22 research outputs found

    ์ง์ ‘ ์—๋„ˆ์ง€ ํšŒ์ˆ˜ ๋‹จ๊ณ„๋ฅผ ํฌํ•จํ•˜๋Š” Bipolar MCDI ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€(์—๋„ˆ์ง€ํ™˜๊ฒฝ ํ™”ํ•™์œตํ•ฉ๊ธฐ์ˆ ์ „๊ณต), 2022. 8. ์œค์ œ์šฉ.For the transition to a carbon-neutral society to overcome the climate crisis, the development of energy-efficient and eco-friendly water securing technology is important. Membrane capacitive deionization (MCDI) technology is attracting attention as a suitable solution for these needs. In order for MCDI technology to be applied to actual industry, it is essential to expand the MCDI module and install the energy recovery technology. However, the conventional expansion method causes a large energy loss in controlling the system due to the increase in current. Besides, the energy recovery technology is also inefficient despite high development costs. This dissertation is to develop a bipolar electrode-based MCDI (Bipolar MCDI) with a direct energy recovery step. To prevent the problem on an industrial scale, two approaches were applied. The first is to connect the electrodes of the MCDI module in series, which is called bipolar electrode. Since Bipolar MCDI operates at low current and high voltage, this concept can reduce energy loss on an industrial scale. The second is to adopt a direct energy recovery method, which can reduce the energy consumption of the system with a small development cost. However, in order to successfully combine these two concepts, electrical safety must be secured. When two Bipolar MCDI modules operating at high voltage are directly connected for energy recovery, a current higher than the allowable current of the system may flow, which may result in an electrical explosion or damage to the device. Therefore, this dissertation is studied as follows. First, an equivalent circuit model is proposed to simulate the charge/discharge and direct energy recovery steps. As a primary result, simulation results were in good agreement with the experimental results in not only the charge/discharge step but also the direct energy recovery step. In addition, it was confirmed that the direct energy recovery operates below the current of constant voltage operation, which indicates that the direct energy recovery of Bipolar MCDI can be safely performed with a constant voltage operation system. Second, the operation characteristics of Bipolar MCDI with the direct energy recovery stage are investigated. The optimized operation is applied to the pilot-scale process based on the investigation. As a major result, energy consumption was reduced by 43% and 41%, respectively, at the laboratory scale (2.4 V and 12 V systems) compared to the conventional constant voltage charge/discharge operation. In addition, the energy consumption was reduced by 40% without deterioration of the desalination performance even on the pilot scale. This study successfully developed a Bipolar MCDI system for the industrial application of MCDI technology by adopting bipolar electrodes as an MCDI module expansion and direct energy recovery. The Bipolar MCDI system with direct energy recovery step developed through this study can be an energy-efficient alternative in an actual industrial environment, and the development process will help expand lab-scale research to industrial scale in the future.๊ธฐํ›„์œ„๊ธฐ ๊ทน๋ณต์„ ์œ„ํ•œ ํƒ„์†Œ์ค‘๋ฆฝ์‚ฌํšŒ๋กœ์˜ ์ „ํ™˜์„ ์œ„ํ•ด ์—๋„ˆ์ง€ ํšจ์œจ์ ์ด๊ณ  ์นœํ™˜๊ฒฝ์ ์ธ ๋ฌผ ํ™•๋ณด ๊ธฐ์ˆ ์˜ ๊ฐœ๋ฐœ์ด ์ค‘์š”ํ•˜๋ฉฐ, ์ €์—๋„ˆ์ง€ ์นœํ™˜๊ฒฝ ๋‹ด์ˆ˜ํ™” ๊ธฐ์ˆ ์ธ ๋ง‰ ์ถ•์ „์‹ ํƒˆ์—ผ (membrane capacitive deionization, MCDI) ๊ธฐ์ˆ ์ด ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. MCDI ๊ธฐ์ˆ ์ด ์‹ค์ œ ์‚ฐ์—…์— ์ ์šฉ๋˜๊ธฐ ์œ„ํ•ด์„œ๋Š” MCDI ๋ชจ๋“ˆ์˜ ํ™•์žฅ๊ณผ ์—๋„ˆ์ง€ ํšŒ์ˆ˜ ๊ธฐ์ˆ ์˜ ํƒ‘์žฌ๊ฐ€ ํ•„์ˆ˜์ ์ด์ง€๋งŒ, ๊ธฐ์กด ํ™•์žฅ ๋ฐฉ์‹์€ ์‹œ์Šคํ…œ์—์„œ ํฐ ์—๋„ˆ์ง€ ์†์‹ค์ด ๋ฐœ์ƒํ•˜๋ฉฐ, ์—๋„ˆ์ง€ ํšŒ์ˆ˜ ๊ธฐ์ˆ ๋„ ๋น„ํšจ์œจ์ ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์ง์ ‘ ์—๋„ˆ์ง€ ํšŒ์ˆ˜ ๋‹จ๊ณ„๋ฅผ ํฌํ•จํ•˜๋Š” ์–‘๊ทน์„ฑ ์ „๊ทน ๊ธฐ๋ฐ˜ ๋ง‰ ์ถ•์ „์‹ ํƒˆ์—ผ (bipolar electrode based MCDI, Bipolar MCDI) ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋‘๊ฐ€์ง€ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ ์šฉํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์ง๋ ฌ ์—ฐ๊ฒฐ๋กœ ์ ์ธต๋œ ์ „๊ทน์ธ ์–‘๊ทน์„ฑ ์ „๊ทน์„ ํ†ตํ•˜์—ฌ ์ด๋ฅผ ํ•ด๊ฒฐํ•˜์˜€๋‹ค. ์–‘๊ทน์„ฑ ์ „๊ทน ๊ธฐ๋ฐ˜ ๋ง‰์ถ•์ „์‹ ํƒˆ์—ผ(bipolar electrode based MCDI, Bipolar MCDI)์€ ๋†’์€ ์ „์••, ๋‚ฎ์€ ์ „๋ฅ˜๋กœ ์šด์ „๋˜๊ธฐ ๋•Œ๋ฌธ์— ์‚ฐ์—… ๊ทœ๋ชจ์—์„œ์˜ ์—๋„ˆ์ง€ ์†์‹ค์„ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ์ง์ ‘ ์—๋„ˆ์ง€ ํšŒ์ˆ˜ ๋ฐฉ์‹์„ ์ฑ„์šฉํ•˜์—ฌ ์‹œ์Šคํ…œ์˜ ์—๋„ˆ์ง€ ์†Œ๋น„๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด ๋‘ ๊ฐœ๋…์˜ ์„ฑ๊ณต์ ์ธ ์กฐํ•ฉ์„ ์œ„ํ•ด์„œ๋Š” ์ „๊ธฐ์  ์•ˆ์ „์„ฑ ํ™•๋ณด๊ฐ€ ์šฐ์„ ํ•ด์•ผ ํ•œ๋‹ค. ๋†’์€ ์šด์ „ ์ „์••์œผ๋กœ ์ž‘๋™ํ•˜๋Š” ๋‘ ๊ฐœ์˜ Bipolar MCDI ๋ชจ๋“ˆ์ด ์—๋„ˆ์ง€ ํšŒ์ˆ˜๋ฅผ ์œ„ํ•ด ์ง์ ‘ ์—ฐ๊ฒฐ๋  ๊ฒฝ์šฐ, ์‹œ์Šคํ…œ์˜ ํ—ˆ์šฉ ์ „๋ฅ˜๋ณด๋‹ค ๋†’์€ ์ „๋ฅ˜๊ฐ€ ํ๋ฅผ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’๊ณ , ์ด๋Š” ์ „๊ธฐ ํญ๋ฐœ์ด๋‚˜ ์žฅ์น˜ ์†์ƒ์œผ๋กœ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ๋‹ค. ์šฐ์„ , Bipolar MCDI ๋ชจ๋“ˆ์˜ ์ถฉ/๋ฐฉ์ „ ๋ฐ ์ง์ ‘ ์—๋„ˆ์ง€ ํšŒ์ˆ˜ ๋‹จ๊ณ„๋ฅผ ๋ชจ์‚ฌํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋“ฑ๊ฐ€ํšŒ๋กœ ๋ชจ๋ธ์„ ์ ์šฉํ•˜์˜€๋‹ค. ์ฃผ์š” ๋ชจ์‚ฌ ๊ฒฐ๊ณผ๋Š” ์ถฉ/๋ฐฉ์ „ ๋‹จ๊ณ„๋Š” ๋ฌผ๋ก  ์ง์ ‘ ์—๋„ˆ์ง€ ํšŒ์ˆ˜ ๋‹จ๊ณ„์— ๋Œ€ํ•ด์„œ๋„ ์‹ค์ œ ์‹คํ—˜๊ฒฐ๊ณผ์™€ ๋งค์šฐ ์ž˜ ๋งž์•˜๋‹ค. ๋˜ํ•œ ์ง์ ‘์—๋„ˆ์ง€ ํšŒ์ˆ˜๊ฐ€ ์ •์ „์•• ์šด์ „์˜ ์ „๋ฅ˜ ๋ฒ”์œ„ ์ด๋‚ด์—์„œ ์ž‘๋™ํ•จ์„ ํ™•์ธํ•˜์˜€๊ณ , ์ด๋Š” Bipolar MCDI์˜ ์ง์ ‘์—๋„ˆ์ง€ ํšŒ์ˆ˜๊ฐ€ ์ •์ „์•• ์‹œ์Šคํ…œ์— ์•ˆ์ „ํ•˜๊ฒŒ ์ž‘๋™ํ•  ์ˆ˜ ์žˆ์Œ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋‘˜์งธ, ์ง์ ‘ ์—๋„ˆ์ง€ ํšŒ์ˆ˜ ๋‹จ๊ณ„๋ฅผ ํฌํ•จํ•˜๋Š” Bipolar MCDI ์‹œ์Šคํ…œ์˜ ์šด์ „ ํŠน์„ฑ์„ ์กฐ์‚ฌํ•˜์˜€๊ณ , ์ด๋ฅผ ํ† ๋Œ€๋กœ ์ตœ์ ํ™”๋œ ์šด์ „ ๋ฐฉ์‹์„ ํŒŒ์ผ๋Ÿฟ ๊ทœ๋ชจ ๊ณต์ •์—๋„ ํ™•์žฅํ•˜์˜€๋‹ค. ์ฃผ์š” ๊ฒฐ๊ณผ๋กœ ์‹คํ—˜์‹ค ๊ทœ๋ชจ์˜ ์žฅ์น˜ (2.4 V์™€ 12 V ์‹œ์Šคํ…œ)์—์„œ ๊ธฐ์กด์˜ ์ •์ „์•• ์ถฉ/๋ฐฉ์ „ ์šด์ „์— ๋น„ํ•ด ๊ฐ๊ฐ 43%์™€ 41%์˜ ์—๋„ˆ์ง€๋ฅผ ์ €๊ฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ ํŒŒ์ผ๋Ÿฟ ๊ทœ๋ชจ์˜ ๊ณต์ •์—์„œ๋„ ํƒˆ์—ผ ์„ฑ๋Šฅ์˜ ์ €ํ•˜์—†์ด 40%์˜ ์—๋„ˆ์ง€๋ฅผ ๊ฐ์ถ•ํ•˜์˜€๋‹ค. ์š”์•ฝํ•˜๋ฉด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” MCDI ๊ธฐ์ˆ ์˜ ์‚ฐ์—…์  ์‘์šฉ์„ ์œ„ํ•ด MCDI๋ชจ๋“ˆ ํ™•์žฅ๊ณผ ์—๋„ˆ์ง€ ํšŒ์ˆ˜ ๊ธฐ์ˆ ์„ ์–‘๊ทน์„ฑ ์ „๊ทน ๊ทธ๋ฆฌ๊ณ  ์ง์ ‘ ์—๋„ˆ์ง€ ํšŒ์ˆ˜ ๊ธฐ์ˆ ์„ ์ ์šฉํ•˜์—ฌ ํŒŒ์ผ๋Ÿฟ ๊ณต์ •์—๋„ ์ ์šฉ๋˜๋Š” Bipolar MCDI ์‹œ์Šคํ…œ์„ ์„ฑ๊ณต์ ์œผ๋กœ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๊ฐœ๋ฐœํ•œ ์ง์ ‘ ์—๋„ˆ์ง€ ํšŒ์ˆ˜ ๋‹จ๊ณ„๋ฅผ ํฌํ•จํ•˜๋Š” Bipolar MCDI ์‹œ์Šคํ…œ์ด ์‹ค์ œ ์‚ฐ์—… ํ™˜๊ฒฝ์—์„œ ์—๋„ˆ์ง€ ํšจ์œจ์ ์ธ ๋Œ€์•ˆ์ด ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ฐœ๋ฐœ๊ณผ์ •์€ ํ–ฅํ›„ ์‹คํ—˜์‹ค ๊ทœ๋ชจ์˜ ์—ฐ๊ตฌ๊ฐ€ ์‚ฐ์—… ๊ทœ๋ชจ๋กœ ํ™•์žฅํ•˜๋Š” ๊ฒƒ์— ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ ๋œ๋‹ค.1. Introduction 1 1.1. Research Background 1 1.2. Objectives of the research 4 2. Literature Review 5 2.1. History of electrochemical ion separation based on energy storage technique 5 2.1.1 Introduction of ion exchange membrane into EIONS 10 2.1.2 Decoupling electrolyte and salt water 19 2.1.3 Integration of desalination and concentration processes 25 2.1.4 Application of Redox-active electrolytes. 28 2.2. Factors affecting the energy efficiency of EIONS system 30 2.2.1 Operation method 32 2.2.2 Energy recovery in CDI and MCDI 37 2.2.3 Bipolar electrode for scaled-up MCDI system 41 3. Parameter estimation and simulation using equivalent circuit for Bipolar MCDI system with direct energy recovery 44 3.1. Introduction 44 3.2. Experimental Section 47 3.2.1 Bipolar MCDI module configuration 47 3.2.2 Charging and discharging tests of Bipolar MCDI 49 3.2.3 Parameter estimation and simulation using equivalent circuit 50 3.3. Results and Discussion 56 3.3.1 Model validation 56 3.3.2 Simulation of Bipolar MCDI charging with direct energy recovery 62 3.4. Summary 71 4. Investigation of Operation Characteristic for Bipolar MCDI System with Direct Energy recovery 72 4.1. Introduction 72 4.2. Experimental Section 77 4.2.1 Bipolar MCDI module configuration 77 4.2.2 Operation of Bipolar MCDI with direct energy recovery 80 4.2.3 Experimental conditions and performance indicator 86 4.3. Results and Discussion 89 4.3.1 Bipolar MCDI with direct energy recovery step in 2.4 V system 89 4.3.2 Performance analysis of Bipolar MCDI with direct P2P 93 4.3.3 Application into scaled-up system to 12 V and 300 V modules 103 4.4. Summary 114 5. Conclusion 115 6. References 117 ๊ตญ๋ฌธ ์ดˆ๋ก 144๋ฐ•

    Build an efficient Trust Execution Environment for CPU / FPGA-based cryptocurrency wallets

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€,2020. 2. ๋ฐฑ์œคํฅ.์ตœ๊ทผ์— ๊ฑฐ๋ž˜ ํŽธ์˜๋ฅผ ์œ„ํ•˜์—ฌ ์•”ํ˜ธํ™”ํ ์‚ฌ์šฉ์ž๋“ค์ด ์•”ํ˜ธํ™”ํ ๊ฐœ์ธ ํ‚ค๋ฅผ ์•”ํ˜ธ ํ™”ํ ๊ฑฐ๋ž˜์†Œ์— ์œ„ํƒํ•˜๊ณ  ์›๊ฒฉ์œผ๋กœ ์ด์šฉํ•จ์— ๋”ฐ๋ผ, ์•”ํ˜ธ ํ™”ํ ๊ฑฐ๋ž˜์†Œ์— ๋Œ€ํ•œ ๊ณต๊ฒฉ์ด๋‚˜ ๊ด€๋ฆฌ์ž ๊ถŒํ•œ์„ ๊ฐ€์ง€๋Š” ๊ฑฐ๋ž˜์†Œ ๋‚ด๋ถ€์—์„œ์˜ ๊ณต๊ฒฉ์œผ๋กœ ์ธํ•ด ์•”ํ˜ธํ™”ํ ์‚ฌ์šฉ์ž๋“ค์˜ ๊ฐœ์ธ ํ‚ค๊ฐ€ ์œ ์ถœ๋˜์–ด ์•”ํ˜ธ ํ™”ํ๊ฐ€ ํƒˆ์ทจ๋˜๋Š” ์‚ฌ๊ฑด๋“ค์ด ๋ณด๊ณ  ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ์•ˆ์œผ๋กœ ์•ˆ์ „ํ•œ ์•”ํ˜ธํ™”ํ ๊ด€๋ฆฌ๋ฅผ ์œ„ํ•œ FPGA ๊ธฐ๋ฐ˜์˜ ํ•ซ์›”๋ ›์ด ์ œ์‹œ๋˜์—ˆ๋Š”๋ฐ, ์ด ๋…ผ๋ฌธ์—์„œ ์–ธ๊ธ‰ํ•˜๋Š” ๊ธฐ์ˆ ๋กœ๋Š” ์‹ค์ œ๋กœ ์‚ฌ์šฉ์ž๊ฐ€ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•œ S/W์˜ ๊ตฌํ˜„์ด ๋ถ€์กฑํ•˜๊ณ  H/W ์ž์›์„ ๋งŽ์ด ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฅผ ์‚ฌ์šฉํ•˜๊ธฐ์— ํ˜„์‹ค์„ฑ์ด ๋–จ์–ด์ง„๋‹ค. ์ด์— ๋”ฐ๋ผ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋ฅผ ์‹ค์ œ๋กœ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์„œ๋ฒ„๋‹จ S/W ๊ตฌํ˜„์„ ์ถ”๊ฐ€ํ•˜์—ฌ ์‹ค์ œ๋กœ ์‚ฌ์šฉ์ž๊ฐ€ ๊ฑฐ๋ž˜ํ•  ์ˆ˜ ์žˆ๋Š” ์•ˆ์ „ํ•œ ํ†ต์‹  ํ™˜๊ฒฝ์„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค. ๋‚˜์•„๊ฐ€, FPGA ๊ธฐ๋ฐ˜์˜ ํ•ซ ์›”๋ ›์ด ๊ฐ€์ง€๋˜ ๋‹จ์ ์ธ FPGA ์ž์› ์†Œ๋ชจ๊ฐ€ ๋งŽ๋‹ค๋Š” ์ ์„ ํšจ์œจ์ ์œผ๋กœ ์ตœ์ ํ™”ํ•˜์—ฌ FPGA ์ž์› ์†Œ๋ชจ๋ฅผ ๋Œ€ํญ ์ค„์˜€๋‹ค. ๋‚˜์•„๊ฐ€, ์šฐ๋ฆฌ๊ฐ€ ๊ตฌํ˜„ํ•œ ๊ธฐ๋ฐ˜์„ ๋ฐ”ํƒ•์œผ๋กœ ์‚ฌ์šฉ์ž์˜ ์š”์ฒญ์„ ์ฒ˜๋ฆฌํ•˜๋Š” ์„ฑ๋Šฅ, FPGA ์ž์› ์†Œ๋ชจ๋Ÿ‰์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค.Recently, as cryptocurrency users have entrusted cryptocurrency private keys to cryptocurrency exchanges and used them remotely, the users of cryptocurrency users have been attacked by an attacker on cryptocurrency exchanges who has administrative privilege. Cases have been reported in which the key is leaked and the cryptocurrency is stolen. As a solution to this problem, an FPGA-based hot wallet for secure cryptocurrency management has been proposed. In this paper, the technology mentioned in this paper lacks the S/W implementation for users and consume a lot of FPGA resources which makes it less practical to use it. Accordingly, in this paper, we added a server-side S/W implementation for realistic usage of FPGA-based hot wallet to build a secure communication environment that users can actually trade. Furthermore, FPGA resource consumption has been greatly reduced by efficiently optimizing the FPGA resource consumption, a disadvantage of FPGA-based hot wallets. Furthermore, based on our implementation, we evaluated the performance of processing user requests and FPGA resource consumption.์ œ 1 ์žฅ ์„œ๋ก  1 ์ œ 2 ์žฅ ๊ด€๋ จ ์—ฐ๊ตฌ 3 ์ œ 3 ์žฅ ์œ„ํ˜‘ ๋ชจ๋ธ ๊ฐ€์ • 4 ์ œ 4 ์žฅ ๋””์ž์ธ ๋ฐ ์„ธ๋ถ€ ๊ตฌํ˜„ 5 ์ œ 1 ์ ˆ ๋””์ž์ธ์„ ์œ„ํ•œ ๊ฐ€์ • 5 ์ œ 2 ์ ˆ ์•ˆ์ „ํ•œ ํ†ต์‹  ํ™˜๊ฒฝ 5 ์ œ 3 ์ ˆ FPGA ์„ธ๋ถ€ ๊ตฌ์„ฑ 7 ์ œ 4 ์ ˆ Server CPU S/W ์„ธ๋ถ€ ๊ตฌ์„ฑ 8 ์ œ 5 ์žฅ ์‹คํ—˜ ๊ฒฐ๊ณผ 9 ์ œ 6 ์žฅ ๊ฒฐ๋ก  10 ์ฐธ๊ณ ๋ฌธํ—Œ 11 Abstract 12Maste
    corecore