3 research outputs found
ë¶ìííììì ííì ë°ì 곌ì ì ëíëë ê¹ì ëë¥ì ë³í
íìë
Œë¬ž (ë°ì¬) -- ììžëíêµ ëíì : ìì°ê³Œíëí ì§êµ¬í겜곌íë¶, 2020. 8. íì°œí.Multi-day episodes of deep convective bursts (mCB) during tropical cyclone (TC) genesis are easily observed and often considered to be a manifestation of gradual mesoscale organization process. However, their role as a prelude to TC genesis have not been clearly discovered whether every TC genesis is associated with mCB or if TC non-development is less associated with mCB. In this regard, evolution of mCB is investigated among 463 tropical disturbances that developed (80) or did not develop (383) into TCs over the western North Pacific during 2007â2009. Deep convection is identified by using geostationary satellite data when the infrared (IR) brightness temperature is lower than that of water vapor (WV). A diurnal increase from time series of IR minus WV < 0 areas within the disturbance is defined as a convective burst (CB) event, and when CBs occur for at least two consecutive days, it is defined as a mCB. The atmospheric variables from the Modern-Era Retrospective Analysis for Research and Applications, Version 1 and 2 as well as ECMWF ReAnalysis-5 are also analyzed for combined understanding on the multi-day convective-environmental evolution in TC formation.
The results show that mCB are observed in 67.5% of the 80 TC-developing disturbances (i.e., 54 TCs) and in 13.8% of the 383 non-developing disturbances (i.e., 53 disturbances). When the non-developing disturbances with mCB are compared to the developing disturbance with mCB, thermodynamic conditions are not significantly different. However, dynamic conditions are discriminated, as the mid-to-low tropospheric relative vorticity of non-developing cases are significantly weaker and the vertical wind shear environment is significantly stronger, which account for eventual decay of non-developing disturbance despite the presence of a mCB. Additional analyses revealed that the unfavorable vertical wind shear is mainly formed in the mid-to-upper troposphere, rather than lower-to-mid troposphere. Scale decomposition further verified that the developing disturbances having mCB are located in between the attendant anticyclones, which might promote surface moisture convergence, while non-developing disturbances are not. A representative case study is evaluated by looking at the formation process of TC Hagupit (2008), which confirmed the findings from the composite analysis.
The remaining 32.5% of the TC cases (i.e., 26 TCs) which do not accompany mCB prior to their formation are characterized by abrupt activation of deep convection only one or two days prior to TC genesis in less favorable thermodynamic atmospheric environment compared to TC cases having mCB. Regarding the dynamic components, a vorticity maximum is located in the upper troposphere, with attendant strong vertical wind shear, which later redistributes to the lower-to-mid troposphere with associated abrupt deep convection shortly before TC formation. Particularly, 12 TC cases are the most evident in the vorticity trace in the upper troposphere. One TC formation case, TC Peipah (2007), is scrutinized. As a result, TC genesis process of these 12 TCs are explained by the process of tropical transition, which is commonly observed and well documented over the North Atlantic. The tropical transition is one type of TC genesis pathway regarding an extratropical precursor transitioning into a TC. In addition, the occurrence of the extratropical precursor in the tropics or subtropics is explained by a strong potential vorticity intrusion in the subtropical upper troposphere, which explains the origin of vorticity maximum in the upper troposphere. The formation pathway of remaining 14 TCs largely resemble that of TC genesis having mCB, also having attendant anticyclones around the pre-TC disturbances. Yet, the magnitude of CB is not as strong as to be defined as mCB, and the location of vorticity maximum is located at the mid-troposphere. A representative case study among these 14 TCs is evaluated by looking at the formation process of TC Koppu (2009), which confirmed the findings from the composite analysis. To understand detailed formation pathway of these 14 TCs, further investigation is needed particularly regarding shallow convective clouds and mid-tropospheric vorticity maximum.
To summarize, this study reveals that mCB is a common feature in pre-TC stages but it cannot be used as an independent predictor for TC genesis. Firstly, because similar number of non-development disturbances are also associated with mCB, the strength of relative vorticity of the disturbance as well as vertical wind shear in the environment need to be considered. Secondly, as some of TC genesis occur after abrupt activation of deep convection, the external dynamic forcing like upper-tropospheric weather phenomena need to be considered as one candidate of TC formation precursors besides mCB. Yet, this study confirms that mCB is effective in filtering out many non-developing disturbances and also efficient in classifying various TC formation pathways.ííìŽ ë°ìíë 곌ì ì ìžê³µìì±ìì êŽì°°íë©Ž ìŽë ìëìŽ ëë°íë ê¹ì ëë¥ ë©Žì ìŽ ë©°ì¹ ëì ë°ë³µì ìž ìŒë³í륌 겪ìŒë©° ì ì°š ì±ì¥íë 곌ì ìŽ ì죌 êŽì°°ëìŽ ììŒë©° ìŽ íìì ìŽë ìëìŽ ì ì§ì ìŒë¡ ì¡°ì§íëë 곌ì ìŒë¡ ìŽíŽëë©° ë§ì ì íì°êµ¬ìì ë³Žê³ ëìŽ ìë€. ê·žë¬ë ì€ì ë¡ ìŽë¬í ê¹ì ëë¥ ë©Žì ì ìŒë³í íììŽ íí ë°ìì ì ì¡°ìŠììŒë¡ ì¬ê²šì§ ì ìëì§ì ëí ê¹ì ë
Œìë, ííìŒë¡ ë°ë¬íì§ ìê³ ìë©žíë ìŽë ìëìì ì ì¬í íììŽ êŽì°°ëì§ ìëì§ì ëí ë¹êµë ìŽë£šìŽì§ ë°ê° ìë€. ë°ëŒì ìŽ íì ë
Œë¬žììë 2007ë
ë¶í° 2009ë
ê¹ì§ ë¶ìííììì ííìŒë¡ ë°ë¬í ìŽë ìë ì¬ë¡ 80ê°ì ííìŒë¡ ë°ë¬íì§ ëª»íê³ ìë©ží ìŽë ìë 383ê° ì¬ë¡ë¥Œ ëììŒë¡ ê° ìŽë ìëìŽ ëë°íë ê¹ì ëë¥ì ë©Žì ì ìœ 5ìŒê° êŽì°°íì¬ ì ëì ìž ë¶ìì ìííìë€. ëë¥ê¶ ê³ë©Ž ê³ ëê¹ì§ ëê² ëë¬íë ê¹ì ëë¥ì ë©Žì ì ì ì§ê¶€ë ìì±ìì êŽìž¡í ì ìž(Infrared; IR) ë° ììŠêž°(Water Vapor; WV) ì±ë ë°êž°ìšë ì°šìŽ ê°ì ìŽì©íì¬ ì ìž ì±ë ë°êž°ìšë ê°ë³Žë€ ììŠêž° ì±ëì ë°êž°ìšë ê°ìŽ ëìì§ë ìì(IR minus WV <0)ì ë©Žì ìŒë¡ ê³ì°íë€. ê¹ì ëë¥ì ë©Žì ìŽ ìŒì£Œêž°ì ë°ëŒ ê·¹ìì ìì ê·¹ëì ìŒë¡ ìŠê°íë ê²ì ê¹ì ëë¥ì íë°(Convective Burst; CB)ìŽëŒê³ ì ìíììŒë©° ìŽë¬í ê¹ì ëë¥ì íë°ìŽ ìµì ìŽíìŽì ì°ìíì¬ ëíëë 겜ì°ì ê¹ì ëë¥ ë©Žì ì ìŒë³í íììŽ ê·ì¹ì ìŒë¡ ëíëë ê²ìŒë¡ ì ìíê³ ìŽ íìì Multi-day Convective Bursts (ìŽí mCB)ëŒê³ ëª
ëª
íìë€. ììžë¬ ììŒì ê±°ì¹ íí ë°ë¬ ë° ë¹ë°ë¬ê³Œì ìì ëíëë ê¹ì ëë¥ì ë³í륌 ëêž°í겜 ë³íì íšê» ìŽíŽíê³ ì Modern-Era Retrospective Analysis for Research and Applications, Version 1, 2ì ECMWF ReAnalysis-5륌 ë¶ìíìë€.
ê·ž 결곌 ííìŒë¡ ë°ë¬íë ìŽë ìë 80ê°ì€ 67.5%ì íŽë¹íë 54ê°ì ìŽë ìëììë§ mCBê° êŽì°°ëìë€. ìŽì ì ì¬íê² ííìŒë¡ ë°ë¬íì§ ìë ìŽë ìë 383ê° ì€ 13.8%ì íŽë¹íë 53ê°ì ìŽë ìëììë mCBê° êŽì°°ëìë€. mCBê° êŽì°°ëë ë ìŽë ìë 귞룹ì ëêž°í겜조걎ì ìŽíŽë³Žìì ë, ìŽìíì ìž í겜ì ì ì¬íê² ëíë¬ìŒë©° ìíì ìž í겜ìì ì ìí ì°šìŽì ìŽ ë°ê²¬ëìë€. í¹í ííìŒë¡ ë°ë¬íë ìŽë ìëë³Žë€ ë¹ë°ë¬ ìŽë ìëìì ëë¥ê¶ íìžµ ìëìëì ê°ëê° ì ìíê² ìœíìŒë©° íí°ë§ êž°ë²ì ìŽì©íì¬ ê·ëªšë¥Œ ëëìŽ ë¶ìí 결곌 ííìŒë¡ ë°ë¬íë ìŽë ìëì íìžµ ì êž°ì 죌ë³ì ìëì ìž ê³ êž°ì ìë
žë§ëŠ¬ê° ëë ·íê² ëíë¬ì§ë§ ë¹ë°ë¬ ìŽë ìë 죌ë³ììë ìŽë¬í ê³ êž°ì ìë
žë§ëŠ¬ê° ëë ·íê² ëíëì§ ììë€. ê³ êž°ì곌 ì êž°ììŽ ë°ë³µëë íëíšíŽì ì êž°ì ëŽë¶ë¡ ììŠêž°ì ì ì
ì íšìšì ìŒë¡ ìë ŽíŽ íí ë°ë¬ì êž°ì¬í ì ìë€. ëìê° ííìŒë¡ ë°ë¬íë ìŽë ìëë³Žë€ ë¹ë°ë¬ ìŽë ìë 죌ë³ì ì°ì§ ë°ëììŽ ëí ì ìíê² ê°í ê²ìŒë¡ ëíë¬ìŒë©° ëë¥ê¶ ì€ìžµìì ììžµê¹ì§ì ë°ëììŽ íê²œìŽ ì 첎 ëë¥ê¶ ì°ì§ ë°ëììŽì ëë¶ë¶ì ì°šì§íë€. mCBê° êŽì°°ëë ìŽë ìëì íí ë°ë¬ 곌ì ì í¹ì§ì 2008ë
íí í구í ì¬ë¡ë¶ìì íµíŽ ì¬íìží ì ììë€.
ííìŒë¡ ë°ë¬íë ìŽë ìë 80ê°ì€ ëëšžì§ 32.5%ì íŽë¹íë 26ê° ìŽë ìëììë mCBê° êŽì°°ëì§ ìê³ ë©°ì¹ ëì ê¹ì ëë¥ì íëìŽ ìµì ëìŽ ìë€ê° ííìŒë¡ ë°ë¬íêž° í룚 ëë ìŽíì ì ê¹ì ëë¥ íëìŽ ììëë í¹ì§ì 볎ìë€. ìŽìíì ìŒë¡ë ì£Œë³ íê²œìŽ ê¹ì ëë¥ íëìŽ íë°íêž° ìŒìŽëêž°ì ìŽë €ì ë€. ìíì ìž í¹ì§ìŒë¡ë ëë¥ê¶ëŽìì ìëìë ìµëì¹ê° ëíëë ìì¹ ë° ì°ì§ ë°ëììŽ ê°ëìì mCBê° êŽì°°ëë ìŽë ìë곌 ëë ·í ì°šìŽë¥Œ 볎ìë€. 뚌ì mCBê° êŽì°°ëë ìŽë ìëì 겜ì°ìë ìëìëê° ëë¥ê¶ íìžµìì ê°ì¥ ê°íê² ëíëë ë°ë©Ž mCBê° êŽì°°ëì§ ìë ìŽë ìë ì€ 12ê°ì ìŽë ìëììë ëë¥ê¶ ììžµìì ìëìëê° ê°ì¥ ê°íê² ëíë¬ë€. ìŽë¥Œ ììžíêž° ìŽíŽíêž° ìíì¬ 2007ë
íí íìŽíì ì¬ë¡ë¶ìì ìííìê³ ê·ž 결곌 íìŽíì ííë°ì곌ì ìŽ ë¶ëììììë ìëì ìŒë¡ ë¹ë²íê² ëíëë ìŽë ì ìŽ ê³Œì ì íŽë¹íë€ë ê²ì ì ì ììë€. ìŽëì ìŽê³Œì ì ííë°ì곌ì ì€ íê°ì§ë¡ ì€ìë ì±ìžµê¶ íë¶ìì ìŽë ëë¥ê¶ ììžµìŒë¡ ì ëìëê° ìì
ë ë ì겚ëë ëêž° ë¶ìì ë° ì€ì§ê· íì ìíŽ ëë¥ê¶ íìžµì ì êž°ì ìë
žë§ëŠ¬ê° ì겚ë ìŽíì ííìŒë¡ ë°ë¬íë 곌ì ìŽë€. ë°ëŒì 12ê°ì ìŽë ìëì ìŽë¬í ìŽëì ìŽê³Œì ì íµíŽ ííìŒë¡ ë°ë¬íìê³ ê·ž ë묞ì ë°ì ìŽì ì mCBê° êŽì°°ëì§ ììŒë©° ëë¥ê¶ ììžµì ìëìëì ìµëì¹ê° ëíë¬ë€. ííìŒë¡ ë°ë¬íì§ë§ mCBê° êŽì°°ëì§ ìë ëëšžì§ 14ê°ì ìŽë ìëì ì£Œë³ ëêž°í겜ì¥ì ë¶ìíŽ ë³Žìì ëìë mCBê° êŽì°°ëë ìŽë ìë곌 ì ì¬í í¹ì§ì ëíëë€. ëë¥ê¶ íìžµìì íìžµ ì êž°ì 죌ë³ì ìëì ìž ê³ êž°ì ìë
žë§ëŠ¬ë ëë ·íê² íìžëìë€. ë€ë§, CBì ê°ëê° mCB ì ì êž°ì€ì ë¹íŽ ìëì ìŒë¡ ìœíê² ëíë¬ìŒë©° ìëìëì ìµëì¹ê° ëë¥ê¶ ì€ìžµì ëíë¬ë€ë ì ìŽ ë¬ëë€. ëë¥ê¶ ê³ë©Žê¹ì§ë ëë¬íì§ ìë ìì ëë¥ íë곌 ìëìë ìµëì¹ì ìì¹ë¥Œ ê³ ë €íì¬ ë¶ìíë€ë©Ž íŽë¹ ííë°ì곌ì ì ë³Žë€ ììžíê² ìŽíŽí ì ìì ê²ìŒë¡ êž°ëëë€.
ì 늬íë©Ž, ìŽ íì ë
Œë¬žììë mCBì íí ë°ìì ì ëì ìž êŽê³ë¥Œ íì
íê³ mCBê° êŽì°°ëëì§ ì¬ë¶ë¥Œ êž°ì€ìŒë¡ ííë°ì곌ì ì 구ë¶íì¬ ìŽíŽí ì ììë€. 뚌ì ííìŒë¡ ë°ë¬íë ìŽë ìë곌 ë¹ì·íê² ííìŒë¡ ë°ë¬íì§ ìë ìŽë ìëììë mCBê° êŽì°°ëêž° ë묞ì mCB륌 ííë°ì ì¬ë¶ë¥Œ ììž¡íë ëšìŒ ìžìë¡ íì©íêž°ìë ìŽë µë€ë ê²°ë¡ ì ì»ì ì ììë€. ëš, ì°ì§ë°ëììŽì ê°ëë ëë¥ê¶ íìžµì ìëìë ë° ì£Œë³ ê³ êž°ì ìë
žë§ëŠ¬ë¥Œ ê°ìŽ íì
íë€ë©Ž íí ë°ì ììž¡ì ìŽì©í ì ìì ê²ìŽë€. ëë²ì§žë¡ ë¶ìííì ìŒë¶ ííë°ì곌ì ì mCBê° êŽì°°ëì§ ìëë€ë ê²ì íì
íìŒë©° ìŽë¬í ê²œì° ì€ ì ë°ì ëë¥ê¶ ìë¶ìì ìì©íë ìíâ ìŽìíì ë¬ŒëŠ¬ë ¥ìŽ íí ë°ìì êž°ì¬íë€ë ê²ì ì ì ììë€. ë§ì§ë§ìŒë¡ mCBê° ííìŒë¡ ë°ë¬íì§ ìë ìŽë ìëì ë§€ì° íšìšì ìŒë¡ ì ê±°íŽ ëŒ ì ìë€ë ì ì ì ì ììë€.1. Introduction ïŒ
2. Data and Methodology ïŒ
2.1. Data ïŒ
2.1.1. Tropical disturbance track ïŒ
2.1.2. Satellite retrieved brightness temperatures ïŒ
2.1.3. Atmospheric fields from reanalysis ïŒïŒ
2.2. Methodology ïŒïŒ
2.2.1. Potential vort-max tracking ïŒïŒ
2.2.2. Deep convection area determination ïŒïŒ
2.2.3. Hanssen-Kuipers Skill Score ïŒïŒ
2.2.4 Quasi-geostrophic analysis ïŒïŒ
2.2.5 Barotropic and Baroclinic Energy Conversion ïŒïŒ
2.2.6 Cyclone phase space diagram ïŒïŒ
2.2.7 Decision tree ïŒïŒ
3. Results ïŒïŒ
3.1. Features of multi-day Convective Bursts (mCB) ïŒïŒ
3.1.1. Deep convection characteristics overall ïŒïŒ
3.1.2. Definition of CB and mCB ïŒïŒ
3.1.3. Categorization of tropical cyclogenesis ïŒïŒ
3.2. Tropical cyclogenesis with mCB ïŒïŒ
3.2.1. Multi-scale environment analysis ïŒïŒ
3.2.2. Case study on TC Hagupit (2008) ïŒïŒ
3.2.3. Schematic diagram ïŒïŒ
3.3. Tropical cyclogenesis without mCB ïŒïŒ
3.3.1. Multi-scale environment analysis ïŒïŒ
3.3.2. Case study on TC Peipah (2007) ïŒïŒ
3.3.3. Case study on TC Koppu (2009) ïŒïŒïŒ
3.3.4. Schematic diagram ïŒïŒïŒ
4. Discussion ïŒïŒïŒ
4.1. The role of mCB as tropical cyclogenesis precursor ïŒïŒïŒ
4.2. Potential vorticity intrusion and tropical cyclogenesis ïŒïŒïŒ
5. Conclusion ïŒïŒïŒ
References ïŒïŒïŒ
êµë¬ž ìŽë¡ ïŒïŒïŒDocto
íìí ëìŒ-í°íë ìœìŒì€íë§ì íì ìì€ê³Œ ìì± ë³í
íìë
Œë¬ž(ìì¬)--ììžëíêµ ëíì :ì¹ìí곌 ì¹ê³Œì첎ì¬ë£ê³Œíì ê³µ,2004.Maste