3 research outputs found
νΌλ³΅μν¬ λ° νλμ€ μ½μ΄λ μν¬ μ©μ μμ λ°μνλ ν λ° 6κ° ν¬λ‘¬ λ°μ μ κ°μ μν μ©κ°μ¬ μ±λΆ μ°κ΅¬
νμλ
Όλ¬Έ(μμ¬) -- μμΈλνκ΅λνμ : 보건λνμ ν경보건νκ³Ό, 2022. 8. μ€μΆ©μ.Welding generates welding fumes and hexavalent chromium, which are classified as Group 1 carcinogens by the International Agency for Research on Cancer (IARC). In particular, due to the generation of high hexavalent chromium and fumes in shielded metal arc welding (SMAW) and flux-cored arc welding (FCAW), they impose a severe health risk upon exposure. Thus, this study aims to estimate the welding filler material components that can reduce the generation of fumes and hexavalent chromium in SMAW and FCAW.
In the current study, nine welding rods for SMAW and eight flux-cored wires for FCAW were tested. Each type of welding was performed under uniform conditions in a fume-hood. Collected fume samples were analyzed by gravimetric analysis to calculate fume generation rate (FGR) and ion chromatography with the ultraviolet detection (IC-UV) for hexavalent chromium generation rate (HCGR). Welding filler materials were analyzed using wavelength dispersive X-ray fluorescence spectrometer (WDXRF). After performing statistical difference tests, a correlation analysis was conducted to estimate the statistical association between the generation rate and the content of filler component in the welding material in each type of welding. Based on the results of the correlation analysis, regression models were designed and then analyzed through multiple linear regression method. Finally, based on the results of correlation and multiple linear regression analyses, the component-combination formulas were designed and correlation analysis was conducted with fume generation rate and hexavalent chromium generation rate.
For nine SMAW welding rods, FGR(per welding time) was in the range of 198.0β289.3 mg/min, and HCGR(per welding time) was in the range of 5.34β7.98 mg/min. By changing the welding filler material components under the same welding conditions, the generation rate was found to be reduced by approximately 26.7% (AVG = 20%) and 24.8% (AVG = 3.4%) compared to base FGR and HCGR, respectively. In the case of eight flux-cored wires, FGR was 590.4β821.1 and HCGR was 0.34β3.31 mg/min, which could be reduced by up to 23.5% (AVG = 10%) and 89.7% (AVG = 47.1%), respectively, by changing the welding material components under the same welding conditions.
The results of correlation analysis of SMAW, with different elements as filler material, suggested a statistically significant correlation of fluorine (F), potassium (K), calcium (Ca), and sodium (Na) with FGR and chromium (Cr) and titanium (Ti) with HCGR. Whereas, in the case of FCAW, fluorine (F), potassium (K), and sodium (Na) with FGR and sodium (Na), potassium (K), silicon (Si), zirconium (Zr), and fluorine (F) with HCGR showed a statistically significant correlation.
In most multiple linear regression models, the multicollinearity problem arises due to the interference among independent variables. That is, some specific elements did not strongly contribute to the change in the value of the dependent variable, and several elements made complex contributions in the fume and hexavalent chromium generation rate. So, this study proposed eleven component-combination formulas showing statistically significant correlation with dependent variables for SMAW and ten for FCAW.
This study suggests that it is possible to reduce FGR and HCGR without affecting the performance of welding by using different components as welding materials. In order to reduce HCGR, it is recommended to reduce the FGR for SMAW and to reduce the content of hexavalent chromium in welding fumes for FCAW. Also, it is recommended to manufacture welding materials with components that can suppress oxidation of chromium and have higher electronegativity than metal chromium and chromium compounds. Thus, by considering the oxidation ability and electronegativity of the compound, HCGR can be reduced.
If welding materials with low FGR and HCGR are manufactured and widely used in the field as per the suggested change in element content presented in this study, the problem of exposure to Group 1 carcinogens is expected to be fundamentally reduced.μ©μ μμλ IARC μ§μ Group 1 λ°μλ¬Όμ§μΈ μ©μ νκ³Ό 6κ° ν¬λ‘¬μ΄ λ°μνλ©°, μ νμ°κ΅¬μ λ°λ₯΄λ©΄ μ μΈκ³μ μ½ 11,000λ§λͺ
μ κ·Όλ‘μκ° μμ
μκ° λμ μ©μ νμ λ
ΈμΆλλ€ λ°νμ§ λ° μλ€. μ΄λ¬ν μ©μ νκ³Ό 6κ° ν¬λ‘¬μ μ©μ μ’
λ₯, μ©μ 쑰건, νκ²½μν₯, μ©μ μ¬λ£ λ±μ λ€μν μμΈμ μν΄ λ°μ νΉμ±μ΄ λ€λ₯΄λ€. λ§μ μ νμ°κ΅¬λ€μ ν΅ν΄μλ μ©μ μ μ’
λ₯λ³ μ©μ ν λ° μ ν΄μΈμμ λ°μ νΉμ±μ λν΄ μ°κ΅¬λ λ° μκ³ , μ©μ μ λ₯, μ μ λ±μ μ©μ 쑰건μ λ°λΌ μ©μ νκ³Ό 6κ° ν¬λ‘¬μ λ°μμ λ³νμ λν΄ κΈ°μ ν λ° μλ€. νμ§λ§, μμ
νμ₯ λ΄μμλ μ©μ μ μ©μ μ μ±λ₯μ΄ κ°μ₯ μ€μνλ©°, μ΄λ¬ν μ©μ μ μ±λ₯ μ μ§λ₯Ό μν΄ μ©μ 쑰건μ λ³κ²½νμ§ λͺ»νλ κ²½μ°λ€λ λλ¬ μ‘΄μ¬νλ€. νμ§λ§, μ΄λ¬ν μ©μ μ¬λ£μ ννμ μ±λΆ ν¨λμ λ°λΌ λ°μλ¬Όμ§μΈ μ©μ νκ³Ό 6κ° ν¬λ‘¬μ λ°μμ΄ μ΄λ»κ² λ³νλ μ§ κΈ°μ ν μ°κ΅¬λ μ λ€. μ΄μ λ°λΌ, λ³Έ μ°κ΅¬μμλ μμ₯ μ μ μ¨μ΄ λμ νΌλ³΅μν¬ μ©μ κ³Ό νλμ€ μ½μ΄λ μν¬ μ©μ μ λμμΌλ‘ μ©μ μ¬λ£ μ±λΆμ λ¬λ¦¬νμ¬ μ μ‘°ν μ©μ μ¬λ£λ€μ μ©μ μ ν λ° 6κ° ν¬λ‘¬ λ°μλμ νκ°νμ¬ ν΅κ³μ μΆμ μ ν΅ν΄ ν, 6κ° ν¬λ‘¬ μ κ°μ μν₯μ λΌμΉλ μ©κ°μ¬ μ±λΆμ μΆμ νκ³ μ νλ€.
μ체 μ±λ₯ νκ° κΈ°μ€μ λ§μ‘±νλ νΌλ³΅μν¬ μ©μ λ΄ 9 μ ν, νλμ€ μ½μ΄λ μμ΄μ΄ 8 μ νμ λν΄ μ©μ μ’
λ₯λ³ ν΅μΌλ μ©μ 쑰건 νμμ μ©μ μ μ€μ ν, νμ ν¬μ§νλ€. ν¬μ§λ νμ μ€λ λΆμμ ν΅ν΄ ν λ°μλμ μ°μΆνκ³ , IC-UV/visλ‘ 6κ° ν¬λ‘¬ ν¨λμ, μ©μ μ¬λ£μ λν΄ XRFλ‘ μ±λΆμ λΆμνμλ€. μ©μ μ¬λ£ λ΄ κ° ννμ μ±λΆλ€μ ν¨λ, ν λ°μλ, ν μ€ 6κ° ν¬λ‘¬ ν¨λ λ° 6κ° ν¬λ‘¬ λ°μλμ μ°μΆν ν, μ΄λ€μ κΈ°μ‘΄ μ ν λλΉ κ°μ λ³νμ λν ν΅κ³μ μΌλ‘ μ μν μ°¨μ΄κ° μλμ§ κ²μ νμλ€. κ·Έ λ€, ν λ°μλ, ν μ€ 6κ° ν¬λ‘¬ ν¨λ λ° 6κ° ν¬λ‘¬ λ°μλμ κ°κ° μ’
μλ³μλ‘, μ©μ μ¬λ£ μ€ νΉμ μ±λΆ ν¨λμ λ
립λ³μλ‘ μκ΄λΆμμ ν΅ν΄ ν, 6κ° ν¬λ‘¬ λ°μμ μν₯μ λΌμΉλ μ©κ°μ¬ μ±λΆμ ν΅κ³μ μΌλ‘ μΆμ νμλ€. μκ΄λΆμ κ²°κ³Όλ₯Ό λ°νμΌλ‘, μ©κ°μ¬μ μΌμ μ΄μμ ν¨λμΌλ‘ ν¬ν¨λ μ±λΆμ λν΄ λ€μ€νκ·λΆμμ μν νκ·λͺ¨νμ μ€κ³ν΄ λΆμνμλ€. λ§μ§λ§μΌλ‘, ν΅κ³μ μ°¨μ΄λ₯Ό λ³΄μΈ μ±λΆλ€ λ° μ νμ°κ΅¬λ€μ ν΅ν΄ μ μλ μ±λΆλ€, κ°λ³μμκ° μκ΄λΆμ κ²°κ³Όμ λ€μ€νκ·λΆμ κ²°κ³Όλ€μ λ°νμΌλ‘ μ©μ μ¬λ£ λ΄ μ±λΆ λ°°ν© μμμ μ€κ³ν΄ κ° μ’
μλ³μμ μκ΄λΆμμ μ§ννμλ€.
9 μ’
λ₯μ νΌλ³΅μν¬ μ©μ μ νμ μ©μ μκ°λΉ ν λ°μλμ 198.0-289.3 mg/minμΌλ‘ κΈ°μ‘΄ λλΉ μ΅λ 26.7%, νκ· 20%μ μ κ°μ΄ κ°λ₯νλ€. μ©μ μκ°λΉ 6κ° ν¬λ‘¬ λ°μλμ 5.34~7.98 mg/minμΌλ‘ κΈ°μ‘΄ λλΉ μ΅λ 24.8%, νκ· 3.4%μ μ κ°μ΄ κ°λ₯νλ€. 8 μ’
λ₯μ νλμ€ μ½μ΄λ μν¬ μ©μ μ νμ μ©μ μκ°λΉ ν λ°μλμ 590.4~821.1 mg/minμΌλ‘ κΈ°μ‘΄ λλΉ μ΅λ 23.5%, νκ· 10.8% μ κ°μ΄, 6κ° ν¬λ‘¬ λ°μλμ κ²½μ° 0.34~3.31 mg/minμΌλ‘ κΈ°μ‘΄ λλΉ μ΅λ 89.7%, νκ· 47.1% λ°μλ μ κ°μ΄ κ°λ₯νλ€. λν, νΌλ³΅μν¬ μ©μ κ³Ό νλμ€ μ½μ΄λ μν¬ μ©μ μ¬λ£μ μμ ν¨λλ³ ν λ°μλκ³Όμ μκ΄λΆμ κ²°κ³Ό, νΌλ³΅μν¬ μ©μ μ κ²½μ° F, K Ca, Naκ° μ©μ μκ°λΉ ν λ°μλκ³Ό, Cr, Tiκ° μ©μ μκ°λΉ 6κ° ν¬λ‘¬ λ°μλκ³Ό ν΅κ³μ μΌλ‘ μ μν μμ€μΌλ‘ μκ΄μ±μ 보μ΄λ κ²μ νμΈν μ μμλ€. FCAWμ κ²½μ° F, K, Na ν¨λμ΄ μ©μ μκ°λΉ ν λ°μλκ³Ό, Na, K, Si, Zr, Fκ° μ©μ μκ°λΉ 6κ° ν¬λ‘¬ λ°μλκ³Ό ν΅κ³μ μΌλ‘ μ μν μκ΄μ±μ 보μ΄λ κ²μ νμΈν μ μμλ€. λ€μ€νκ·λΆμ κ²°κ³Όλ λλΆλΆμ νκ·λͺ¨νμμ λ
립λ³μ κ°μ κ°μμ μν λ€μ€κ³΅μ μ± λ¬Έμ κ° λμΆλμ΄ νκ·λͺ¨νμ μ ν©λκ° λ¨μ΄μ§λ κ²μΌλ‘ μΆμ λμλ€. μ΄μ λ°λΌ, λ³Έ μ°κ΅¬μμλ ν λ°μλ, ν μ€ 6κ° ν¬λ‘¬ ν¨λ, 6κ° ν¬λ‘¬ λ°μλκ³Ό ν΅κ³μ μΌλ‘ μ μν μμ€μ μκ΄μ±μ 보μ΄λ μ±λΆ λ°°ν© μμμ νΌλ³΅μν¬ μ©μ μ λν΄ 11κ°μ§, νλμ€ μ½μ΄λ μν¬ μ©μ μ λν΄ 10κ°μ§λ₯Ό μ μνμλ€.
μ’
ν©μ μΌλ‘, μ±λΆμ λ€λ₯΄κ² μ μ‘°ν μ©μ μ¬λ£λ€μ λν΄ μ±λ₯μ κ²°ν¨ μμ΄ ν λ°μλ, 6κ° ν¬λ‘¬ λ°μλμ μ κ°ν μ μλ€λ κ²μ μ¦λͺ
νμλ€. λν, νΌλ³΅μν¬ μ©μ μ κ²½μ° 6κ° ν¬λ‘¬ λ°μλμ μ κ°νκΈ° μν΄μλ ν λ°μλμ μ€μ΄λ κ²μ΄, νλμ€μ½μ΄λ μν¬ μ©μ μ κ²½μ° 6κ° ν¬λ‘¬ λ°μλμ μ€μ΄κΈ° μν΄μλ ν μ€ 6κ° ν¬λ‘¬μ ν¨λμ μ€μ΄λ κ²μ΄ μ©μ΄νλ€. λ§μ§λ§μΌλ‘, μ©μ κ° μ°νμμ©μ ν΅ν΄ λ°μλλ 6κ° ν¬λ‘¬ λ°μμ μ κ°νκΈ° μν΄ μ©μ μ¬λ£ μ μ‘° μ νν©λ¬Όλ€μ μ°νμ, μ κΈ°μμ±λ λ±μ κ³ λ €νμ¬ κΈμ ν¬λ‘¬ λ° ν¬λ‘¬ νν©λ¬Όλ³΄λ€ μ κΈ°μμ±λκ° λμ ν¬λ‘¬μ μ°νλ₯Ό μ΅μ νλ λ¬Όμ§λ€λ‘ μ©μ μ¬λ£λ₯Ό μ μ‘°νλ κ²μ κΆμ₯νλ λ°μ΄λ€. λ³Έ μ°κ΅¬μμ μ μν μμ ν¨λλ³νμ λ°λ₯Έ ν λ°μλ, 6κ° ν¬λ‘¬ λ°μλ μμ μ°Έκ³ νμ¬ ν λ°μ λ° 6κ° ν¬λ‘¬ λ°μμ΄ μ μ μ©μ μ¬λ£λ₯Ό μ μ‘°νμ¬ νμ₯μμ λ리 μ¬μ©λλ€λ©΄, κ·Όλ‘μμ 1κΈ λ°μλ¬Όμ§μ λν λ
ΈμΆ λ¬Έμ λ₯Ό κ·Όλ³Έμ μΌλ‘ κ°μ ν μ μμ κ²μΌλ‘ κΈ°λλλ λ°μ΄λ€.Abstract
1. Introduction 1
2. Materials and Methods 4
2.1. Study Subject 4
2.1.1. Welding Filler Material 4
2.1.2. Evaluation Condition 7
2.1.3. Study Procedure 9
2.2. Fume & Hexavalent Chromium Generation Rate Test 11
2.2.1. Sampling Strategy 11
2.2.2. Gravimetric Analysis 12
2.2.3. Hexavalent Chromium Analysis 13
2.2.4. Estimation of Generation Rate 14
2.3. Composition Analysis of Welding Filler Material 15
2.3.1. Sampling Strategy 15
2.3.2. Instrumental Analysis 16
2.4. Statistical Analysis 17
3. Results 19
3.1. Fume Generation Rate 19
3.2. Hexavalent Chromium Generation Rate 22
3.3. Chemical Composition of Welding Filler Material 26
3.4. Correlation Analysis by Each Component 29
3.5. Multiple Linear Regression Analysis 30
3.6. Correlation Analysis by Proposed Formula 32
4. Discussion 35
5. Conclusions 40
6. References 41
Supplementary Materials 45
Abstract in Korean 60μ