐ ์‚ฌํšŒ์  ๊ฐ€์น˜ ์ฐฝ์ถœ์„ ํ™•๋Œ€ํ•  ์ˆ˜ ์žˆ๋Š” ์ •์ฑ…์ ์ธ ์‹œ์‚ฌ์ ์„ ๋„์ถœํ•œ๋‹ค.Chapter 1. Introduction 1 Chapter 2. Background and Theories on Social entrepreneurship 9 2.1 Origin of social enterprise 9 2.2 Definition of social enterprises 10 2.2.1. Non-profit organizations 12 2.2.2 Social Ventures 13 2.2.3 Corporate entrepreneurship versus social entrepreneurship 16 2.3 History of social enterprises in Korea 21 2.4 Legal Definition of social enterprise in Korea 25 2.5 Social Enterprise Promotion Act 26 2.6 Types of social enterprises 29 2.7 Theories on Social Entrepreneurship 31 2.7.1. Theory of planned behavior 32 2.7.2. Shapero & Sokol's Entrepreneurial Event Model 34 2.7.3. Mair & Noboa Social Entrepreneurial Intention Model 36 2.7.4. Resource-based view (theory) 38 Chapter 3. Essay 1: A study on the Antecedents to Social Entrepreneurial Intention: Role of Career Planning 40 3.1 Introduction 40 3.2 Theoretical background Literature review 43 3.3 Hypotheses development 54 3.4 Methodology 63 3.5 Results 70 3.6 Discussion & Conclusion 82 Chapter 4. Essay 2: A study on Factors that affect Economic and Social Performance of Social Enterprises 87 4.1 Introduction 87 4.2 Theoretical framework and Literature review 90 4.3 Hypotheses Development 106 4.3 Methodology 118 4.4 Results 128 4.5 Discussion & Conclusion 131 Chapter 5. Essay 3: A Qualitative study using Grounded Theory on identifying factors on PRE and POST the Social Enterprise Establishment 136 5.1 Background and Research Question 136 5.2 Methodology 137 5.3 Results 148 5.4 Discussion & Conclusion 164 Chapter 6. General Discussion & Conclusion 168 References 180 Appendices 218 ๊ตญ๋ฌธ์ดˆ๋ก 226๋ฐ•

    Clinical improvement and laboratory parameters after narrow-band ultraviolet B phototherapy in atopic dermatitis patients

    No full text
    ์˜ํ•™๊ณผ/์„์‚ฌ[ํ•œ๊ธ€] ์•„ํ† ํ”ผ ํ”ผ๋ถ€์—ผ์€ ์œ ๋ณ‘์œจ์ด ์ฆ๊ฐ€ ์ถ”์„ธ์— ์žˆ๋Š” ์—ผ์ฆ์„ฑ ํ”ผ๋ถ€ ์งˆํ™˜์˜ ํ•˜๋‚˜๋กœ์„œ, ๋ฉด์—ญ ์–ต์ œ์ œ๋‚˜ ๋ถ€์‹  ํ”ผ์งˆ ํ˜ธ๋ฅด๋ชฌ์ œ, ๊ทธ๋ฆฌ๊ณ  ๋ณด์Šต์ œ์˜ ์‚ฌ์šฉ์ด ํ˜„์žฌ๋กœ์„œ๋Š” ์น˜๋ฃŒ์˜ ์ฃผ๋ฅ˜๋ฅผ ์ด๋ฃฌ๋‹ค. ๊ธฐ์กด์˜ ๊ตญ์†Œ ๋ถ€์‹  ํ”ผ์งˆ ํ˜ธ๋ฅด๋ชฌ์ œ ์น˜๋ฃŒ๋Š” ์žฅ๊ธฐ๊ฐ„ ์ ์šฉ ์‹œ ํ”ผ๋ถ€ ์œ„์ถ•๊ณผ ํ˜ˆ๊ด€ ํ™•์žฅ, ํ˜ธ๋ฅด๋ชฌ ๋ถˆ๊ท ํ˜•, ์„ฑ์žฅ ์ €ํ•ด ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ€์ž‘์šฉ์„ ๋™๋ฐ˜ํ•  ์ˆ˜ ์žˆ์–ด ๋Œ€์ฒดํ• ๋งŒํ•œ ์น˜๋ฃŒ๋ฒ•์ด ํ•„์š”ํ•˜๋‹ค. ๊ฑด์„ ๊ณผ ๋ฐฑ๋ฐ˜์ฆ ์น˜๋ฃŒ์— ์ตœ๊ทผ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š” narrow-band ultraviolet B (NBUVB)๋Š” 311 nm ์ „ํ›„์˜ ์ข์€ ํŒŒ์žฅ๋Œ€์˜ ์ž์™ธ์„ ์œผ๋กœ ๋ณ„๋„์˜ ๊ด‘๊ณผ๋ฏผ์„ฑ ์œ ๋„์ œ์˜ ๋ณต์šฉ ์—†์ด ์น˜๋ฃŒ์— ์ด์šฉ๋˜๋ฉฐ, ์ตœ๊ทผ ์•„ํ† ํ”ผ ํ”ผ๋ถ€์—ผ์—์„œ๋„ ๊ทธ ํšจ๊ณผ๊ฐ€ ๋ณด๊ณ ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ค‘๋“ฑ๋„ ์ด์ƒ์˜ 15์„ธ ์ด์ƒ ์„ฑ์ธ ์•„ํ† ํ”ผ ํ”ผ๋ถ€์—ผ ํ™˜์ž์—์„œ 12์ฃผ๊ฐ„ NBUVB ๊ด‘์„  ์น˜๋ฃŒ๋ฅผ ์‹œํ–‰ํ•˜๊ณ  ํšจ๊ณผ๋ฅผ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ์ž„์ƒ์ ์ธ ํšจ๊ณผ๋Š” ํ™˜์ž ์ž์‹ ์˜ ํ‰๊ฐ€์™€ Eczema Area and Severity Index (EASI)๋ฅผ ํ†ตํ•œ ์˜์‚ฌ์˜ ํ‰๊ฐ€, ๊ทธ๋ฆฌ๊ณ  ์œก์•ˆ ์‚ฌ์ง„ ์ดฌ์˜์œผ๋กœ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฒ€์‚ฌ์‹ค ์†Œ๊ฒฌ์€ ์น˜๋ฃŒ ์ „ํ›„์˜ ํ˜ˆ์ฒญ ๋‚ด eosinophilic cationic protein (ECP)๊ณผ E-selectin์˜ ๋†๋„, ๊ทธ๋ฆฌ๊ณ  ํ˜ธ์‚ฐ๊ตฌ ๋ถ„ํš ๋“ฑ์„ ๋น„๊ตํ•˜์˜€๋‹ค. ์น˜๋ฃŒ ํ›„ ๋Œ€๋ถ€๋ถ„์˜ ํ™˜์ž์—์„œ ์œ ์˜ํ•˜๊ฒŒ ์ž„์ƒ์  ํ˜ธ์ „์ด ์žˆ์—ˆ์œผ๋ฉฐ, ๊ฒ€์‚ฌ์‹ค ์†Œ๊ฒฌ๋„ ๊ฐœ์„ ๋˜์—ˆ๊ณ  ์‹ฌ๊ฐํ•œ ๋ถ€์ž‘์šฉ์€ ์—†์—ˆ๋‹ค. ํŠนํžˆ E-selectin์˜ ํ˜ˆ์ค‘ ๋†๋„์™€ ํ˜ธ์‚ฐ๊ตฌ ๋ถ„ํš์—์„œ ์œ ์˜ํ•˜๊ฒŒ ๊ฐ์†Œํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๊ฒฐ๊ณผ ์„ฑ์ธ ์•„ํ† ํ”ผ ํ”ผ๋ถ€์—ผ ํ™˜์ž์—์„œ NBUVB์น˜๋ฃŒ๊ฐ€ ํšจ๊ณผ์ ์ธ ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. [์˜๋ฌธ]The increasing incidence of atopic dermatitis calls for attention on new therapeutic modalities such as phototherapy. Adverse outcomes following the continuous uses of corticosteroid and immunosuppressive agents could be avoided with the narrow-band ultraviolet B phototherapy. We have conducted an uncontrolled study on 24 adult atopic dermatitis patients with moderate to severe disease. Laboratory data including eosinophil fraction, serum levels of eosinophilic cationic protein and soluble E-selectin that support the atopic inflammation were compared before and after the 12 week treatment session, as well as the clinical parameters assessed by eczema area severity index and patient questionnaires. Patients showed clinical improvement and serum eosinophilic fraction and E-selectin level showed significant decrements following the phototherapy. The improvements evidenced by clinical and laboratory data seem to be promising.ope

    ํ™•๋ฅ  ํ™˜๊ฒฝ ํ•˜์—์„œ์˜ ์ฟ ์ปค-์Šค๋ฉ”์ผ-ํฌ์ปค-ํ”Œ๋ž‘ํฌ ๋ชจ๋ธ์— ๋Œ€ํ•˜์—ฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ˆ˜๋ฆฌ๊ณผํ•™๋ถ€, 2016. 8. ํ•˜์Šน์—ด.In this dissertation, we mainly focus on a kinetic Cucker--Smale--Fokker--Planck (CS-FP) type equation with a degenerate diffusion coefficient. The CS-FP equation is described in a differential equation for a probability distribution function ff of the infinitely many Cucker--Smale flocking particles in a random environment. We will present a priori estimates for proving the global existence of classical solutions to the CS-FP equation. The global existence of classical solutions under a given sufficiently smooth initial datum will be obtained by applying sobolev embedding theorem to the a priori estimates and iterating the solutions of uniformly parabolic equations which approximates the CS-FP equation. We also present the Cucker-Smale-Kuramoto model which describes flocking and synchronization coupled phenomena. Sufficient conditions for the asymptotic flocking and synchronization will be derived with the Lyapunov functional approach. We provide the numerical compuations for a special case to suggest the future works on clustering.Chapter 1 Introduction 1 Chapter 2 Preliminaries 5 2.1 The Cucker-Smale Model 5 2.1.1 The Vicsek Model 5 2.1.2 The Cucker-Smale Model 6 2.1.3 The Kinetic Cucker-Smale Model 7 2.2 The Cucker-Smale-Fokker-Planck Equation 9 Chapter 3 The Cucker-Smale Model with White Noise 16 3.1 The Additive Noise Case 16 3.2 The Multiplicative Noise Case 19 Chapter 4 Wellposedness of the CS-FP Equation 23 4.1 Estimates of Classical Solutions 23 4.1.1 A priori Estimates 25 4.2 A Local Existence Result 31 4.2.1 Extention of Local Existence 35 Chapter 5 The Cucker-Smale-Kuramoto Model 37 5.1 The Cucker-Smale-Kuramoto Models 38 5.2 Frameworks 40 5.3 Estimates in the CSK model 42 5.4 Estimates in the CSK model with Hebbian Coupling 46 5.5 Numerical Simulations 56 5.5.1 Natural Frequency 56 5.5.2 Intensity of Interaction 60 Chapter 6 Conclusion 65 Bibliography 66 Abstract (in Korean) 71Docto

    ํ๊ณก์„  ์œ„์˜ ํฐ๊ฐœ๋ฏธ ์šด๋™์— ๋Œ€ํ•œ ์ˆ˜ํ•™์  ๋ชจ๋ธ๋ง

    No full text
    In this paper we mathematically explain the trajectories of termites in the case that they are attracted to pheromone-like substance, which is, for ex- ample, a ball-point pen. We videotape and observe the movement of termites lying on a sheet of paper with a circle drawn with the ball-point pen on it. When termites are initially scattered in the center of a circle, they approach the curve interacting with others. We will suggest the mathematical model and numerical simulation on the phenomena.Abstract i 1 Introduction 1 2 Preliminary 2 2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Simple Systems for Modelling . . . . . . . . . . . . . . . . . . 2 2.3 Communication Model . . . . . . . . . . . . . . . . . . . . . . 3 2.4 Vicsek Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 Model Describing Motion of Termites 5 3.1 Aimless Motion . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2 Approaching a Curve . . . . . . . . . . . . . . . . . . . . . . . 5 3.3 Phase of Termites on Curves . . . . . . . . . . . . . . . . . . . 9 3.4 Phase of Termites Leaving Curves . . . . . . . . . . . . . . . . 10 4 Conclusion References ๊ตญ๋ฌธ์ดˆ๋กMaste

    Cancer screening with PET and PET/CT in apparently healthy subjects

    No full text
    ์˜ํ•™๊ณผ/์„์‚ฌ[ํ•œ๊ธ€]์—ฐ๊ตฌ๋ชฉ์ : ๋ฌด์ฆ์ƒ ์„ฑ์ธ์„ ๋Œ€์ƒ์œผ๋กœ ์‹œํ–‰๋œ PET๊ณผ PET/CT ๊ฒ€์‚ฌ ๊ฒฐ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์ด๋“ค ๊ฒ€์‚ฌ์˜ ์•” ๋ฐœ๊ฒฌ์„ ์œ„ํ•œ ์„ ๋ณ„๊ฒ€์‚ฌ๋กœ์„œ์˜ ์œ ์šฉ์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋Œ€์ƒ ๋ฐ ๋ฐฉ๋ฒ•: 1998๋…„ 3์›”๋ถ€ํ„ฐ 2008๋…„ 2์›”๊นŒ์ง€ ์‚ผ์„ฑ์„œ์šธ๋ณ‘์› ๊ฑด๊ฐ•์˜ํ•™์„ผํ„ฐ์—์„œ ๊ฑด๊ฐ•๊ฒ€์ง„ ํ”„๋กœ๊ทธ๋žจ์˜ ์ผ๋ถ€๋กœ ์‹œํ–‰๋œ PET๊ณผ PET/CT ๊ฒ€์‚ฌ์ž ์ค‘ 1๋…„ ์ด์ƒ ์ถ”์ ๊ด€์ฐฐ์ด ์ด๋ฃจ์–ด์ง„ 5091๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ํŒ๋… ์œ ํ˜•์„ ์กฐ์‚ฌํ•˜๊ณ  ํŒ๋… ์ƒ ๋ช…ํ™•ํ•œ ๊ฒฐ๋ก ์„ ๋‚ด๊ธฐ ์–ด๋ ค์›Œ ์ถ”๊ฐ€ ๊ฒ€์‚ฌ๋ฅผ ๊ถŒ๊ณ ํ•œ ๊ฒฝ์šฐ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. PET๊ณผ PET/CT ์‹œํ–‰ ํ›„ 1๋…„ ์ด๋‚ด์— ์•”์ด ํ™•์ง„ ๋œ ๊ฒฝ์šฐ๋ฅผ ์กฐ์‚ฌํ•˜์—ฌ ํŒ๋… ๊ฒฐ๊ณผ์™€ ๋น„๊ตํ•˜๊ณ  PET๊ณผ PET/CT์˜ ๋ฏผ๊ฐ๋„์™€ ํŠน์ด๋„๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ: PET ๋˜๋Š” PET/CT ๊ฒ€์‚ฌ ์‹œํ–‰ ํ›„ 1๋…„ ์ด๋‚ด์— ์•”์„ ์ง„๋‹จ ๋ฐ›์€ ๊ฒฝ์šฐ๋Š” ์ด 86๊ฑด์œผ๋กœ ์ „์ฒด ์กฐ์‚ฌ ๋Œ€์ƒ์˜ 1.7%(86/5091)์˜€๋‹ค. PET๊ณผ PET/CT ๊ฒ€์‚ฌ๋ฅผ ํ•ฉ์นœ ์ „์ฒด๊ฒ€์‚ฌ์˜ ๋ฏผ๊ฐ๋„๋Š” 48.8%์˜€์œผ๋ฉฐ ํŠน์ด๋„๋Š” 81.1%์˜€๋‹ค. PET ๋‹จ๋…๊ฒ€์‚ฌ์˜ ๋ฏผ๊ฐ๋„์™€ ํŠน์ด๋„๋Š” ๊ฐ๊ฐ 46.2%, 81.4% ์˜€์œผ๋ฉฐ, PET/CT ๋‹จ๋…๊ฒ€์‚ฌ์˜ ๋ฏผ๊ฐ๋„์™€ ํŠน์ด๋„๋Š” ๊ฐ๊ฐ 75.0%, 78.5%์˜€๋‹ค. ์ด 86๊ฑด์˜ ์•” ์ค‘ 11๊ฑด์€ ์ผ๋ฐ˜์ ์ธ ๊ฑด๊ฐ•๊ฒ€์ง„์œผ๋กœ๋Š” ๋ฐœ๊ฒฌํ•˜์ง€ ๋ชปํ•˜์˜€์œผ๋‚˜ PET๊ณผ PET/CT๋กœ ๋ฐœ๊ฒฌ๋˜์—ˆ๋‹ค. ํŒ๋…์—์„œ ์•”์ด ์˜์‹ฌ๋˜์—ˆ๋˜ ๊ฒฝ์šฐ์™€ ํŒ๋…์—์„œ ์•”์ด ์˜์‹ฌ๋˜์ง€ ์•Š์•˜๋˜ ๊ฒฝ์šฐ๋ฅผ ๋น„๊ตํ•˜์—ฌ ๋ณด์•˜์œผ๋‚˜ ์•” ๋ถ€์œ„, ์กฐ์งํ•™์  ์ง„๋‹จ, ์•” ๋ณ‘๊ธฐ ๋“ฑ์—์„œ ๋‘ ๊ตฐ ์‚ฌ์ด์— ํ†ต๊ณ„ํ•™์ ์œผ๋กœ ์œ ์˜ํ•œ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค. PET ๊ณผ PET/CT ์ƒ ์–‘์„ฑ ํ˜น์€ ์•…์„ฑ์˜ ์˜๋ฏธ ์žˆ๋Š” ๋ณ‘๋ณ€์ด ์˜์‹ฌ๋˜๊ฑฐ๋‚˜ ์–‘์„ฑ ๋ฐ ์•…์„ฑ์„ ๊ตฌ๋ถ„ํ•˜๊ธฐ ์–ด๋ ค์›Œ ์ถ”๊ฐ€ ๊ฒ€์‚ฌ๋ฅผ ๊ถŒ๊ณ ํ•œ ๊ฒฝ์šฐ๋Š” ์ „์ฒด์˜ 19.3%(981/5091) ์˜€๋‹ค. ์ด์ค‘์—์„œ ๋‘๊ฒฝ๋ถ€ ๋ฐ ์ƒ๋ถ€ ์œ„์žฅ๊ด€ ๋ถ€์œ„์— ๋Œ€ํ•œ ์ถ”๊ฐ€ ๊ฒ€์‚ฌ๋ฅผ ๊ถŒ๊ณ ํ•œ ๊ฒฝ์šฐ๊ฐ€ ๊ฐ€์žฅ ๋งŽ์•˜๋‹ค. ๊ฒฐ๋ก : PET๊ณผ PET/CT์˜ ์˜ฌ๋ฐ”๋ฅธ ์‚ฌ์šฉ์„ ์œ„ํ•ด์„œ๋Š” ๊ฒ€์‚ฌ์— ๋Œ€ํ•œ ์ถฉ๋ถ„ํ•œ ์ดํ•ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์˜๋ฃŒ์ธ ๋ฐ ์ˆ˜์ง„์ž๊ฐ€ ํ˜„๋ช…ํ•œ ์„ ํƒ์„ ํ•˜๋„๋ก ํ•˜์—ฌ์•ผ ํ•  ๊ฒƒ์ด๋‹ค. [์˜๋ฌธ]Objective: We retrospectively investigated the diagnostic performance of 18F-fluorodeoxyglucose positron emission tomography (PET) and PET/CT for cancer detection in asymptomatic health-check examinees. Materials and Methods: This study consisted of 5091 PET or PET/CT conducted as part of annual health examination at one hospital from March 1998 to February 2008. To analyze the incidence of cancers, medical records of the subjects were thoroughly reviewed for a follow-up period of one year. The patterns of formal readings of PET and PET/CT were analyzed to assess the sensitivity and specificity for cancer detection. The stage and histopathology of the cancers were evaluated in relation to the results of PET. Results: Eighty-six cancers (1.7%) were diagnosed within one year after PET or PET/CT. When PET and PET/CT results were combined, the sensitivity was 48.8% and specificity was 81.1% for cancer detection. PET only had a sensitivity of 46.2% and a specificity of 81.4%, and PET/CT only had a sensitivity of 75.0% and a specificity of 78.5% respectively. Eleven cancers were diagnosed only PET or PET/CT. There were no significant differences in cancer site, stage and histopathology between PET positive and PET negative cancers. In 19.3% of formal readings of PET and PET/CT, further evaluation to exclude malignancy or significant disease was recommended. Head and neck area and upper gastrointestinal tract were commonly recommended sites for further evaluation. Conclusions: More experience and further investigation are needed to overcome limitations of PET and PET/CT for cancer screening.ope

    ์ถฉ๋‚จ ์—ฌ์„ฑ๋†์–ด์—…์ธ ๋ณต์ง€๋ฅผ ์œ„ํ•œ ํ–‰๋ณต๋ฐ”์šฐ์ฒ˜ ์‹คํƒœ๋ถ„์„๊ณผ ์ •์ฑ…๊ณผ์ œ

    No full text
    ๋ณธ ์—ฐ๊ตฌ๋Š” ์—ฌ์„ฑ๋†์–ด์—…์ธ์˜ ์‚ถ์˜ ์งˆ ํ–ฅ์ƒ์„ ์œ„ํ•œ ๋ฌธํ™”ยท๋ณต์ง€์„œ๋น„์Šค์ธ ํ–‰๋ณต๋ฐ”์šฐ์ฒ˜ ์‚ฌ์—…์˜ ์ถ”์ง„ ์‹คํƒœ ๋ถ„์„์„ ํ†ตํ•ด ์Ÿ์ ์„ ๋„์ถœํ•˜๊ณ  ๊ฐœ์„ ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•˜๋Š”๋ฐ ๋ชฉ์ ์ด ์žˆ๋‹ค. ๋˜ํ•œ ์—ฌ์„ฑ๋†์–ด์—…์ธ ๋ณต์ง€์— ๋Œ€ํ•ด ๊ตญ๊ฐ€ ๋ฐ ์ง€์ž์ฒด ๊ณ„ํš, ์—ฐ๊ตฌ, ์‚ฌ์—…์ถ”์ง„ํ˜„ํ™ฉ ๋“ฑ์„ ๊ณ ์ฐฐํ•˜์—ฌ ์—ฌ์„ฑ๋†์–ด์—…์ธ ๋ณต์ง€์ฐจ์›์— ๋Œ€ํ•œ ๋…ผ์˜๋ฅผ ์ œ์‹œํ•˜๋Š”๋ฐ ๋ชฉ์ ์ด ์žˆ๋‹ค.์ œ1์žฅ ์„œ๋ก  1 1. ์—ฐ๊ตฌ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 1) ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ 1 2) ์—ฐ๊ตฌ ๋ชฉ์  4 2. ์—ฐ๊ตฌ๋ฒ”์œ„ ๋ฐ ๋‚ด์šฉ 5 1) ์—ฐ๊ตฌ์˜ ๋‚ด์šฉ์  ๋ฒ”์œ„ 5 2) ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 5 ์ œ2์žฅ ์ •์ฑ…์˜ ์ดํ•ด ๋ฐ ๊ณ ์ฐฐ 7 1. ์—ฌ์„ฑ๋†์–ด์—…์ธ ๋ณต์ง€์˜ ๊ณ ์ฐฐ 7 1) ์—ฌ์„ฑ๋†์–ด์—…์ธ ๋ณต์ง€ ๊ณ„ํš ๊ณ ์ฐฐ 7 2) ์ถฉ๋‚จ ์—ฌ์„ฑ๋†์—…์ธ ๋ณต์ง€ ๊ด€๋ จ ์—ฐ๊ตฌ ๊ณ ์ฐฐ 12 3) ์ถฉ๋‚จ 2017๋…„ ์‚ฌ์—… ์ถ”์ง„ํ˜„ํ™ฉ ๊ณ ์ฐฐ 16 4) ์†Œ๊ฒฐ 21 2. ๋ฐ”์šฐ์ฒ˜ ์ •์ฑ… ๊ณ ์ฐฐ 24 1) ๋ฌธํ™”๋ฐ”์šฐ์ฒ˜ ์ •์ฑ…์˜ ์ดํ•ด 24 2) ํ–‰๋ณต๋ฐ”์šฐ์ฒ˜ ์ •์ฑ…์˜ ์ดํ•ด 29 3) ์†Œ๊ฒฐ 33 ์ œ3์žฅ ํ–‰๋ณต๋ฐ”์šฐ์ฒ˜ ์ •์ฑ…์˜ ์ง€์นจ ๋ถ„์„ 35 1. ์ถฉ์ฒญ๋‚จ๋„ ํ–‰๋ณต๋ฐ”์šฐ์ฒ˜ ์ •์ฑ… ์ง€์นจ ํ˜„ํ™ฉ 35 1) ๋ชฉ์  ๋ฐ ๋ฐฉํ–ฅ 35 2) ์ •์ฑ…๋Œ€์ƒ 35 3) ์˜ˆ์‚ฐ ๋ฐ ์‚ฌ์—…๋Ÿ‰ 36 4) ์‚ฌ์šฉ์ฒ˜ 38 5) ์‚ฌ์—…์ ˆ์ฐจ 38 6) ํ™๋ณด 39 2. ํƒ€ ์ง€์ž์ฒด ํ–‰๋ณต๋ฐ”์šฐ์ฒ˜ ์ถ”์ง„ํ˜„ํ™ฉ 40 1) ๋ชฉ์  ๋ฐ ์‚ฌ์—…์‹œํ–‰ 40 2) ์‚ฌ์—…๋ช… ๋ฐ ์ถ”์ง„์‹œ๊ธฐ 40 3) ์ •์ฑ…๋Œ€์ƒ 41 4) ์˜ˆ์‚ฐ ๋ฐ ์‚ฌ์—…๋Ÿ‰ 43 5) ์‚ฌ์šฉ์ฒ˜ 44 6) ์‚ฌ์—…์ ˆ์ฐจ ๋ฐ ์ถ”์ง„์ฒด๊ณ„ 46 7) ์‹ ์ฒญ๊ธฐ๊ฐ„ 46 8) ๋ณ€๊ฒฝ์‚ฌํ•ญ ๋ฐ ํŠน์ด์‚ฌํ•ญ 47 9) ์ข…ํ•ฉ 48 ์ œ4์žฅ ํ–‰๋ณต๋ฐ”์šฐ์ฒ˜ ์šด์˜์‹คํƒœ ๋ถ„์„ 51 1. ์ถฉ์ฒญ๋‚จ๋„ ํ–‰๋ณต๋ฐ”์šฐ์ฒ˜ ์šด์˜์‹คํƒœ 51 1) ์ถ”์ง„๋‚ด์šฉ 51 2) ์ถฉ๋‚จ ํ–‰๋ณต๋ฐ”์šฐ์ฒ˜ ์‚ฌ์—…๋Ÿ‰ ๊ณ„ํš ๋ฐ ์˜ˆ์‚ฐ ์ง€์› 52 3) ๊ฐ€์ž…ํ˜„ํ™ฉ 54 4) ์‚ฌ์—…์˜ ๋ฌธ์ œ์  55 5) ๊ฐœ์„ ์‚ฌํ•ญ 56 2. ํƒ€ ์ง€์ž์ฒด ํ–‰๋ณต๋ฐ”์šฐ์ฒ˜ ์šด์˜์‹คํƒœ 57 1) ์ถฉ์ฒญ๋ถ๋„ ํ–‰๋ณต๋ฐ”์šฐ์ฒ˜ ์šด์˜์‹คํƒœ 57 2) ์ „๋ผ๋ถ๋„ ํ–‰๋ณต๋ฐ”์šฐ์ฒ˜ ์ƒ์ƒ์นด๋“œ ์šด์˜์‹คํƒœ 61 3. ์†Œ๊ฒฐ 70 ์ œ5์žฅ ์ˆ˜์š”์กฐ์‚ฌ 71 1. ์„ค๋ฌธ์กฐ์‚ฌ 71 1) ์กฐ์‚ฌ ๊ฐœ์š” 71 2) ์—ฌ์„ฑ๋†์–ด์—…์ธ ๋ณต์ง€ ์˜์‹ 73 3) ํ–‰๋ณต๋ฐ”์šฐ์ฒ˜ ์ •์ฑ… ์˜์‹ 77 4) ์†Œ๊ฒฐ 82 2. ์ธํ„ฐ๋ทฐ์กฐ์‚ฌ 84 1) ์กฐ์‚ฌ ๊ฐœ์š” 84 2) ์—ฌ์„ฑ๋†์–ด์—…์ธ ๋ณต์ง€ ์˜์‹ ์ธํ„ฐ๋ทฐ ๊ฒฐ๊ณผ 85 3) ํ–‰๋ณต๋ฐ”์šฐ์ฒ˜ ์ •์ฑ… ์˜์‹ ์ธํ„ฐ๋ทฐ ๊ฒฐ๊ณผ 86 ์ œ6์žฅ ๊ฒฐ๋ก  ๋ฐ ์ •์ฑ…์ œ์–ธ 89 1. ์Ÿ์  ๋„์ถœ 89 1) ์—ฌ์„ฑ๋†์–ด์—…์ธ ๋ณต์ง€ ์ฐจ์›์—์„œ์˜ ์Ÿ์  89 2) ํ–‰๋ณต๋ฐ”์šฐ์ฒ˜ ์ •์ฑ… ์ถ”์ง„ ์ฐจ์›์—์„œ์˜ ์Ÿ์  89 2. ์ •์ฑ…์ œ์–ธ 90 1) ์—ฌ์„ฑ๋†์–ด์—…์ธ ๋ณต์ง€ ์ฐจ์› 90 2) ํ–‰๋ณต๋ฐ”์šฐ์ฒ˜ ์ •์ฑ… ์ถ”์ง„ ์ฐจ์› 93 ๋ถ€๋ก1. ๋†์–ด์—…์ธ ๋ฒ”์œ„ ๋ฐ ๊ธฐ์ค€ 100 ๋ถ€๋ก2. ์„ค๋ฌธ์กฐ์‚ฌ 10

    Macroencapsulation using VEGF-releasing PCL scaffolds for islet transplantation

    No full text
    Master์ž„์ƒ์ ์œผ๋กœ ์ œ 1ํ˜• ๋‹น๋‡จ๋ณ‘ ์น˜๋ฃŒ๋ฅผ ์œ„ํ•ด ์ฃผ๊ธฐ์ ์ธ ์ธ์Š๋ฆฐ ํˆฌ์—ฌ ๋Œ€์‹  ์ทŒ๋„ ์„ธํฌ ์ด์‹์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ด๋ค„์ง€๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ๊ธ‰์„ฑํ˜ˆ์•ก๋งค๊ฐœ์„ฑ ๋ฉด์—ญ๋ฐ˜์‘์œผ๋กœ ์ธํ•ด ๊ฐ„๋ฌธ๋งฅ์— ์ด์‹ํ•œ ์ทŒ๋„ ์„ธํฌ์˜ 60-70% ๊ฐ€ ์†์ƒ์„ ์ž…๊ฑฐ๋‚˜ ์ฃฝ๊ฒŒ ๋œ๋‹ค. ์ด์™€ ๋”๋ถˆ์–ด ๊ฐ„๋ฌธ๋งฅ์— ํ˜ˆ์ „์ฆ์ด ๋ฐœ์ƒํ•˜์—ฌ ์—ฌ๋Ÿฌ ํ•ฉ๋ณ‘์ฆ์ด ์ผ์–ด๋‚  ์œ„ํ—˜์„ฑ์ด ํฐ ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์ด๋กœ ์ธํ•ด ์ทŒ๋„ ์„ธํฌ ์ด์‹์˜ ์•ˆ์ •์„ฑ๊ณผ ํšจ์œจ์„ ๋†’์ด๊ณ ์ž ๊ธฐ์กด ์ด์‹ ๋ถ€์œ„์ธ ๊ฐ„๋ฌธ๋งฅ์ด ์•„๋‹Œ ํ”ผํ•˜๋‚˜ ๊ทผ์œก, ์žฅ๊ฐ„๋ง‰ ๋“ฑ๊ณผ ๊ฐ™์€ ๋Œ€์ฒด ์ด์‹ ๋ถ€์œ„์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ์ด ์ค‘ ํ”ผํ•˜ ์ด์‹์˜ ๊ฒฝ์šฐ, ์ˆ˜์ˆ ์ด ๋น„๊ต์  ์‰ฌ์šฐ๋ฉฐ ์ด์‹ํ•  ์ˆ˜ ์žˆ๋Š” ๊ณต๊ฐ„์ด ๋„“๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ํ•ฉ๋ณ‘์ฆ์ด ๋ฐœ์ƒํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์ ๊ณ  ์ด์‹ ํ›„ ๋ฌธ์ œ ๋ฐœ์ƒ์‹œ ์‰ฝ๊ฒŒ ์ œ๊ฑฐํ•  ์ˆ˜ ์žˆ๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ํ”ผํ•˜์˜ ํŠน์„ฑ์ƒ ํ˜ˆ๊ด€ ๋ถ„ํฌ ์ •๋„๊ฐ€ ์ ๊ณ  ์™ธ๋ ฅ์— ์‰ฝ๊ฒŒ ๋…ธ์ถœ๋˜์–ด ์ด์‹ ํšจ์œจ์ด ๋–จ์–ด์ง€๋Š” ํ•œ๊ณ„์ ์ด ์กด์žฌํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ํ”ผํ•˜์— ์ทŒ๋„ ์„ธํฌ๋ฅผ ์ด์‹ํ•  ์‹œ ์™ธ๋ ฅ์œผ๋กœ๋ถ€ํ„ฐ ์ทŒ๋„ ์„ธํฌ๋ฅผ ๋ณดํ˜ธํ•จ๊ณผ ๋™์‹œ์— ํ˜ˆ๊ด€ํ˜•์„ฑ์„ ๋•๋Š” ํ”ผ๋ง‰ํ™” ์‹œ์Šคํ…œ์ด ํ•„์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์พŒ์† ์กฐํ˜•๊ธฐ์ˆ ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋‹ค์ถ• ์ ์ธต ์‹œ์Šคํ…œ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ทŒ๋„ ์„ธํฌ์˜ ํ”ผํ•˜ ์ด์‹์— ์ ํ•ฉํ•œ ์ธ๊ณต ์ง€์ง€์ฒด๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ด์™€ ๋™์‹œ์— ๊ธฐ์กด์— VEGF๊ฐ€ ์ทŒ๋„ ์„ธํฌ์˜ ์ดˆ๊ธฐ ์ƒ์กด์œจ๊ณผ ํ˜ˆ๊ด€์œ ๋„๋ฅผ ์ด‰์ง„ํ•œ๋‹ค๋Š” ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ VEGF ๋ฐฉ์ถœ ์‹œ์Šคํ…œ์„ ๋„์ž…ํ•˜์—ฌ ์ทŒ๋„ ์„ธํฌ์˜ ํ”ผํ•˜ ์ด์‹ ์‹œ ์ทŒ๋„ ์„ธํฌ ์ƒ์กด์œจ๊ณผ ๊ธฐ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•œ ๊ฑฐ๋Œ€ ํ”ผ๋ง‰ํ™” ๊ธฐ์ˆ ์„ ํ™•๋ฆฝํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. VEGF ๋ฐฉ์ถœ ์ธ๊ณต ์ง€์ง€์ฒด๋ฅผ ๊ฐœ๋ฐœํ•œ ํ›„, ์ž„์ƒ์ ์œผ๋กœ ์ทŒ๋„ ์„ธํฌ ์ด์‹์— ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด ์ƒ๋ถ„ํ•ด์„ฑ ๋ฐ ๋…์„ฑ์— ๋Œ€ํ•œ ๊ฒ€์ฆ์„ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ ์ธ๊ณต ์ง€์ง€์ฒด์˜ ์‚ฐ์†Œ ํˆฌ๊ณผ๋„ ์ปดํ“จํ„ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ฃผ์ž…๋˜๋Š” ์ทŒ๋„ ์„ธํฌ์˜ ์ ์ • ์–‘์„ ๊ฒฐ์ •ํ•˜์˜€๋‹ค. ์ด์™€ ๋”๋ถˆ์–ด ๋™๋ฌผ์‹คํ—˜์„ ํ†ตํ•ด ์ธ๊ณต ์ง€์ง€์ฒด ์ฃผ๋ณ€์— ํ˜ˆ๊ด€ํ˜•์„ฑ ์ •๋„๋ฅผ ํŒŒ์•…ํ•˜์—ฌ VEGF ์ „๋‹ฌ ์‹œ์Šคํ…œ์ด ํšจ๊ณผ๊ฐ€ ์žˆ๋Š” ์ง€๋ฅผ ํŒŒ์•…ํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ, ์‹ค์ œ ๋งˆ์šฐ์Šค ์ทŒ๋„ ์„ธํฌ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฑฐ๋Œ€ ํ”ผ๋ง‰ํ™” ๋œ ์ทŒ๋„ ์„ธํฌ์˜ ์ƒ์กด์œจ ๋ฐ ๊ธฐ๋Šฅ ํ‰๊ฐ€๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋‹น๋‡จ๋ณ‘ ๋™๋ฌผ ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ์ทŒ๋„ ์„ธํฌ์˜ ํ”ผํ•˜ ์ด์‹์„ ์œ„ํ•œ ์ธ๊ณต ์ง€์ง€์ฒด์˜ ์‘์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค.As clinical approach for type 1 diabetes, islet transplantation as cell-based therapy for type 1 diabetes is promising to eliminate the need for exogenous insulin therapy. However, in case of intrahepatic islet transplantation, 60โ€“70% of transplanted islets die during the first few hours or days after transplantation because of inflammatory reaction called IBMIR(instant blood-mediated inflammatory reaction). In addition, as transplanted islets blocked the portal vein, it can be induced many complications like liver thrombosis. Therefore, extrahepatic sites such as omentum, kidney capsule, intramuscular and subcutaneous spaces have been researched to find an ideal transplantation site for islet. Especially, subcutaneous site among alternative candidates has been strongly suggested for clinical trial. The site has the advantages of safety with minimal invasion and ease in transplanting and monitoring the islets. And life-threatening complications would not be expected to result from this procedure. On the other hand, the site could be easily induced hypoxia and has poor vascularization potential. Moreover, the transplanted islets at subcutaneous site could be easily spread over and absorbed in a body of recipient. Therefore, there are needs to develop platform to induce rapid revascularization and to prevent islet from scattering around the body for islet subcutaneous transplantation. In our study, we developed membrane-typed scaffolds based on RP technology to overcome the limitations of subcutaneous transplantation. In addition, on the basis of researches which have investigated to increase the efficiency of transplanted islets by applying various angiogenesis factors, we developed VEGF-releasing scaffolds for improving islet survival and function at subcutaneous transplantation. And we confirmed the effects of scaffolds as platform for islet transplantation

    ์ถฉ๋‚จํ•ด์–‘์ˆ˜์‚ฐํฌ๋Ÿผ(2์ฐจ)

    No full text
    โ—‡ ์ถฉ๋‚จ๋„ ํ•ด์–‘์ˆ˜์‚ฐ์˜ ๋ฏธ๋ž˜ ๋ฐœ์ „์ƒ์„ ์ •๋ฆฝํ•˜๊ณ  ๋„๋ฏผ์—๊ฒŒ ์‹ค์งˆ์ ์ธ ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ๋Š” ์ถฉ๋‚จ ํ•ด์–‘์ˆ˜์‚ฐ ์ •์ฑ…๋ฐฉํ–ฅ ์ˆ˜๋ฆฝ์„ ํ•˜๊ธฐ ์œ„ํ•จ โ–ก ํฌ๋Ÿผ ๊ฐœ์š” โ ์ผ ์‹œ : 2016. 10. 26.(์ˆ˜) 14:00~17:00 โ ์žฅ ์†Œ : ์ถฉ๋‚จ์—ฐ๊ตฌ์› 1์ธต ํšŒ์˜์‹ค โ ์ฐธ ์„ : ์•ฝ 20 - ํฌ๋Ÿผ ์œ„์›, ์ถฉ๋‚จ๋„ ํ•ด์–‘์ˆ˜์‚ฐ๊ตญ ๊ด€๊ณ„์ž, ๋ฐœ์ œ์ž, ์ดˆ์ฒญํ† ๋ก ์ž ๋“ฑ โ ์ฃผ ์ œ : ์ถฉ์ฒญ๋‚จ๋„ ์–ด์ดŒ์–ดํ•ญ ๋ฐœ์ „๋ฐฉ์•ˆ1. ํ•œ๊ตญ ์—ญ์‚ฌ์–ดํ•ญ ๊ฐœ์š” 2. ์–ด์ดŒ.์–ดํ•ญ๊ฐœ๋ฐœ ์ •์ฑ…์˜ ์ดํ•ด 3. ์–ดํ•ญ๋ฆฌ๋ชจ๋ธ๋ง ์‚ฌ์—… 4. ๋ฆฌ์‚ฌ์ดํด๋ง ํ•ญ๊ตฌ ์†Œ๊ฐœ 5. ์•„๋ฆ„๋‹ค์šด ํ•ด์•ˆ ๋งŒ๋“ค๊ธฐ ์‚ฌ๋ก€ ์†Œ๊ฐœ 6. ๋…น์ƒ‰์„ฑ์žฅ์„ ๊ณ ๋ คํ•œ ์—ฐ์•ˆ๊ฐœ๋ฐœ ๋ฐฉํ–ฅ 7. ํ–ฅํ›„ ์–ดํ•ญ๊ฐœ๋ฐœ ๊ธฐ์ˆ ์ •์ฑ… ์ œ
    corecore