6 research outputs found

    ์˜์ƒ ๊ธฐ๋ฐ˜ ๊ธฐ๊ณ„ํ•™์Šต์„ ์ด์šฉํ•œ ๋ผ์ง€ ํ๋ณ‘๋ณ€์˜ ์ง„๋‹จ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ˆ˜์˜๊ณผ๋Œ€ํ•™ ์ˆ˜์˜ํ•™๊ณผ, 2018. 2. ๊น€์šฉ๋ฐฑ.์–‘๋ˆ ์„ ์ง„๊ตญ์—์„œ ๋„์ฒด๊ฒ€์‚ฌ๋Š” ์‹ํ’ˆ ์œ„์ƒ ๋ฐ ๋ผ์ง€ ์งˆ๋ณ‘ ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐ ๋ฐฉ์—ญ ๊ณ„ํš ์ˆ˜๋ฆฝ์— ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ํ˜„์žฌ ์ž„์ƒ ์ง„๋‹จ ์˜์—ญ์—์„œ ์ ์šฉ๋˜๊ณ  ์žˆ๋Š” ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ๋ฒ• ๊ธฐ๋ฐ˜์˜ ์ปดํ“จํ„ฐ ์ง„๋‹จ์„ ๋„์ฒด๊ฒ€์‚ฌ์— ์ ์šฉ์‹œํ‚จ๋‹ค๋ฉด ํ, ๊ฐ„, ์žฅ ๋“ฑ์˜ ์žฅ๊ธฐ ๊ฒ€์‚ฌ๋ฅผ ๋ณด๋‹ค ๊ฐœ์„  ์‹œํ‚ฌ ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์˜์ƒ ๊ธฐ๋ฐ˜ ์ง„๋‹จ ์‹œ์Šคํ…œ ๊ตฌ์ถ•์„ ์œ„ํ•œ ์„ ํ–‰์—ฐ๊ตฌ๋กœ์จ ๋ผ์ง€ ํ์˜ ์‚ฌ์ง„์„ ํ†ตํ•ด ํ‰๊ฐ€ํ•œ ํ๋ณ‘๋ณ€์ง€์ˆ˜์™€ ๊ธฐ๊ด€์ง€์„ฑ ํ๋ ด๊ณผ์˜ ์ƒ๊ด€์„ฑ์ด ์กฐ์‚ฌ๋˜์—ˆ๋‹ค. ํ ์กฐ์ง๊ณผ ํ๋ณ‘๋ณ€ ์ด๋ฏธ์ง€๋Š” ๋„์ถ•์žฅ์—์„œ ์ˆ˜์ง‘๋˜์—ˆ๋‹ค. ํ๋ณ‘๋ณ€๋ฅผ ํ†ตํ•ด ํ๋ผ๋ณ€์ง€์ˆ˜๊ฐ€ ํ‰๊ฐ€๋˜์—ˆ์œผ๋ฉฐ ์กฐ์ง๋ณ‘๋ฆฌํ•™์  ๊ฒ€์‚ฌ๋ฅผ ํ†ตํ•ด ํ๋ณ‘๋ณ€์€ ๊ธฐ๊ด€์ง€์„ฑํ๋ ด๊ณผ ๊ฐ„์งˆ์„ฑ ํ๋ ด์œผ๋กœ ๊ตฌ๋ถ„๋˜์—ˆ๋‹ค. ํ๋ณ‘๋ณ€ ์ง€์ˆ˜๋Š” 90% ์‹ ๋ขฐ๊ตฌ๊ฐ„์—์„œ ๊ธฐ๊ด€์ง€์„ฑ ํ๋ ด์— ๋Œ€ํ•ด 100%์˜ ๋ฏผ๊ฐ๋„์™€ 77.3%์˜ ํŠน์ด๋„๋ฅผ ์ง€๋‹ˆ๋Š” ๊ฒƒ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ๊ด€์ง€์„ฑํ๋ ด์˜ ์ง„๋‹จ์— ๋Œ€ํ•ด์„œ๋Š” ํŠน์ด๋„๊ฐ€ ๋‚ฎ์•˜๋‹ค. ์ˆ˜์‹ ์ž ์กฐ์ž‘ํŠน์„ฑ ๊ณก์„  ์•„๋ž˜ ๋ฉด์ ์€ 0.896์œผ๋กœ, ํ๋ณ‘๋ณ€ ์ง€์ˆ˜๋Š” ๊ธฐ๊ด€์ง€์„ฑ ํ๋ ด์— ๋Œ€ํ•œ ๊ฐ๋ณ„๋ ฅ์ด ์šฐ์ˆ˜ํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋˜์—ˆ๋‹ค. ์งˆ๋ณ‘ ํ์˜ ์‚ฌ์ง„์„ ํ†ตํ•œ ์‹œ๊ฐ์ •๋ณด๊ฐ€ ์Šคํฌ๋ฆฌ๋‹ ํ…Œ์ŠคํŠธ์— ์œ ์šฉํ•˜๊ฒŒ ์ž‘์šฉํ•˜์˜€์œผ๋ฏ€๋กœ, ํ ์‚ฌ์ง„์„ ํ•™์Šต ๋ฐ์ดํ„ฐ์ง‘ํ•ฉ์œผ๋กœ ๊ตฌ์„ฑํ•˜์—ฌ ์˜์ƒ ๊ธฐ๋ฐ˜ ๊ธฐ๊ณ„ํ•™์Šต์„ ํ†ตํ•œ ๋ผ์ง€ ํ๋ณ‘๋ณ€ ์ง„๋‹จ ๋ชจ๋ธ์„ ์ˆ˜๋ฆฝํ•˜์˜€๋‹ค. ํ๋ณ‘๋ณ€ ์ด๋ฏธ์ง€์™€ ํ ์กฐ์ง์€ ๋„์ถ•์žฅ์œผ๋กœ๋ถ€ํ„ฐ ์ˆ˜์ง‘๋˜์—ˆ์œผ๋ฉฐ, ํ ๋ณ‘๋ณ€์€ ์กฐ์ง๋ณ‘๋ฆฌํ•™์ ์œผ๋กœ ๊ธฐ๊ด€์ง€์„ฑ ํ๋ ด, ๊ฐ„์งˆ์„ฑ ํ๋ ด, ๊ทธ๋ฆฌ๊ณ  ํ‰๋ง‰์„ฑ ์งˆํ™˜๋“ค๋กœ ๋ถ„๋ฅ˜๋˜์—ˆ๋‹ค. ์ง„๋‹จ ๋ชจ๋ธ์„ ๊ตฌ์„ฑํ•จ์— ์žˆ์–ด ์‚ฌ์ง„์˜ ์ฃผ์š” ํŠน์ง•์ ์„ ์ถ”์ถœํ•˜๋Š” ๊ธฐ๋ฒ•์œผ๋กœ scale-invariant feature transform์ด ์ ์šฉ๋˜์—ˆ์œผ๋ฉฐ, ์ถ”์ถœ๋œ ํŠน์ง•์ ์„ ๋ถ„๋ฅ˜ํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ๊ณ„ํ•™์Šต ๋ถ„๋ฅ˜ ๊ธฐ๋ฒ•์œผ๋กœ k-nearest neighbor์ด ์ ์šฉ๋˜์—ˆ๋‹ค. ์ด๋ฏธ์ง€ ๊ธฐ๋ฐ˜์˜ ์ง„๋‹จ ๋ชจ๋ธ์€ ๊ธฐ๊ด€์ง€์„ฑ ํ๋ ด์— ๋Œ€ํ•ด์„œ 96.7%์˜ ๋†’์€ ๋ฏผ๊ฐ๋„์™€ 72.3%์˜ ํŠน์ด๋„, ๊ทธ๋ฆฌ๊ณ  82.0%์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, ๊ฐ„์งˆ์„ฑ ํ๋ ด์— ๋Œ€ํ•ด์„œ๋Š” 9.4%์˜ ๋†’์€ ํŠน์ด๋„์™€ 87.4%์˜ ์ •ํ™•๋„, ๊ทธ๋ฆฌ๊ณ  75.8%์˜ ๋ฏผ๊ฐ๋„๋ฅผ ๋ณด์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ‰๋ง‰์—ผ ๋ฐ ํ‰๋ง‰ ํ๋ ด์˜ ์ง„๋‹จ์— ์žˆ์–ด์„œ๋Š” ๋น„๊ต์  ๋‚ฎ์€ ์„ฑ๋Šฅ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋„์ถ•์žฅ์—์„œ์˜ ๋„์ฒด๊ฒ€์‚ฌ์— ์ปดํ“จํ„ฐ ๋ณด์กฐ์ง„๋‹จ์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํƒ€์ง„ํ•˜๋Š”, ์˜์ƒ ๊ธฐ๋ฐ˜ ๊ธฐ๊ณ„ํ•™์Šต์„ ์ด์šฉํ•œ ์žฅ๊ธฐ๊ฒ€์‚ฌ์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์–ป์–ด์ง„ ์ •๋ณด๋“ค์€ ์ˆ˜์˜ ์ง„๋‹จ ์˜์—ญ์—์„œ ์˜์ƒ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ปดํ“จํ„ฐ ๋„์ฒด๊ฒ€์‚ฌ์˜ ์ดˆ์„์ด ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Slaughter check system has been applied to improve food hygiene and swine health schemes in the countries with advanced swine industry. Lung inspection is the most critical part of the slaughter check system. Recent advance in computer vision technology has led to the development of computer-aided diagnosis (CAD). As a pilot study prior to organ inspection using CAD, the correlation between gross lung scoring and pathologic diagnosis was investigated. Lung tissues and their gross images were collected from slaughterhouses. The images were subjected to gross lung lesion scoring. Histopathologic examination was conducted to classify the lung lesions into bronchopneumonia and interstitial pneumonia. The gross lung lesion scoring revealed 100% of sensitivity and 77.3% of specificity for bronchopneumonia based on the 90% confidence interval. However, the specificity was low for the diagnosis of interstitial pneumonia. The area under receiver operation characteristic curve was 0.896, indicating a good discriminative performance of gross lung scoring for bronchopneumonia. Taken together, the data indicated that visual information of the photograph was useful to screen lung lesions. Further study was performed to establish a CAD model for swine pulmonary diseases. Lung tissues and the gross images were collected from the slaughterhouses and the lung lesions were histopathologically classified as bronchopneumonia, interstitial pneumonia, and pleural diseases. The scale-invariant feature transform algorithm was adopted to extract significant feature from the images. As a machine learning classification, k-nearest neighbor algorithm was applied to classify the extracted feature. For bronchopneumonia, the CAD model demonstrated the sensitivity of 96.7%, the specificity of 72.3 %, and accuracy of 82.0%. For interstitial pneumonia, the sensitivity was 75.8%, but the specificity and accuracy were high as 94.4% and 87.4%, respectively. However, it showed low performance for the diagnostic classification of pleural diseases. The present study provided a new approach of organ inspection through image-based machine learning, giving insight into application of CAD to slaughter check system. The data presented in this study could be a cornerstone for the development of computational image-based organ inspection system in veterinary diagnostics.LITERATURE REVIEW 1 Introduction 1 SRDCs in swine industry 2 CAD application into veterinary field 3 Computer vision and machine learning technique applied to CAD 4 Purpose of the present study 6 CHAPTER 1. EVALUATION OF CORRELATION BETWEEN GROSS LUNG SCORE AND MICROSCOPIC DIAGNOSIS FOR SWINE PNEUMONIA IN SLAUTHER HOUSES 7 Abstract 8 Introduction 9 Materials and methods 12 Collection of tissue samples and gross images from swine lung 12 Histopathological classification 12 Evaluation of visual lung score 13 Statistical analysis 13 Results 14 Visual inspection for primary classification of swine pneumonia 14 Histopathological examination for confirmative diagnosis 14 Analysis of visual lung score between histopathologically classified bronchopneumonia and interstitial pneumonia 15 Diagnostic assessment of visual lung score method for pneumonia classification 16 Discussion 24 CHAPTER 2. CLASSIFICATION OF SWINE LUNG LESIONS BY A COMPUTER-AIDED DIAGNOSTIC MODEL CREATED USING IMAGE-BASED MACHINE LEARNING ALGORITHM 29 Abstract 30 Results 39 Discussion 53 Conclusion 59 References 60 ๊ตญ๋ฌธ์ดˆ๋ก 71Maste

    A Study on Multi-layered Expressions of Identity Marks

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๋””์ž์ธํ•™๋ถ€,2007.Maste
    corecore