2 research outputs found

    A Study on Radiomap Construction Method based on Histogram and Pearson Correlation Coefficient

    No full text
    Wi-Fi Fingerprint estimates user's location using a Radiomap, a database of measured locations and Received Signal Strength Indicator (RSSI). The Radiomap is constructed by collecting RSSI from a physical location that corresponds exactly to a predetermined Reference Point (RP). Collecting large amounts of RSSI to construct a Radiomap with high positioning accuracy requires a large number of people to accurately navigate to a given RP and repeat the RSSI measurements. RSSI measurements must be repeated at every RP for a certain period of time, which requires a high deployment cost in terms of manpower and time. In particular, complexly structured positioning environments such as department stores and conventions can be time consuming and expensive to accurately navigate to the actual RP. An intuitive way to reduce these construction costs is to collect fewer RSSIs and space out the measurement RPs. However, the method of reducing the number of measurement acquisitions causes adverse effects on the positioning accuracy due to signal noise, and the method of increasing the spacing of RP reduces the positioning resolution, which limits the ability to recognize precise positions in a localization environment with complex structures. To solve this problem, I propose a Complete Radiomap Construction Method that ensures high positioning accuracy and precision by adding Unlabeled , whose measurement location is unknown, to Mini , which collects less RSSI and wider RP spacing than before. The proposed construction method consist of RSSI Augmentation Algorithm (RAA), which adds Unlabeled to Mini via Pearson Correlation Labelling (PCL) to increase the small number of measurement, and Pearson Correlation Interpolation Algorithm (PCIA), which relocates the added Unlabeled to be close to the actual measurement location via Pearson Correlation-Nearest Neighbor (PC-NN) to narrow the wide RP gap. The proposed PCL converts the to a probability distribution by histogram and normalization to obtain information about the mean, variance, and distribution. The transformed probability distributions are analyzed for similarity using Pearson Correlation Coefficient (PCC), and the RP of Unlabeled is estimated from the most similar probability distribution. To estimate the actual measured location of Unlabeled , PC-NN relocates Unlabeled after obtaining the nearest neighbor via PCL. The Mini , which is less expensive to construct, can be constructed as a complete Radiomap with similar performance to a measured Radiomap by adding Unlabeled using the proposed construction method. To validate the feasibility of the proposed construction method, I used datasets measured at Jong-O Underground Shopping Center (Jong-O) and Myeong-Dong Station Underground Shopping Center (Myeong-Dong Station) among Seoul's underground shopping Centers. A random sample was taken from the dataset to establish Mini . RPs were removed from the rest of the data to serve as Unlabeled . To check the performance of the Complete Radiomap, I compared the accuracy of the Peak Signal to Noise Ratio (PSNR) and Deep Learning-based Wi-Fi Fingerprint models. In experiments, the PSNR of the measurement Radiomap decreases as the number of measurements decreases, while the proposed Complete Radiomap maintains 40 B and 35 B regardless of the number of measurements. In addition, the location accuracy of measurement Radiomap decreases as the number of measurements decreases, and it is impossible to recognize the location due to the high error rate when the number of measurements is less than 60 times. The Complete Radiomap converges to similar accuracy as the measurement Radiomap with a higher number of measurements by maintaining 3 m and 3.8 m in Jong-O and 4 m and 4.5 m in Myeong-Dong Station regardless of the number of measurements. At the end of the day used in the experiment, the Mini has a data size of 2,300, which is 2.5 % of the Complete Radiomap data size. The Radiomap constructed by using 2.5% RSSI measurement can be constructed with high location accuracy and precision through the proposed Radiomap construction method. This research is expected to contribute to the commercialization of Fingerprint by enabling Radiomap that are expensive to construct to be constructed at a lower cost.|Wi-Fi Fingerprint๋Š” ์ธก์ • ์œ„์น˜์™€ Received Signal Strength Indicator (RSSI)๋กœ ๊ตฌ์„ฑ๋œ ๋ฐ์ดํ„ฐ ๋ฒ ์ด์Šค์ธ ๋ผ๋””์˜ค๋งต์„ ์‚ฌ์šฉํ•˜์—ฌ ์œ„์น˜๋ฅผ ์ถ”์ •ํ•œ๋‹ค. ๋ผ๋””์˜ค๋งต์€ ๋ฏธ๋ฆฌ ์ง€์ •๋œ Reference Point (RP)์™€ ์ •ํ™•ํžˆ ๋Œ€์‘๋˜๋Š” ์‹ค์ œ ์œ„์น˜์—์„œ RSSI๋ฅผ ์ˆ˜์ง‘ํ•˜์—ฌ ๊ตฌ์ถ•ํ•œ๋‹ค. ๋†’์€ ์œ„์น˜ ์ธ์‹ ์ •ํ™•๋„๋ฅผ ๋ณด์žฅํ•˜๋Š” ๋ผ๋””์˜ค๋งต์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด RSSI๋ฅผ ๋‹ค๋Ÿ‰ ์ˆ˜์ง‘ํ•˜๋Š” ๊ฒƒ์€ ๋‹ค์ˆ˜์˜ ์‚ฌ๋žŒ์ด ์ง€์ •๋œ RP๋กœ ์ •ํ™•ํžˆ ์ด๋™ํ•˜๊ณ  ๋ชจ๋“  RP์—์„œ ์ผ์ • ์‹œ๊ฐ„ ๋™์•ˆ RSSI ์ธก์ •์„ ๋ฐ˜๋ณตํ•ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ธ์ , ์‹œ๊ฐ„์ ์œผ๋กœ ๋งŽ์€ ๊ตฌ์ถ• ๋น„์šฉ์ด ์š”๊ตฌ๋œ๋‹ค. ํŠนํžˆ, ๋ฐฑํ™”์ ๊ณผ ์ปจ๋ฒค์…˜ ๋“ฑ์˜ ๋ณต์žกํ•œ ๊ตฌ์กฐ ์ง€๋‹Œ ์ธก์œ„ ํ™˜๊ฒฝ์€ ์‹ค์ œ RP๋กœ ์ •ํ™•ํžˆ ์ด๋™ํ•˜๋Š” ๊ณผ์ •์—์„œ ๋งŽ์€ ์‹œ๊ฐ„๊ณผ ๋น„์šฉ์„ ์†Œ๋ชจํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์ถ• ๋น„์šฉ์„ ์ค„์ด๋Š” ์ง๊ด€์ ์ธ ๋ฐฉ๋ฒ•์€ RSSI์˜ ์ˆ˜์ง‘ ํšŸ์ˆ˜๋ฅผ ์ค„์ด๊ณ  ์ธก์ • RP์˜ ๊ฐ„๊ฒฉ์„ ๋„“ํžˆ๋ฉด ๋œ๋‹ค. ํ•˜์ง€๋งŒ RSSI์˜ ์ˆ˜์ง‘ ํšŸ์ˆ˜๋ฅผ ์ค„์ด๋Š” ๋ฐฉ๋ฒ•์€ ์‹ ํ˜ธ ๋…ธ์ด์ฆˆ๋กœ ์ธํ•œ ์ธก์œ„ ์ •ํ™•๋„์˜ ์•…์˜ํ–ฅ์„ ์ผ์œผํ‚ค๊ณ  RP์˜ ๊ฐ„๊ฒฉ์„ ๋„“์ด๋Š” ๋ฐฉ๋ฒ•์€ ์ธก์œ„ ๋ถ„ํ•ด๋Šฅ์ด ๊ฐ์†Œํ•˜์—ฌ ๋ณต์žกํ•œ ๊ตฌ์กฐ์˜ ์ธก์œ„ ํ™˜๊ฒฝ์—์„œ ์ •๋ฐ€ํ•œ ์œ„์น˜ ์ธ์‹์— ๋Œ€ํ•œ ํ•œ๊ณ„๊ฐ€ ์กด์žฌํ•œ๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” RSSI ์ˆ˜์ง‘์„ ๊ธฐ์กด ๋Œ€๋น„ ์ ๊ฒŒ ํ•˜๋ฉด์„œ RP ๊ฐ„๊ฒฉ์„ ๋„“๊ฒŒ ์ˆ˜์ง‘ํ•˜๋Š” Mini ์— ์ธก์ • ์œ„์น˜๋ฅผ ๋ชจ๋ฅด๋Š” Unlabeled ์„ ์ถ”๊ฐ€ํ•จ์œผ๋กœ์จ ๋†’์€ ์œ„์น˜ ์ •ํ™•๋„์™€ ์ •๋ฐ€๋„๋ฅผ ๋ณด์žฅํ•˜๋Š” Complete ๋ผ๋””์˜ค๋งต ๊ตฌ์ถ• ๊ธฐ๋ฒ•์— ๋Œ€ํ•ด ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๊ตฌ์ถ• ๊ธฐ๋ฒ•์€ Mini ์˜ ์ ์€ ์ˆ˜์ง‘ ํšŸ์ˆ˜๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค๊ธฐ ์œ„ํ•ด Unlabeled ๋ฅผ Pearson Correlation Labelling (PCL)์„ ํ†ตํ•ด Mini ์— ์ถ”๊ฐ€ํ•˜๋Š” RSSI Augmentation Algorithm (RAA)๊ณผ ๋„“์€ RP ๊ฐ„๊ฒฉ์„ ์ขํžˆ๊ธฐ ์œ„ํ•ด ์ถ”๊ฐ€๋œ Unlabeled ๋ฅผ Pearson Correlation-Nearest Neighbor (PC-NN)์„ ํ†ตํ•ด ์‹ค์ œ ์ธก์ • ์œ„์น˜์™€ ๊ทผ์ ‘ํ•˜๋„๋ก ์žฌ๋ฐฐ์น˜ํ•˜๋Š” Pearson Correlation Interpolation Algorithm (PCIA)์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ œ์•ˆํ•˜๋Š” PCL์€ ํ‰๊ท ๊ณผ ๋ถ„์‚ฐ, ๋ถ„ํฌ์˜ ์ •๋ณด๋ฅผ ํš๋“ํ•˜๊ธฐ ์œ„ํ•ด ๋ฅผ ํžˆ์Šคํ† ๊ทธ๋žจ๊ณผ ์ •๊ทœํ™”๋ฅผ ํ†ตํ•ด ํ™•๋ฅ ๋ถ„ํฌ๋„๋กœ ๋ณ€ํ™˜ํ•œ๋‹ค. ๋ณ€ํ™˜๋œ ํ™•๋ฅ ๋ถ„ํฌ๋„๋Š” ํ”ผ์–ด์Šจ ์ƒ๊ด€ ๊ณ„์ˆ˜ (Pearson Correlation Coefficient: PCC)๋ฅผ ํ†ตํ•ด ์œ ์‚ฌ๋„๋ฅผ ๋ถ„์„ํ•˜๊ณ  ๊ฐ€์žฅ ์œ ์‚ฌํ•œ ํ™•๋ฅ ๋ถ„ํฌ๋„๋ฅผ ํ†ตํ•ด Unlabeled ์˜ RP๋ฅผ ์ถ”์ •ํ•œ๋‹ค. PC-NN์€ Unlabeled ์˜ ์‹ค์ œ ์ธก์ • ์œ„์น˜๋ฅผ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด PCL์„ ํ†ตํ•ด ๊ทผ์ ‘ ์ด์›ƒ์œผ๋กœ ํ–ฅํ•˜๋Š” ๋ฅผ ๊ตฌํ•œ ํ›„ Unlabeled ์„ ์žฌ๋ฐฐ์น˜ํ•œ๋‹ค. ๊ตฌ์ถ• ๋น„์šฉ์ด ์ ์€ Mini ๋Š” ์ œ์•ˆํ•˜๋Š” ๊ตฌ์ถ• ๊ธฐ๋ฒ•์„ ํ†ตํ•ด Unlabeled ๋ฅผ ์ถ”๊ฐ€ํ•จ์œผ๋กœ์จ ์‹ค์ œ ์ธก์ •ํ•˜์—ฌ ๊ตฌ์ถ•ํ•œ ๋ผ๋””์˜ค๋งต๊ณผ ์œ ์‚ฌํ•œ ์„ฑ๋Šฅ์„ ๊ฐ€์ง€๋Š” Complete ๋ผ๋””์˜ค๋งต์œผ๋กœ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๊ตฌ์ถ• ๊ธฐ๋ฒ•์˜ ํƒ€๋‹น์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ์„œ์šธ ์ง€ํ•˜์ƒ๊ฐ€ ์ค‘ ์ข…์˜ค ์ง€ํ•˜์ƒ๊ฐ€ (์ข…์˜ค)์™€ ๋ช…๋™์—ญ ์ง€ํ•˜์ƒ๊ฐ€ (๋ช…๋™์—ญ)์—์„œ ์ธก์ •ํ•œ ๋ฐ์ดํ„ฐ์…‹์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋ฐ์ดํ„ฐ์…‹์—์„œ ๋ฌด์ž‘์œ„๋กœ ์ถ”์ถœํ•˜์—ฌ Mini ์„ ์„ค์ •ํ•˜์˜€๊ณ  ๋‚˜๋จธ์ง€ ๋ฐ์ดํ„ฐ์—์„œ RP๋ฅผ ์ œ๊ฑฐํ•˜์—ฌ Unlabeled ๋กœ ์‚ฌ์šฉํ•˜์˜€๋‹ค. Complete ๋ผ๋””์˜ค๋งต์˜ ์„ฑ๋Šฅ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด Peak Signal to Noise Ratio (PSNR)๊ณผ Deep Learning ๊ธฐ๋ฐ˜ Wi-Fi Fingerprint ๋ชจ๋ธ์˜ ์ •ํ™•๋„๋ฅผ ๋น„๊ตํ•˜์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, ์ผ๋ฐ˜ ๋ผ๋””์˜ค๋งต์€ ์ธก์ • ํšŸ์ˆ˜๊ฐ€ ๊ฐ์†Œํ• ์ˆ˜๋ก PSNR์ด ๊ฐ์†Œํ•˜๋Š” ๋ฐ˜๋ฉด ์ œ์•ˆํ•˜๋Š” Complete ๋ผ๋””์˜ค๋งต์€ ์ธก์ • ํšŸ์ˆ˜์— ์ƒ๊ด€ ์—†์ด 40dB์™€ 35dB๋ฅผ ์œ ์ง€ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ผ๋ฐ˜ ๋ผ๋””์˜ค๋งต์€ ์ธก์ • ํšŸ์ˆ˜๊ฐ€ ๊ฐ์†Œํ•˜๋ฉด ์œ„์น˜ ์ •ํ™•๋„๊ฐ€ ๊ฐ์†Œํ•˜๊ณ  ์ธก์ • ํšŸ์ˆ˜๊ฐ€ 60ํšŒ ๋ฏธ๋งŒ์ผ ๊ฒฝ์šฐ ๋†’์€ ์˜ค์ฐจ์œจ๋กœ ์ธํ•ด ์œ„์น˜ ์ธ์‹์ด ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค. Complete ๋ผ๋””์˜ค๋งต์€ ์ธก์ • ํšŸ์ˆ˜๊ฐ€ ์ƒ๊ด€ ์—†์ด ์ข…์˜ค๋Š” 3m์™€ 3.8m๋ฅผ ์œ ์ง€ํ•˜๊ณ  ๋ช…๋™์—ญ์€ 4m์™€ 4.5m๋ฅผ ์œ ์ง€ํ•˜์—ฌ ์ธก์ • ํšŸ์ˆ˜๊ฐ€ ๋†’์€ ์ผ๋ฐ˜ ๋ผ๋””์˜ค๋งต์˜ ์ •ํ™•๋„์™€ ์œ ์‚ฌํ•˜๊ฒŒ ์ˆ˜๋ ดํ•œ๋‹ค. ์‹คํ—˜์—์„œ ์‚ฌ์šฉํ•œ ์ข…์˜ค๋ฅผ ๊ธฐ์ค€์œผ๋กœ Mini ์˜ ๋ฐ์ดํ„ฐ ํฌ๊ธฐ๋Š” 2,300์œผ๋กœ Complete ๋ผ๋””์˜ค๋งต ๋ฐ์ดํ„ฐ ํฌ๊ธฐ์˜ 2.5%์ด๋‹ค. RSSI ์ธก์ •์„ 2.5%ํ•˜์—ฌ ๊ตฌ์ถ•ํ•œ ์€ ์ œ์•ˆํ•˜๋Š” ๋ผ๋””์˜ค๋งต ๊ตฌ์ถ• ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ๋†’์€ ์œ„์น˜ ์ •ํ™•๋„์™€ ์ •๋ฐ€๋„๋ฅผ ๊ฐ€์ง„ ๋ผ๋””์˜ค๋งต์œผ๋กœ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ตฌ์ถ• ๋น„์šฉ์ด ๋งŽ์ด ๋“œ๋Š” ๋ผ๋””์˜ค๋งต์„ ์ ์€ ๋น„์šฉ์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ์–ด Fingerprint ์ƒ์šฉํ™”์— ๊ธฐ์—ฌํ•  ๊ฒƒ์œผ๋กœ ํŒ๋‹จํ•œ๋‹ค.1. ์„œ๋ก  1 2. ๊ด€๋ จ์ด๋ก  6 2.1 ๋ผ๋””์˜ค๋งต ๊ตฌ์ถ• 6 2.2 ํ™•๋ฅ ๋ถ„ํฌ๋„ ๊ธฐ๋ฐ˜ ์œ„์น˜ ์ธ์‹ 10 2.3 Deep Learning ๊ธฐ๋ฐ˜ Wi-Fi Fingerprint 12 3. ์ œ์•ˆํ•˜๋Š” ๋ผ๋””์˜ค๋งต ๊ตฌ์ถ• ๊ธฐ๋ฒ• 14 3.1 Complete ๋ผ๋””์˜ค๋งต ๊ตฌ์ถ• ๊ธฐ๋ฒ• 14 3.2 ์ œ์•ˆํ•˜๋Š” RSSI Augmentation Algorithm 16 3.3 ์ œ์•ˆํ•˜๋Š” Pearson Correlation Interpolation Algorithm 22 4. ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ 27 4.1 ์‹คํ—˜ ํ™˜๊ฒฝ 27 4.2 ์‹คํ—˜ ๊ฒฐ๊ณผ 31 4.2.1 ์ œ์•ˆํ•˜๋Š” Pearson Correlation Labelling์˜ ์„ฑ๋Šฅ 31 4.2.2 ์ œ์•ˆํ•˜๋Š” ๋ผ๋””์˜ค๋งต ๊ตฌ์ถ• ๊ธฐ๋ฒ•์˜ ์„ฑ๋Šฅ 33 5. ๊ฒฐ๋ก  40 ์ฐธ๊ณ ๋ฌธํ—Œ 41Maste
    corecore