8 research outputs found

    ํ”Œ๋ผ์ฆˆ๋งˆ ์› ์ด์˜จ ์ฃผ์ž… ๊ธฐ์ˆ ์—์„œ ์‰ฌ์Šค ๋™์—ญํ•™ ๋ฐ ํ”Œ๋ผ์ฆˆ๋งˆ์˜ ํšŒ๋ณต์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    Thesis(doctor`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์›์žํ•ต๊ณตํ•™๊ณผ,2007.Docto

    ๋ณด์ƒ ํŽ„์Šค ๋ฐœ์ „๊ธฐ์˜ ํ•ด์„, ์„ค๊ณ„ ๋ฐ ๋™์ž‘ ํŠน์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์›์žํ•ต๊ณตํ•™๊ณผ,1999.Maste

    Numerical Simulation on the Formation and Pinching Plasma in X-pinch Wires on 2-D Geometry

    No full text
    ๋Œ€๊ธฐ์••์˜ ๋ฐฑ๋งŒ ๋ฐฐ ์ด์ƒ์˜ ๊ฐ•ํ•œ ์••๋ ฅ(> 1 Mbar)์ด ๋ฌผ์งˆ์— ๊ฐ€ํ•ด์ง€๋ฉด ์ค‘์„ฑ์ž…์ž๊ฐ€ ์ „๋ฆฌ๋˜์–ด ํ”Œ๋ผ์ฆˆ๋งˆ ์ƒํƒœ๋กœ ๋ณ€ํ•˜๋Š”๋ฐ, ์ด๋ฅผ ๊ณ ์—๋„ˆ์ง€๋ฐ€๋„ ํ”Œ๋ผ์ฆˆ๋งˆ๋ผ๊ณ  ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ”Œ๋ผ์ฆˆ๋งˆ๋Š” ๋ฌผ์งˆ์— ๋ ˆ์ด์ €๋ฅผ ์กฐ์‚ฌํ•˜์—ฌ ์••์ถ•ํ•˜๋Š” ๊ด€์„ฑ ์••์ถ•๊ณผ ๊ฐ•ํ•œ ํŽ„์Šค์ „๋ฅ˜๋กœ ์œ ๋„๋˜๋Š” ์ž๊ธฐ์žฅ์„ ํ™œ์šฉํ•˜๋Š” ์ž์žฅ ์••์ถ• ๋ฐฉ์‹์œผ๋กœ ๊ตฌ๋ถ„๋˜๋ฉฐ, ์ด์ค‘ ํŽ„์Šค์ „๋ฅ˜์— ์˜ํ•œ ์„ธ์„ ์˜ ๋‚ดํญ ํ˜„์ƒ(implosion)์„ ํ™œ์šฉํ•˜๋Š” ์ž์žฅ ์••์ถ•์€ ๊ด€์„ฑ ํ•ต์œตํ•ฉ(ICF, inertial confinement fusion), ๋ฐฉ์‚ฌ์„ ์›(X-์„ ), ์ค‘์„ฑ์ž์›์œผ๋กœ ๋‹ค์–‘ํ•˜๊ฒŒ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค[1]. 1990๋…„๋Œ€ ์ดˆ ๋ฏธ๊ตญ์˜ ์‚ฐ๋””์•„ ๊ตญ๋ฆฝ์—ฐ๊ตฌ์†Œ๋Š” ๊ณ ์ „์••ํŽ„์Šค์ „์›์žฅ์น˜๋ฅผ ํ†ตํ•ด 200 TW, 2 MJ์˜ ์„ธ๊ณ„๊ธฐ๋ก์˜ X-์„ ์„ ๋ฐœ์ƒ์‹œ์ผฐ์œผ๋ฉฐ, 2000๋…„ ์ดํ›„๋ถ€ํ„ฐ๋Š” ์›์ž๋ฒˆํ˜ธ๊ฐ€ ๋†’์€ ๋ฌผ์งˆ์˜ ์›ํ†ตํ˜• ์‹ค๋ฆฐ๋” ๋‚ดํญ ํ˜„์ƒ์„ ์‘์šฉํ•˜์—ฌ ํ•ต ์œตํ•ฉ์„ ๋‹ฌ์„ฑํ•˜๋Š” Maglif(Magnetized liner inertial fusion), ZPDH(Z-pinch dynamic hohlraum)์˜ ์—ฐ๊ตฌ๊ฐ€ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐœ๋…์€ ์ˆ˜์†Œํญํƒ„ ๊ฐœ๋ฐœ๊ณผ ์ง๊ฒฐ๋˜๋Š” ๊ตฐ์‚ฌ๊ณผํ•™ ๋ถ„์•ผ๋กœ ์˜ค๋Š˜๋‚  ํ•œ๋ฐ˜๋„ ํ•ต ์œ„ํ˜‘์ด ๊ณ ์กฐ๋˜๋Š” ์ƒํ™ฉ์—์„œ ๊ณ ์—๋„ˆ์ง€๋ฐ€๋„ ํ”Œ๋ผ์ฆˆ๋งˆ ์—ฐ๊ตฌ๋Š” ํ•ต ์œตํ•ฉ ํ˜„์ƒ์„ ํ™œ์šฉํ•œ ๋ฌด๊ธฐ์˜ ์œ„ํ˜‘์„ ์ดํ•ดํ•˜๊ณ  ๋Œ€๋น„ํ•˜๊ธฐ ์œ„ํ•ด์„œ ํ•„์ˆ˜์ ์ธ ๊ตฐ์‚ฌ๊ณผํ•™ ๋ถ„์•ผ๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ์„ธ์„ ์˜ ๋‚ดํญ ํ˜„์ƒ์„ ์ด์šฉํ•˜๋Š” ์—ฐ๊ตฌ ์ค‘ X์ž ํ˜•ํƒœ๋กœ ์—ฐ๊ฒฐํ•œ ์„ธ์„ ์— ๊ณ ์ „์•• ํŽ„์Šค์ „๋ฅ˜๋ฅผ ์ธ๊ฐ€ํ•˜์—ฌ ์ค‘์‹ฌ๋ถ€์˜ ๊ฐ•ํ•œ ํ”Œ๋ผ์ฆˆ๋งˆ์˜ ์••์ถ• ํ˜„์ƒ์„ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์„ ์—‘์Šค ํ•€์น˜(X-pinch)๋ผ๊ณ  ํ•œ๋‹ค. ์—‘์Šค ํ•€์น˜ ํ”Œ๋ผ์ฆˆ๋งˆ๋Š” ์งง์€ ์‹œ๊ฐ„(~ ps) ๋‚ด์— ์ค‘์•™๋ถ€์˜ ๊ณ ์˜จ, ๊ณ ๋ฐ€๋„ ์กฐ๊ฑด์„ ํ˜•์„ฑํ•จ์œผ๋กœ์จ ๊ณ  ์ถœ๋ ฅ์˜ ๋ฐฉ์‚ฌ์„  (X-์„ )์„ ๋ฐฉ์ถœ[2] ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ฌผ์งˆ๊ณผ ๋ถ€ํ•˜์˜ ๊ตฌ์กฐ๋ฅผ ๋‹ฌ๋ฆฌํ•จ์œผ๋กœ์จ ๊ณ  ์ถœ๋ ฅ์˜ X-์„ ์„ ํ•œ ๊ณณ์— ์ง‘์ค‘์‹œํ‚ค๊ฑฐ๋‚˜ ํŠน์„ฑ์„ ๋ฐ”๊ฟ€ ์ˆ˜๋„ ์žˆ๋‹ค. ๋˜ํ•œ, ์—‘์Šค ํ•€์น˜๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ์•Œ๋ ค์ง„ ์„ธ์„ ์„ ์›ํ†ตํ˜•์œผ๋กœ ๋ฐฐ์น˜ํ•˜์—ฌ ๋‚ดํญ์‹œํ‚ค๋Š” ์ œํŠธ ํ•€์น˜(Z-pinch)์— ๋น„ํ•ด ๋น„๊ต์  ์ž‘์€ ํŒŒ์›Œ์˜ ํŽ„์Šค ์ „์›์žฅ์น˜์—์„œ๋„ ์—‘์Šค์„  ๋ฐœ์ƒ๊ณผ ๊ฐ•ํ•œ ์••์ถ• ์กฐ๊ฑด์„ ํ˜•์„ฑํ•  ์ˆ˜ ์žˆ์–ด์„œ ๋Œ€ํ•™ ๊ทœ๋ชจ์˜ ์—ฐ๊ตฌ์†Œ์—์„œ ๊ณ ์—๋„ˆ์ง€ ๋ฐ€๋„ ํ”Œ๋ผ์ฆˆ๋งˆ ํ˜„์ƒ์„ ์—ฐ๊ตฌํ•˜๋Š” ๋ฐ ๋งŽ์ด ํ™œ์šฉ๋œ๋‹ค. ์—‘์Šค ํ•€์น˜์˜ ์ „์‚ฐํ•ด์„์€ ์ฃผ๋กœ ๋ฏธ๊ตญ, ์˜๊ตญ, ๋Ÿฌ์‹œ์•„ ๋“ฑ ์ผ๋ถ€ ๊ตญ๊ฐ€์—์„œ ์ด๋ฃจ์–ด์กŒ์œผ๋ฉฐ, ์ตœ๊ทผ ์ฃผ์š” ์—ฐ๊ตฌ๋กœ๋Š” 1์ฐจ์›์œผ๋กœ ํ•ด์„ํ•œ Oreshkin, V. I(2017)[3], 3์ฐจ์›์œผ๋กœ ํ•ด์„ํ•œ J. P Chittenden(2007)[4], 2์ฐจ์›์œผ๋กœ ํ•ด์„ํ•œ Ivanenkov, G. V(2008) ์—ฐ๊ตฌ[5]๊ฐ€ ์žˆ๋‹ค. ์„ธ์„  ํญ๋ฐœ๊ณผ ๊ด€๋ จ๋œ ์ˆ˜์น˜ํ•ด์„์˜ ๊ฒฝ์šฐ ์ผ๋ถ€ ๊ตญ๊ฐ€์— ์—ฐ๊ตฌ ๋…ธํ•˜์šฐ๊ฐ€ ์ง‘์ค‘๋˜์–ด ์žˆ์œผ๋ฉฐ, ์ผ๋ฐ˜์ ์ธ ์ฝ”๋“œ ์ ‘๊ทผ์ด ์–ด๋ ต๋‹ค. ์ผ๋ถ€ ๊ณต๊ฐœ ์ฝ”๋“œ(FLASH, Chicago University)์˜ ๊ฒฝ์šฐ๋„ ๋ฌผ์„ฑ์„ ๋ชจ์‚ฌํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌผ๋ฆฌ ๋ชจ๋ธ์ด ๊ณ ๋ ค๋˜์ง€ ์•Š์•„์„œ ๋‹ค์–‘ํ•œ ๋ฌผ์งˆ์— ๋”ฐ๋ฅธ ์—‘์Šค ํ•€์น˜ ํ˜„์ƒ์„ ํ•ด์„ํ•˜๋Š”๋ฐ ์ œํ•œ์ ์ด ๋งŽ๋‹ค. ์ด๋Ÿฌํ•œ ์ œํ•œ์ ๋“ค๋กœ ์ธํ•ด ๋ณธ ์—ฐ๊ตฌ๋Š” ์ƒˆ๋กœ์šด ์ž๊ธฐ์œ ์ฒด์—ญํ•™ ์ฝ”๋“œ๋ฅผ ๊ฐœ๋ฐœํ•˜๊ณ  ์—‘์Šคํ•€์น˜ ํ˜„์ƒ์„ ์ „์‚ฐ๋ชจ์‚ฌํ•จ์œผ๋กœ์จ ์ฝ”๋“œ๋ฅผ ๊ฒ€์ฆํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋จผ์ € ์ œํŠธ ํ•€์น˜(Z-pinch)๋‚˜ ์„ธ์„  ํญ๋ฐœ๊ณผ ๊ด€๋ จ๋œ ๋ฌผ๋ฆฌ ํ˜„์ƒ์„ ์ฃผ๋กœ ํ•ด์„ํ•˜๊ธฐ ์œ„ํ•ด ์˜๊ตญ ์ž„ํŽ˜๋ฆฌ์–ผ ๋Œ€ํ•™๊ต์—์„œ ๊ฐœ๋ฐœํ•œ 2์ฐจ์› (r, ฮธ) ๋ฒ„์ „์˜ ์ž๊ธฐ์œ ์ฒด์—ญํ•™์ฝ”๋“œ์ธ GORGON[6]์„ ๋ฒค์น˜ ๋งˆํ‚นํ•˜์—ฌ (r, z) ๋ฒ„์ „์œผ๋กœ ์ €ํ•ญ ์ž๊ธฐ์œ ์ฒด์—ญํ•™ ์ฝ”๋“œ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋ฌผ์„ฑ ๋ชจ๋ธ ์—†์ด ๋‹จ์ˆœ ๋‚ดํญ ํ˜„์ƒ ๋ถ„์„๋งŒ ๊ฐ€๋Šฅํ•œ ๊ณต๊ฐœ ์ฝ”๋“œ์™€ ์ฐจ๋ณ„์ ์œผ๋กœ ํ† ๋งˆ์Šค ํŽ˜๋ฅด๋ฏธ ๊ธฐ๋ฐ˜์˜ ์ƒํƒœ๋ฐฉ์ •์‹๊ณผ ๊ณ ๋ฐ€๋„ ์ƒํ™ฉ์—์„œ ์ฟจ๋กฑ ๊ฒฐํ•ฉ์„ ๊ณ ๋ คํ•œ ์ˆ˜์†ก๊ณ„์ˆ˜ ๋ชจ๋ธ[7]์„ ์ด์šฉํ•˜์—ฌ ์‹ค์ œ ์‹คํ—˜๊ณผ ๋น„๊ต ๊ฐ€๋Šฅํ•˜๋„๋ก ํ……์Šคํ… ํ”Œ๋ผ์ฆˆ๋งˆ์˜ ํŠน์„ฑ์„ ๋ชจ์‚ฌํ•˜์˜€์œผ๋ฉฐ, ์ด์˜จํ™” ํ‰ํ˜• ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์žฌ๊ฒฐํ•ฉ ๋ฐฉ์‚ฌ ์†์‹ค ๋ชจ๋ธ์„ ์ ์šฉํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ณธ ์—ฐ๊ตฌ์ง„์—์„œ ๊ฐœ๋ฐœํ•œ ์—‘์Šค ํ•€์น˜ ์žฅ์น˜๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ „์‚ฐํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜๊ณ  ์—‘์Šค ํ•€์น˜ ํ”Œ๋ผ์ฆˆ๋งˆ ๊ตฌ์กฐ์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ์ฝ”์–ด โ€“ ์ฝ”๋กœ๋‚˜, ๋งˆ์ดํฌ๋ก  Z ํ•€์น˜์˜ ํ˜•์„ฑ๊ณผ ์ถ• ๋ฐฉํ–ฅ์œผ๋กœ ํ™•์žฅ๋˜๋Š” ๋งˆ์ดํฌ๋ก  Z ํ•€์น˜ ๊ตฌ์กฐ๋ฅผ ์‹คํ—˜ ์‚ฌ์ง„๊ณผ ๋น„๊ตํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ค‘์•™๋ถ€์—์„œ ์ƒ์„ฑ๋˜๋Š” ๊ณ ์˜จ, ๊ณ ๋ฐ€๋„์˜ ์กฐ๊ฑด๊ณผ ์—ฐ๊ณ„ํ•˜์—ฌ ์ฆ๊ฐ€ํ•˜๋Š” ๋ฐฉ์‚ฌ ์†์‹ค์— ๋Œ€ํ•ด์„œ ์‚ดํŽด๋ณด์•˜๋‹ค. This paper deals with the computational work to characterize the formation and pinching of a plasma in an X-pinch configuration. A resistive magnetohydrodynamic model of a single fluid and two temperature is adopted assuming a hollow conical structure in the (r,z) domain. The model includes the thermodynamic parameter of tungsten from the corrected Thomas-Fermi EOS(equation of state), determining the average ionization charge, pressure, and internal energy. The transport coefficients, resistivity and thermal conductivity, are obtained by the corrected Lee & More model and a simple radiation loss rate by recombination process is considered in the simulation. The simulation demonstrated the formation of a core-corona plasma and intense compression process near the central region which agrees with the experimental observation in the X-pinch device at Seoul National University. In addition, it confirmed the increase in radiation loss rate with the density and temperature of the core plasma.N

    Enhanced shock wave generation via pre-breakdown acceleration using water electrolysis in negative streamer pulsed spark discharges

    No full text
    This paper presents a method for enhancement of shock waves generated from underwater pulsed spark discharges with negative (anode-directed) subsonic streamers, for which the prebreakdown process is accelerated by preconditioning a gap with water electrolysis. Hydrogen microbubbles are produced at the cathode by the electrolysis and move towards the anode during the preconditioning phase. The numbers and spatial distributions of the microbubbles vary with the amplitude and duration of each preconditioning pulse. Under our experimental conditions, the optimum pulse duration is determined to be similar to 250 ms at a pulse voltage of 400 V, where the buoyancy force overwhelms the electric force and causes the microbubbles to be swept out from the water gap. When a high-voltage pulse is applied to the gap just after the preconditioning pulse, the pre-breakdown process is significantly accelerated in the presence of the microbubbles. At the optimum preconditioning pulse duration, the average breakdown delay is reduced by 87% and, more importantly, the energy consumed during the pre-breakdown period decreases by 83%. This reduced energy consumption during the pre-breakdown period, when combined with the morphological advantages of negative streamers, such as thicker and longer stalks, leads to a significant improvement in the measured peak pressure (similar to 40%) generated by the underwater pulsed spark discharge. This acceleration of pre-breakdown using electrolysis overcomes the biggest drawback of negative subsonic discharges, which is slow vapor bubble formation due to screening effects, and thus enhances the efficiency of the shock wave generation process using pulsed spark discharges in water. (c) 2018 Author(s).OAIID:RECH_ACHV_DSTSH_NO:T201735241RECH_ACHV_FG:RR00200001ADJUST_YN:EMP_ID:A080568CITE_RATE:3.495FILENAME:[201803 APL] Enhanced shock wave generation via pre-breakdown acceleration using water electrolysis in negative streamer PSD.pdfDEPT_NM:์—๋„ˆ์ง€์‹œ์Šคํ…œ๊ณตํ•™๋ถ€EMAIL:[email protected]_YN:YFILEURL:https://srnd.snu.ac.kr/eXrepEIR/fws/file/f31ea25a-72d5-4c63-a775-6186c770a86e/linkN

    Underwater spark discharge with long transmission line for cleaning horizontal wells

    No full text
    A transmission line is discussed for application in an underwater spark-discharge technique in the cleaning of a horizontal well by incorporating a power-transmission model into the simulation. The pulsed-spark-discharge technique has been proposed for clogged-well rehabilitation, because it removes incrustations that are attached to well screens by using strong pressure waves that are generated by the rapid expansion of a spark channel. To apply the pulsed-spark-discharge technique to the cleaning of horizontal wells, the coaxial cable between the pulsed power supply and the spark gap as a load needs to be extended to a few hundred meters. Prior to field application, pulsed-spark-discharge experiments were conducted and the role of the transmission line was examined using an improved simulation model. In the model, a non-linear interaction of the spark channel and the capacitor bank is described by the pulse-forming action of the coaxial cable. Based on the accurate physical properties of the water plasma, such as the equation of state and electrical conductivity within the region of interest, the amount of energy contributed to the development of a shock wave was evaluated. The simulation shows that if the initial conditions of the spark channel are the same, no further reduction in strength of the pressure wave occurs, even if the cable length is increased above 50 m. Hence, the degraded peak pressure that was observed in the experiments using the longer cable is attributed to a change in the initial condition of the spark channel. The parametric study suggests that the low initial charging voltage, the high ambient water pressure, and the long cable length yield the low initial spark-channel density, which results in a reduced peak pressure. The simulation of line charging is presented to discuss the principle of disturbing the pre-breakdown process by an extended cable. ยฉ 2017 Author(s).OAIID:RECH_ACHV_DSTSH_NO:T201719639RECH_ACHV_FG:RR00200001ADJUST_YN:EMP_ID:A080568CITE_RATE:0DEPT_NM:์—๋„ˆ์ง€์‹œ์Šคํ…œ๊ณตํ•™๋ถ€EMAIL:[email protected]_YN:NN
    corecore