5 research outputs found

    A study on the analysis of hull damage assessment in wreck and salvage process of ship

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (석사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 쑰선해양곡학과, 2021. 2. μž₯λ²”μ„ .ν•΄μƒμ—μ„œ μš΄μš©λ˜λŠ” 선박은 뢈의의 μ‚¬κ³ λ‘œ 인해 μΉ¨λͺ°ν•  수 있으며, 이둜 인해 경제적 손싀 및 ν•΄μ–‘ ν™˜κ²½μ˜€μ—Ό λ“± λ‹€μ–‘ν•œ λΆ€μž‘μš©μ„ λ°œμƒμ‹œν‚¨λ‹€. 특히 λŒ€ν˜• μ—¬κ°μ„ μ˜ 경우 비가역적인 λ‹€λŸ‰μ˜ 인λͺ… 손싀을 λ™λ°˜ν•˜κΈ° λ•Œλ¬Έμ— μ„ λ°• μΉ¨λͺ°μ‚¬κ³  μ˜ˆλ°©μ„ μœ„ν•œ λ…Έλ ₯이 λ”μš± μ ˆμ‹€ν•˜λ‹€. 기본적으둜 사고 μ˜ˆλ°©μ„ μœ„ν•΄μ„œλŠ” 사고 원인 νŒŒμ•…μ„ μš°μ„ λ˜μ–΄μ•Ό ν•˜λ©°, μΉ¨λͺ° μ„ μ²΄μ˜ μ™ΈλΆ€ 손상은 사고 원인을 νŒŒμ•…ν•˜κΈ° μœ„ν•œ μ€‘μš” 증거가 될 수 μžˆλ‹€. λ”°λΌμ„œ 선체 μ™ΈλΆ€ 손상에 λŒ€ν•œ ν‰κ°€λŠ” 사고 원인 νŒŒμ•…μ„ μœ„ν•΄ ν•„μš”ν•˜λ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ” μ„ λ°•μ˜ μΉ¨λͺ°λΆ€ν„° 인양 κ³Όμ •μ—μ„œ λ°œμƒν•˜λŠ” 선체 외관에 λŒ€ν•œ 손상평가 방법을 3D ꡬ쑰해석을 ν†΅ν•˜μ—¬ μˆ˜ν–‰ν•˜κ³ μž ν•˜λ©°, 이에 λŒ€ν•œ 기법을 μ•„λž˜μ™€ 같이 μ •λ¦½ν•˜μ˜€λ‹€. λ¨Όμ € μΉ¨λͺ° 및 인양 κ³Όμ •μ—μ„œ λ°œμƒ κ°€λŠ₯ν•œ 선체에 μ£Όμš”ν•˜κ²Œ 손상이 κ°€ν•΄μ§€λŠ” 상황을 μΆ”μ •ν•˜κ³ , 이λ₯Ό 톡해 μ£Όμš” μƒν™©λ³„λ‘œ μ μš©λ˜λŠ” ν•˜μ€‘μ„ κ³„μ‚°ν•˜μ—¬ 3D κ΅¬μ‘°ν•΄μ„μ—μ„œ λ‹¨κ³„λ³„λ‘œ μ μš©ν•˜λ„λ‘ ν•˜μ˜€λ‹€. μ΄λŠ” μΉ¨λͺ° 및 인양과정은 μž₯μ‹œκ°„μ΄ μ†Œμš”λ˜λ―€λ‘œ 전체 과정을 ν•œκΊΌλ²ˆμ— 해석을 μˆ˜ν–‰ν•˜λŠ” 것은 μ‹œκ°„μ , 경제적으둜 맀우 λΉ„νš¨μœ¨μ μ΄κΈ° λ•Œλ¬Έμ΄λ‹€. 이후, κ°œλ³„μ μœΌλ‘œ λΆ„λ₯˜λœ 단계별 ν•˜μ€‘μ„ λ…λ¦½μ μœΌλ‘œ μ μš©ν•˜λ˜ 각각의 ꡬ쑰해석 κ²°κ³Όκ°€ μ‹œκ°„μ˜ 흐름에 따라 μ—°μ†μ μœΌλ‘œ λˆ„μ λ˜λ„λ‘ ν•˜μ—¬ ν•΄μ„μ˜ 정확도λ₯Ό μœ μ§€ν•˜κ³ μž ν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ 연속적인 해석 κΈ°λ²•μ˜ 적용 μ—¬λΆ€λŠ” 선체λ₯Ό κ°€μ •ν•œ λ‹¨μˆœ 3D λͺ¨λΈμ— λŒ€ν•΄ 기법을 μ μš©ν•œ case와 μ μš©ν•˜μ§€ μ•Šμ€ case의 μ΅œμ’… 손상 μƒνƒœλ₯Ό λΉ„κ΅ν•˜λŠ” case studyλ₯Ό 톡해 κ²€μ¦ν•˜μ˜€λ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ μ‹€μ œ μΉ¨λͺ° 및 μΈμ–‘ν•œ 여객선을 μ˜ˆμ‹œλ‘œ 상기 μ •λ¦½λœ 기법을 3D λͺ¨λΈμ— μ μš©ν•œ 해석을 μˆ˜ν–‰ν•˜μ˜€λ‹€. μ΄λ•Œ μž₯μ‹œκ°„μ— 걸쳐 λ°œμƒν•˜λŠ” μΉ¨λͺ° 및 인양 과정에 λŒ€ν•΄ μ€€ 정적인 해석을 μˆ˜ν–‰ν•˜κΈ° μœ„ν•˜μ—¬ 단계λ₯Ό μ„ΈλΆ„ν™”ν•˜μ˜€μœΌλ©°, μ‹€μ œ μΈ‘μ • 자료λ₯Ό 기반으둜 단계별 ν•˜μ€‘μ„ μΆ”μ‚° 및 μ μš©ν•˜μ˜€λ‹€. μ΅œμ’…μ μœΌλ‘œ μ‹€μ œ μ„ λ°•μ˜ μ™Έκ΄€ 손상과 해석 결과에 λŒ€ν•œ 비ꡐ μ‹œ μ „λ°˜μ μΈ 손상 κ²½ν–₯이 μΌμΉ˜ν•˜λŠ” 것을 확인 ν•  수 μžˆλ‹€. μ΄λŸ¬ν•œ κ²°κ³Όλ₯Ό λ°”νƒ•μœΌλ‘œ μ •λ¦½λœ 손상 평가 해석기법이 μ‹œκ°„ 및 경제적인 νš¨μœ¨μ„±μ„ ν™•λ³΄ν•˜λ©΄μ„œ λ™μ‹œμ— 손상 κ²½ν–₯에 λŒ€ν•œ 정확성을 μœ μ§€ν•  수 μžˆμŒμ„ κ²€μ¦ν•˜μ˜€λ‹€. 이λ₯Ό 톡해 ν–₯ν›„ λ°œμƒ κ°€λŠ₯ν•œ μΉ¨λͺ° 및 μΈμ–‘λ˜λŠ” μ„ λ°•μ˜ 손상 평가λ₯Ό 효과적으둜 μˆ˜ν–‰ν•¨μœΌλ‘œμ„œ, 사고 원인 νŒŒμ•… 및 μ˜ˆλ°©μ— κΈ°μ—¬ν•  κ²ƒμœΌλ‘œ κΈ°λŒ€λœλ‹€.The ship that operating at sea can be sunk by an unexpected accident, resulting in various side effects such as economic loss and marine environmental pollution. Especially, in the case of large passenger ships, a large amount of irreversible loss of life is accompanied, so efforts to prevent ship sinking accidents are more urgent. Basically, in order to prevent accidents, it is necessary to prioritize the identification of the cause of the accident. and in case of the external damage on shipwreck can be an important evidence to determine the cause of the accident. Therefore, evaluation of the external damage on shipwreck is necessary to determine the cause of the accident. In this study, the damage assessment for shipwreck appearance occurring during the lifting process from the sinking of the hull is to be performed through 3D structural analysis. The techniques for the damage assessment for shipwreck established as follows. First, situations in which major damage applied to the hull that may occur during the process from the sinking to the lifting are estimated. then with this, the load applied for each major situation is calculated and applied step by step in 3D structural analysis. because the sinking and lifting process takes a long time, so it is very inefficient in terms of time and economy to perform the analysis at once for the entire process. After that, each structural analysis result was continuously accumulated over time to maintain the accuracy of the analysis even the individual classified loads were applied independently with each analysis. The application of this continuous analysis technique was verified through a case study comparing the final damage state of the case to which the technique was applied and the case not applied to the simplified box shaped 3D model. At the last, an analysis was performed in which the above-established technique was applied to a 3D model using an actual sunk and lifted passenger ship as an example. At this time, the steps were subdivided in order to perform a quasi-static analysis of the sinking process occurring over a long period of time. then it can be confirmed that the overall damage tendency is consistent. when comparing the actual ship's external damage of the shipwreck and the analysis results, Based on these results, it was verified that the established impairment evaluation analysis technique can secure time and economic efficiency while maintaining the accuracy of the damage tendency. Furthermore, it is expected to contribute to the identification and prevention of the cause of accidents by effectively carrying out damage assessment of possible shipwreck and lifting ships.1. μ„œλ‘  1 1.1 연ꡬ λ°°κ²½ 및 λͺ©μ  1 1.2 λ…Όλ¬Έ ꡬ성 6 1.3 κ΄€λ ¨ 연ꡬ ν˜„ν™© 6 2. μΉ¨λͺ° 및 인양 κ³Όμ • λΆ„λ₯˜ 및 ν•˜μ€‘ 계산 9 2.1. μΉ¨λͺ° 및 인양 κ³Όμ • λΆ„λ₯˜ 9 2.2. μΉ¨λͺ° ν›„ μ°©μ €μ‹œ 좩돌 단계 10 2.3. μ°©μ € ν›„ μΉ¨ν•˜ 단계 11 2.4. 인양 단계 13 3. μ••μž… μ‹€ν—˜ κ²°κ³Ό 비ꡐλ₯Ό ν†΅ν•œ FE λͺ¨λΈ 검증 15 3.1. μ••μž… μ‹€ν—˜ 16 3.1.1 μ••μž… μ‹€ν—˜ ꡬ성 18 3.1.1 μ••μž… μ‹€ν—˜ 방법 19 3.2. μ••μž… μ‹€ν—˜ FE λͺ¨λΈ 20 3.2.1 μ••μž… μ‹€ν—˜ FE λͺ¨λΈ ꡬ성 20 3.2.2 μ••μž… μ‹€ν—˜ FE λͺ¨λΈ ꡬ성 21 3.3. κ²°κ³Ό 비ꡐ 22 4. λ‹¨μˆœ FE λͺ¨λΈμ„ ν†΅ν•œ 해석 연속 기법 검증 25 4.1. ν•΄μ„μ˜ 연속성 적용 기법 25 4.1.1 Deformed shape, Residual stress, Plastic strain import 28 4.1.2 Deformed shape import only 28 4.2. λ‹¨μˆœ FE λͺ¨λΈ ꡬ성 29 4.2.1 λ‹¨μˆœν™”λœ μΉ¨λͺ° 선체 FE λͺ¨λΈ 29 4.2.2 λ‹¨μˆœν™”λœ ν™”λ¬Ό FE λͺ¨λΈ 30 4.2.3 λ‹¨μˆœν™”λœ ν•΄μ €μ§€λ°˜ FE λͺ¨λΈ 31 4.2.4 λ‹¨μˆœν™”λœ 인양μž₯λΉ„ FE λͺ¨λΈ 32 4.2.5 λ‹¨μˆœν™”λœ FE λͺ¨λΈ λ¬Όμ„±μΉ˜ 33 4.3. λ‹¨μˆœ FE λͺ¨λΈ 해석 36 4.3.1 단계별 해석 방법 36 4.3.2 단계별 μž‘μš© ν•˜μ€‘ 39 4.3.3 해석 case의 μ„ μ • 39 4.4. 해석 Case 별 κ²°κ³Ό 및 비ꡐ 40 5. μ‹€μ œ 사고 사둀에 λŒ€ν•œ 기법 적용 42 5.1. 사고 μ„ λ°•μ˜ ν˜•μƒ 및 μ œμ› 43 5.2. 사고 μ„ λ°•μ˜ 손상 44 5.3. μ‹€μ œ 사고 사둀 해석 FE λͺ¨λΈ 46 5.3.1 사고 선체 FE λͺ¨λΈ 46 5.3.2 사고 μ„ λ°• 적재 ν™”λ¬Ό FE λͺ¨λΈ 47 5.3.3 ν•΄μ €μ§€λ°˜ FE λͺ¨λΈ 48 5.3.4 인양μž₯ꡬ FE λͺ¨λΈ 48 5.4. μ‹€μ œ 사고 사둀 해석 FE λͺ¨λΈ 49 5.4.1 μ‹€μ œ 선체 FE λͺ¨λΈ 단계별 해석 방법 49 5.4.2 μ‹€μ œ 사고 사둀 FE 해석 λͺ¨λΈ 적용 ν•˜μ€‘ 53 5.4.3 μ‹€μ œ 사고 사둀 FE 해석 case study μ„ μ • 55 5.4.4 FE λͺ¨λΈ 해석 κ²°κ³Ό case μ„ μ • 및 μ‹€μ œ 손상과 비ꡐ 56 6. κ²°λ‘  61 μ°Έκ³ λ¬Έν—Œ 63 Abstract 65Maste

    μˆ˜μ†Œ 자기곡λͺ…λΆ„κ΄‘μ—μ„œ λ”₯λŸ¬λ‹μ„ μ΄μš©ν•œ μ ˆλ‹¨λœ μžμœ μœ λ„κ°μ‡ λ‘œλΆ€ν„°μ˜ μŠ€νŽ™νŠΈλŸΌ 볡원

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μ˜κ³ΌλŒ€ν•™ μ˜κ³Όν•™κ³Ό,2020. 2. κΉ€ν˜„μ§„.Introduction: Reconstruction of the spectrum from a truncated free induction decay (tFID) has long been a challenging issue in NMR(nuclear magnetic resonance). A simple approach is to zero-fill the missing data followed by Fourier transform (FT). However, for a substantially truncated FID the resulting spectrum suffers from strong truncation artifact. To address this issue various signal processing algorithms have been reported. Deep learning has gained great attention due to its remarkable success in a variety of different fields including medical imaging. Among the artificial neural network classes in deep learning a convolutional neural network (CNN) is actively used in undersampled MRI(magnetic resonance imaging) reconstruction where the network is trained in the image-domain only or frequency-domain only. Given the promising results of the CNN-based undersampled MRI, we explored the potential applicability of CNNs in the reconstruction of the spectra from tFIDs in 1H-MRS. Methods: Rat brain FIDs were simulated at 9.4T based on in vivo data (n=11), and randomly truncated by retaining 8, 16, 32, 64, 128, 256, 512, and 1024 (null-truncation) points (denoted as tFID8, tFID16, … tFID1024). Using a U-net, three CNNs were individually trained (n=40,000) in time-domain only (FID-to-FID (FIDCNNFID)), in frequency-domain only (spectrum-to-spectrum (specCNNspec)), and across the domains (FID-to-spectrum (FIDCNNspec)) to map the truncated data to their fully sampled versions. The CNNs were tested on the simulated data (n=5,000) and the CNN with the best performance was further tested on the in vivo data, for which the CNN-predicted fully sampled data were analyzed using the LC model and the results were compared with those from the original, fully sampled data. Results: The best result on the simulated data was obtained with specCNNspec, which effectively recovered the spectral details even for those input spectra that appear as a hump due to substantial FID truncation (spectra from tFID16 and tFID32). Overall, its performance was significantly degraded on the in vivo data. Nonetheless, using specCNNspec, several coupled spins in addition to the major singlets can be quantified from tFID128 with the error no larger than 10%. Conclusion: Upon the availability of more realistically simulated training data, CNNs can also be used in the reconstruction of spectra from truncated FIDs.μ„œλ‘ : μ ˆλ‹¨λœ μžμœ μœ λ„κ°μ‡ (truncated free induction decay; tFID)λ‘œλΆ€ν„°μ˜ μŠ€νŽ™νŠΈλŸΌ 볡원은 ν•΅μžκΈ°κ³΅λͺ…(NMR)μ—μ„œ μ˜€λž«λ™μ•ˆ λ‚œν•΄ν•œ 이슈 쀑 ν•˜λ‚˜μ΄λ‹€. κ°„λ‹¨ν•œ 볡원 방법 쀑 ν•˜λ‚˜λŠ” λˆ„λ½λœ 데이터λ₯Ό 0으둜 μ±„μš°κ³  푸리에 λ³€ν™˜(fourier transform)을 μ‹€ν–‰ν•˜λŠ” λ°©λ²•μ΄μ§€λ§Œ, μ‹¬ν•˜κ²Œ μ ˆλ‹¨λœ μžμœ μœ λ„κ°μ‡ λ‘œλΆ€ν„°μ˜ μŠ€νŽ™νŠΈλŸΌμ€ μ ˆλ‹¨ 인곡물(truncation artifact)에 크게 영ν–₯을 λ°›λŠ”λ‹€. μ΄λŸ¬ν•œ 문제λ₯Ό ν•΄κ²°ν•˜κΈ° μœ„ν•΄ λ‹€μ–‘ν•œ μ‹ ν˜Έ 처리 μ•Œκ³ λ¦¬μ¦˜λ“€μ΄ 보고된 λ°” μžˆλ‹€. 졜근, λ”₯λŸ¬λ‹μ€ 의료 μ˜μƒμ„ ν¬ν•¨ν•œ λ‹€μ–‘ν•œ λΆ„μ•Όμ—μ„œ λ†€λž„λ§Œν•œ μ„±κ³Όλ₯Ό 거두며 큰 μ£Όλͺ©μ„ λ°›κ³  μžˆλ‹€. 특히, λ”₯λŸ¬λ‹μ—μ„œ 인곡 신경망 클래슀 쀑 ν•˜λ‚˜μΈ ν•©μ„±κ³± 신경망(convolutional neural network; CNN)은 μ˜μƒ μ˜μ—­(image-domain) λ˜λŠ” 주파수 μ˜μ—­(frequency-domain)μ—μ„œμ˜ ν•™μŠ΅μ„ 톡해 λΆˆμΆ©λΆ„ν•œ 데이터 point 수λ₯Ό 가진(undersampled) 자기곡λͺ…μ˜μƒ(MRI)의 볡원에 적극적으둜 이용되고 μžˆλ‹€. μ΄λŸ¬ν•œ ν•©μ„±κ³± μ‹ κ²½λ§μ˜ 자기곡λͺ…μ˜μƒ 볡원λŠ₯을 μ°Έκ³ ν•˜μ—¬, λ³Έ 논문은 μˆ˜μ†Œ 자기곡λͺ…λΆ„κ΄‘(1H-MRS)μ—μ„œ μ ˆλ‹¨λœ μžμœ μœ λ„κ°μ‡ λ‘œλΆ€ν„°μ˜ μŠ€νŽ™νŠΈλŸΌ λ³΅μ›μ—μ„œμ˜ ν•©μ„±κ³± μ‹ κ²½λ§μ˜ ν™œμš© κ°€λŠ₯성을 νƒκ΅¬ν•˜μ˜€λ‹€. 방법: 인곡 신경망 ν›ˆλ ¨μ„ μœ„ν•œ μžμœ μœ λ„κ°μ‡ λ“€μ€ 9.4T의 자기μž₯을 κΈ°μ€€μœΌλ‘œ λž«λ“œμ˜ λ‡Œ(Rat brain)λ‘œλΆ€ν„°μ˜ 생체(in vivo) 데이터λ₯Ό μ°Έκ³ ν•˜μ—¬ λͺ¨μ‚¬(simulation) λ˜μ—ˆκ³ , 총 1024개의 데이터 point μˆ˜μ—μ„œ 각각 8, 16, 32, 64, 128, 256, 512, 1024개의 데이터 point 수λ₯Ό 갖도둝 μž„μ˜λ‘œ μ ˆλ‹¨λ˜μ—ˆλ‹€. U-net을 μ΄μš©ν•˜μ—¬, 40,000개의 μ ˆλ‹¨λœ μžμœ μœ λ„κ°μ‡ λ“€μ„ μ™„μ „ν•œ 데이터 point 수λ₯Ό 가진 데이터(μžμœ μœ λ„κ°μ‡  λ˜λŠ” μŠ€νŽ™νŠΈλŸΌ)둜 λ³΅μ›ν•˜κΈ° μœ„ν•΄ 각각 μžμœ μœ λ„κ°μ‡ μ—μ„œ μžμœ μœ λ„κ°μ‡ λ‘œ(FID-to-FID (FIDCNNFID)), μŠ€νŽ™νŠΈλŸΌμ—μ„œ μŠ€νŽ™νŠΈλŸΌμœΌλ‘œ(spectrum-to-spectrum (specCNNspec)), μžμœ μœ λ„κ°μ‡ μ—μ„œ μŠ€νŽ™νŠΈλŸΌμœΌλ‘œ(FID-to-spectrum (FIDCNNspec)) 좜λ ₯ν•˜λŠ” μ„Έ κ°€μ§€μ˜ ν•©μ„±κ³± 신경망을 ν•™μŠ΅μ‹œμΌ°λ‹€. 이 μ„Έ 가지 ν•©μ„±κ³± 신경망듀은 일차적으둜 5,000개의 λͺ¨μ‚¬λœ λ°μ΄ν„°λ“€λ‘œ ν…ŒμŠ€νŠΈλ˜μ—ˆκ³ , κ°€μž₯ 쒋은 μ„±λŠ₯을 가진 ν•©μ„±κ³± 신경망을 μ„ λ³„ν•˜μ—¬ μ‹€μ œ μƒμ²΄μ—μ„œ 얻어진 λ°μ΄ν„°λ“€λ‘œ μΆ”κ°€ ν…ŒμŠ€νŠΈλ₯Ό μ§„ν–‰ν•˜μ˜€λ‹€. 그리고 κ·Έ ν•©μ„±κ³± μ‹ κ²½λ§μœΌλ‘œ λ³΅μ›λœ 데이터듀은 LC model을 μ΄μš©ν•˜μ—¬ λŒ€μ‚¬μ²΄ μ •λŸ‰λΆ„μ„μ„ μ§„ν–‰ν•˜μ—¬, κ·Έ μ •λŸ‰λΆ„μ„ κ²°κ³Όλ₯Ό μ›λž˜ λ°μ΄ν„°μ˜ LC model을 μ΄μš©ν•œ μ •λŸ‰λΆ„μ„ 결과와 λΉ„κ΅ν•˜μ˜€λ‹€. κ²°κ³Ό: λͺ¨μ‚¬λœ 데이터λ₯Ό ν†΅ν•œ ν…ŒμŠ€νŠΈμ—μ„œ, μŠ€νŽ™νŠΈλŸΌμ—μ„œ μŠ€νŽ™νŠΈλŸΌμœΌλ‘œ(specCNNspec)으둜 좜λ ₯ν•˜λŠ” ν•©μ„±κ³± 신경망이 κ°€μž₯ 쒋은 κ²°κ³Όλ₯Ό λ³΄μ—¬μ£Όμ—ˆλ‹€. 특히, 이 ν•©μ„±κ³± 신경망은 μžμœ μœ λ„κ°μ‡ μ˜ μ ˆλ‹¨μœΌλ‘œ 인해 거의 혹처럼 λ³΄μ΄λŠ” μž…λ ₯ μŠ€νŽ™νŠΈλŸΌλ“€κΉŒμ§€λ„ 효과적으둜 λ³΅μ›ν•˜μ˜€λ‹€. 생체 데이터λ₯Ό ν†΅ν•œ ν…ŒμŠ€νŠΈμ—μ„œλŠ” λͺ¨μ‚¬λœ 데이터λ₯Ό ν†΅ν•œ ν…ŒμŠ€νŠΈμ—μ„œλ§ŒνΌ 쒋은 κ²°κ³Όλ₯Ό μ–»μ§€λŠ” λͺ»ν•˜μ˜€λ‹€. κ·ΈλŸ¬λ‚˜, 128개의 데이터 point 수λ₯Ό 가진 μ ˆλ‹¨λœ μžμœ μœ λ„κ°μ‡ λ‘œλΆ€ν„° λ³΅μ›λœ μŠ€νŽ™νŠΈλŸΌμ˜ 경우, singlet으둜 κ΄€μΈ‘λ˜λŠ” λŒ€ν‘œμ μΈ λŒ€μ‚¬μ²΄λ“€λΏ μ•„λ‹ˆλΌ multiplet으둜 κ΄€μΈ‘λ˜λŠ” λͺ‡λͺ‡ λŒ€μ‚¬μ²΄λ“€μ— λŒ€ν•΄μ„œλ„ 10% 미만의 μ •λŸ‰ν™” 였λ₯˜λ₯Ό 얻을 수 μžˆμ—ˆλ‹€. κ²°λ‘ : 보닀 μ‹€μ œμ— κ°€κΉŒμš΄ λͺ¨μ‚¬ 데이터λ₯Ό λ„€νŠΈμ›Œν¬μ˜ ν•™μŠ΅μ— μ΄μš©ν•œλ‹€λ©΄, ν•©μ„±κ³± 신경망은 μ ˆλ‹¨λœ μžμœ μœ λ„κ°μ‡ λ‘œλΆ€ν„°μ˜ μŠ€νŽ™νŠΈλŸΌ 볡원에도 μ‚¬μš©λ  수 μžˆλ‹€.1. Introduction 1 2. Methods 3 3. Results 13 4. Discussion 26 5. Conclusion 35 6. References 36 7. ꡭ문초둝 42Maste

    Robust Road Following using Kalman Filter

    No full text
    Maste
    corecore