15 research outputs found

    ํ•ญ๊ธฐ์ €๋ง‰์‚ฌ๊ตฌ์ฒด์‹ ์—ผ์—์„œ Clin three-requiring 9๊ณผ Th17 ๊ฒฝ๋กœ ์œ ๋ฐœ ์—ผ์ฆ๊ณผ์˜ ๊ด€๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์˜ํ•™๊ณผ, 2017. 2. ์ง„ํ˜ธ์ค€.T helper 17 (Th17) lymphocytes promote renal inflammation in anti-glomerular basement membrane glomerulonephritis (anti-GBM GN), and signal transducer and activator of transcription 3 (STAT3) mediates activation of Th17 lymphocytes by interleukin 6 (IL-6) and transforming growth factor beta (TGFฮฒ). Clin three requiring 9 (Ctr9), a subunit of RNA polymerase-associated factor complex (PAFc), regulates the transcription of IL-6/STAT3-dependent genes. Here, the role of Ctr9 in regulating Th17-driven inflammation was investigated in anti-GBM GN. In mice, STAT3ฮฒ or IL-17 knockout ameliorated anti-GBM autoantibody-induced renal injury. This phenomenon was associated with decreases in retinoic acid receptor-related orphan receptor ฮณt (RORฮณt), IL-17, phosphorylated STAT3, and pro-inflammatory cytokines. Compared with wild-type mice, Ctr9 increased in both STAT3ฮฒ-/- and IL-17-/- mice injected with anti-GBM IgG, showing a negative correlation with Th17-related transcripts. Small interfering RNA (siRNA)-mediated knockdown of Ctr9 in intrarenal lymphocytes further upregulated Th17-related transcripts, consistent with repression of Th17 differentiation by Ctr9. Interestingly, Ctr9 was also expressed in human and mouse mesangial cells and downregulated in response to anti-GBM IgG or to TGFฮฒ plus IL-17. Ctr9 in mesangial cells was even more repressed in the presence of both anti-GBM IgG and Th17-activating cytokines. Consistent with these findings, renal biopsies obtained from patients with anti-GBM GN showed consistent downregulation of Ctr9 and upregulation of phosphorylated STAT3 and IL-17 in the glomerulus. In this study, Ctr9 is associated with suppression of Th17 differentiation in anti-GBM GN and repressed by anti-GBM IgG and IL-17 in mesangial cells. This is the first study to examine the association between Ctr9 and Th17 driven renal inflammation in anti-GBM GN. Further study should be considered to clarify whether Ctr9 has an impact on Th17 pathway as a transcriptional regulator in anti-GBM GN.Introduction 1 MATERIALS AND METHODS 11 RESULTS 23 DISCUSSION 65 REFERENCES 71 ๊ตญ๋ฌธ์ดˆ๋ก 79Docto

    Long-term patient and renal survivals and their predictable factor analyses in IgA nephropathy patients

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์˜ํ•™๊ณผ, 2012. 2. ๊น€์„ฑ๊ถŒ.Backgraound: Although the clinical progression is generally indolent, IgA nephropathy has contributed to development of end stage renal disease (ESRD). However, it remains to be determined which factors predict renal progression. Moreover, in neither study were there any reports of patient survival in IgA nephropathy. Therefore, this investigation was performed to determine highly predictable clinical or pathologic factors about definitive outcomes such as ESRD or death, taking advantage of our vast experience with IgA nephropathy patients. Materials and Methods: We collected clinical and pathological characteristics on 1,374 biopsy proven IgA nephropathy patients whose ages were 15 years or more between 1979 and 2008. Outcomes included patient and renal death (ESRD), of which data were acquired from medical record, the Statistics Korea for patient death, and the Korean Registry of ESRD for renal death. Survival analyses were performed using Cox proportional hazard model, and standardized mortality ratios were calculated. Results: A total of 15,022 patient-years were observed for patient death. 5.9% of IgA nephropathy patients died during mean 11 year follow up periods. Age, high blood pressure, impaired renal function and combined malignancy were significant predictors of patient death. In our study, IgA nephropathy patients showed similar survival rate compared to age/sex matched general population. Moreover, patients with ESRD progression were showed better survival rate compared to other ESRD population. ESRD progression was observed in 283 (20.9%) patients. In the multivariate analyses, initial renal dysfunction, proteinuria, anemia, co-morbid cancer, global sclerosis 20% and over, and pathologic grade IV or V were independent predictor of ESRD progression. 10-year renal survival rate was 81.0%, 20-year was 69.2%, and 30-year was 65.4%, respectively. Conclusion: IgA nephropathy patients showed similar mortality rate compared to general population. Moreover, the survival rate was better than general ESRD population, even after renal death. Meticulous general medical care seemed to be more essential to survival than severity of disease in IgA nephropathy.IgA ์‹ ์ฆ์€ ๋Œ€์ฒด๋กœ ์„œ์„œํžˆ ์ง„ํ–‰ํ•˜๋Š” ์ž„์ƒ ๊ฒฝ๊ณผ๋ฅผ ๋ณด์ด์ง€๋งŒ, ์—ฌ์ „ํžˆ ๋ง๊ธฐ์‹ ๋ถ€์ „์˜ ๋ฐœ์ƒ์— ์ค‘์š”ํ•œ ์›์ธ์˜ ํ•˜๋‚˜์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ง๊ธฐ์‹ ๋ถ€์ „์œผ๋กœ์˜ ์ง„ํ–‰์„ ์˜ˆ์ธกํ•˜๋Š” ์š”์ธ์ด ์•„์ง๊นŒ์ง€ ๋ช…ํ™•ํ•˜์ง€ ์•Š์œผ๋ฉฐ, ๋”๊ตฌ๋‚˜ ํ™˜์ž ์‚ฌ๋ง์— ๊ด€๋ จ๋œ ์—ฐ๊ตฌ๋Š” ์ด์ „์— ์ง„ํ–‰๋œ ๋ฐ”๊ฐ€ ์—†๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” IgA ์‹ ์ฆ ํ™˜์ž์—์„œ ๋ง๊ธฐ์‹ ๋ถ€์ „์œผ๋กœ์˜ ์ง„ํ–‰ ๋ฐ ํ™˜์ž ์‚ฌ๋ง์˜ ๋ฐœ์ƒ์œจ ๋ฐ ์œ„ํ—˜ ์ธ์ž๋ฅผ ์˜ˆ์ธกํ•ด ๋ณด๊ณ ์ž ํ•˜์˜€๋‹ค. 1979๋…„๋ถ€ํ„ฐ 2008๋…„๊นŒ์ง€ ์„œ์šธ๋Œ€ํ•™๊ต๋ณ‘์›์—์„œ ๊ฒฝํ”ผ์  ์‹ ์ƒ๊ฒ€์œผ๋กœ IgA ์‹ ์ฆ์„ ์ง„๋‹จ๋ฐ›์€ 1,374๋ช…์˜ ํ™˜์ž๋“ค ๋Œ€์ƒ์œผ๋กœ ํ•˜์—ฌ, ์กฐ์ง๊ฒ€์‚ฌ ๋‹น์‹œ์˜ ์ž„์ƒ ์–‘์ƒ๊ณผ ๋ณ‘๋ฆฌํ•™์  ํŠน์ง•์„ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ๋Œ€์ƒ ํ™˜์ž๋“ค์ด ๋ง๊ธฐ์‹ ๋ถ€์ „์œผ๋กœ ์ง„ํ–‰ํ•˜๊ฑฐ๋‚˜ ์‚ฌ๋งํ•˜๋Š” ๊ฒฝ์šฐ๊นŒ์ง€ ์ถ”์  ๊ด€์ฐฐํ•˜์—ฌ ์‹ ์žฅ ์ƒ์กด ๋ฐ ํ™˜์ž ์ƒ์กด์˜ ๋ฐœ์ƒ๋ฅ  ๋ฐ ์˜ˆ์ธก ์ธ์ž๋ฅผ ๋ถ„์„ํ•˜์˜€๊ณ , ์šฐ๋ฆฌ๋‚˜๋ผ ํ†ต๊ณ„์ฒญ ์‚ฌ๋ง ์ž๋ฃŒ๋ฅผ ์ด์šฉํ•˜์—ฌ, ์ผ๋ฐ˜ ์ธ๊ตฌ์ง‘๋‹จ ๋Œ€๋น„ IgA ์‹ ์ฆ ํ™˜์ž์˜ ํ‘œ์ค€ํ™” ์‚ฌ๋ง๋ฅ ์„ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ์ด 15,022 ํ™˜์ž ๋…„์ˆ˜ (patient-years) ๋™์•ˆ ๊ด€์ฐฐํ•œ ๊ฒฐ๊ณผ ์ด 76๋ช… (5.9%)์˜ ํ™˜์ž๊ฐ€ ์‚ฌ๋งํ•˜์˜€๋‹ค. ์‚ฌ๋ง์— ์œ ์˜ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๋ณ€์ˆ˜๋Š” ๊ณ ๋ น, ๊ณ ํ˜ˆ์••, ์ง„๋‹จ ๋‹น์‹œ ์‹ ๊ธฐ๋Šฅ ์ €ํ•˜์™€ ๋™๋ฐ˜๋œ ์•…์„ฑ ์ข…์–‘์˜ ๋ณ‘๋ ฅ์ด์—ˆ๋‹ค. IgA ์‹ ์ฆ ํ™˜์ž์—์„œ ๋‚˜์ด์™€ ์„ฑ๋ณ„์„ ๊ณ ๋ คํ•œ ํ‘œ์ค€ํ™” ์‚ฌ๋ง๋ฅ ์„ ์ผ๋ฐ˜์ธ๊ตฌ ์ง‘๋‹จ๊ณผ ๋น„๊ตํ•˜์˜€์„ ๋•Œ, ์ƒ์กด๋ฅ ์˜ ์ฐจ์ด๋Š” ์œ ์˜ํ•˜์ง€ ์•Š์•˜๋‹ค. ๋ง๊ธฐ์‹ ๋ถ€์ „์œผ๋กœ ์ดํ–‰ํ•˜๊ธฐ ์ „์— ์‚ฌ๋งํ•œ ๊ฒฝ์šฐ (52%), ์•…์„ฑ ์ข…์–‘์ด ์ฃผ๋œ ์‚ฌ๋ง ์›์ธ์ด์—ˆ๋‹ค. ๋ง๊ธฐ์‹ ๋ถ€์ „์œผ๋กœ ์ดํ–‰ํ•œ ํ›„์—๋„ ์ผ๋ฐ˜์ ์ธ ๋ง๊ธฐ์‹ ๋ถ€์ „์— ๋น„ํ•ด ์–‘ํ˜ธํ•œ ํ™˜์ž ์ƒ์กด์œจ์„ ๋ณด์˜€๋‹ค. ์‹ ์žฅ ์ƒ์กด์œจ์€ 10๋…„์— 81.0%, 20๋…„์— 69.2%, 30๋…„์— 65.4% ์˜€์œผ๋ฉฐ, ์‹ ์žฅ ์‚ฌ๋ง์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ธ์ž๋Š” ์ง„๋‹จ ๋‹น์‹œ ์‹ ๊ธฐ๋Šฅ ์ €ํ•˜, ๋‹จ๋ฐฑ๋‡จ, ๋นˆํ˜ˆ, ๋™๋ฐ˜๋œ ์•…์„ฑ ์ข…์–‘, ์กฐ์ง ๊ฒ€์‚ฌ์—์„œ ๋ฐœ๊ฒฌ๋œ 20% ์ด์ƒ์˜ ์‚ฌ๊ตฌ์ฒด ๊ฒฝํ™” ๋ฐ 4๋‹จ๊ณ„ ์ด์ƒ์˜ ๋ณ‘๋ฆฌ ์กฐ์ง ์†Œ๊ฒฌ์ด์—ˆ๋‹ค. IgA ์‹ ์ฆ ํ™˜์ž๋Š” ์ผ๋ฐ˜ ์ธ๊ตฌ ์ง‘๋‹จ๊ณผ ์œ ์‚ฌํ•œ ์ƒ์กด์œจ์„ ๋ณด์˜€์œผ๋ฉฐ, ์•…์„ฑ ์ข…์–‘์ด ์‚ฌ๋ง์˜ ์ค‘์š”ํ•œ ์›์ธ์ด์—ˆ๋‹ค. IgA ์‹ ์ฆ ํ™˜์ž์˜ ์ƒ์กด์—๋Š” ์‹ ๊ธฐ๋Šฅ ์ด์™ธ์—๋„ ํ˜ˆ์••๊ณผ ์•…์„ฑ ์ข…์–‘ ๋“ฑ์ด ์ค‘์š”ํ•˜๋ฉฐ, ๋ง๊ธฐ์‹ ๋ถ€์ „์œผ๋กœ์˜ ์ดํ–‰์—๋„ ์•…์„ฑ ์ข…์–‘๊ณผ ๋นˆํ˜ˆ ๋“ฑ์˜ ์š”์ธ์ด ์ค‘์š”ํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ IgA ์‹ ์ฆ ํ™˜์ž๋Š” ์‹ ์žฅ ์งˆํ™˜์˜ ์น˜๋ฃŒ๋ฟ ์•„๋‹ˆ๋ผ ์ „๋ฐ˜์ ์ด๊ณ  ๋ฉด๋ฐ€ํ•œ ๊ฑด๊ฐ• ์ƒํƒœ์˜ ๊ด€๋ฆฌ๊ฐ€ ์ค‘์š”ํ•  ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค.Maste

    W. A. Mozart 10 Variationen K. 455 Unser dummer Pรถbel meint J. Brahms Piano Sonata No.3 in F Minor, Op.5, C. Debussy Estampes

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์Œ์•…๊ณผ, 2011.2. ๋ฌธ์ต์ฃผ.Maste

    -์‹ ๋ฌธ์ž๋ฃŒ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ-

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฌํšŒ๊ณผํ•™๋Œ€ํ•™ ์‹ฌ๋ฆฌํ•™๊ณผ, 2019. 2. ์˜ค์„ฑ์ฃผ.๊ตญ๋ฌธ์ดˆ๋ก ๊ธ€๊ณผ ๊ทธ๋ฆผ์€ ์šฐ๋ฆฌ๊ฐ€ ์˜๋ฏธ๋ฅผ ์ฃผ๊ณ ๋ฐ›๊ณ  ๊ธฐ๋กํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉํ•˜๋Š” ์ˆ˜๋‹จ์œผ๋กœ ์ผ์ƒ์—์„œ ํ•จ๊ป˜ ์‚ฌ์šฉ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ด‘๋ฒ”์œ„ํ•œ ํ™œ์šฉ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ํ‰๋ฉด์ƒ์—์„œ์˜ ๋‘˜์˜ ๊ด€๊ณ„์— ๋Œ€ํ•ด ์‚ดํŽด๋ณด๋Š” ์—ฐ๊ตฌ๋Š” ๋งŽ์ง€ ์•Š๋‹ค. ์ด์™€ ๊ด€๋ จํ•ด ๊ธฐ์กด์˜ ์—ฐ๊ตฌ๋“ค์€ ๊ธ€ ์ฝ๊ธฐ/์“ฐ๊ธฐ ๋ฐฉํ–ฅ์˜ ์Šต๊ด€์ด ๊ทธ๋ฆผ์˜ ๋ฐฉํ–ฅ ์„ ํ˜ธ์— ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค๊ณ  ์ฃผ์žฅํ•ด์™”์ง€๋งŒ ๋ฌธํ™”์ , ์‹œ๋Œ€์  ์ œ์•ฝ์œผ๋กœ ์ธํ•ด ๋‘˜์˜ ๊ด€๊ณ„๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ์•Œ์•„๋ณด๊ธฐ ์–ด๋ ค์› ๋‹ค. ํ•œ๊ตญ์€ 19์„ธ๊ธฐ ์ดํ›„ 100์—ฌ๋…„์— ๊ฑธ์ณ ์ฝ๊ธฐ/์“ฐ๊ธฐ ๋ฐฉํ–ฅ์ด ์™ผ์ชฝ์—์„œ ์˜ค๋ฅธ์ชฝ์œผ๋กœ ์ ์ง„์ ์œผ๋กœ ๋ณ€ํ™”ํ•ด์™”๋‹ค. ์ด๋ฅผ ์œ„ํ•ด, ์ฝ๊ธฐ/์“ฐ๊ธฐ ๋ฐฉํ–ฅ์ด ์ง€๋‚œ ์„ธ๊ธฐ์— ๊ฑธ์ณ ์™ผ์ชฝ์—์„œ ์˜ค๋ฅธ์ชฝ์œผ๋กœ ๋ฐ”๋€ ํ•œ๊ตญ์˜ ์‹ ๋ฌธ ์ž๋ฃŒ๋ฅผ ์‚ดํŽด๋ณด์•˜๋‹ค. ์—ฐ๋Œ€์— ๋”ฐ๋ผ ์‚ฌ์ง„ ๊ทธ๋ฆผ๊ณผ ์† ๊ทธ๋ฆผ์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ์† ๊ทธ๋ฆผ์˜ ๋ฐฉํ–ฅ์€ ์™ผ์ชฝ์—์„œ ์˜ค๋ฅธ์ชฝ์œผ๋กœ ๋ฐ”๋€Œ๋Š” ๊ฒฝํ–ฅ์ด ๋šœ๋ ทํ•œ ๋ฐ˜๋ฉด, ์‚ฌ์ง„ ๊ทธ๋ฆผ์˜ ๋ฐฉํ–ฅ์—๋Š” ๋ณ€ํ™”๋Š” ๊ฑฐ์˜ ๊ด€์ฐฐ๋˜์ง€ ์•Š์•˜๋‹ค. ์ด๋Š” ๊ทธ๋ฆผ ํ˜•์‹์— ๋”ฐ๋ผ ์ฝ๊ธฐ/์“ฐ๊ธฐ ๋ฐฉํ–ฅ์˜ ์˜ํ–ฅ์ด ๋‹ค๋ฆ„์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋‘ ๊ฐ€์ง€ ๋งฅ๋ฝ์—์„œ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ ์‚ฌ๋žŒ๋“ค์˜ ์Šต๊ด€ํ™”๋œ ๊ธ€์ฝ๊ธฐ/์“ฐ๊ธฐ์˜ ๋ฐฉํ–ฅ์ด ์†๊ทธ๋ฆผ ๋ฐฐ์—ด์— ์˜ํ–ฅ์„ ๋ฏธ์นœ ํฐ ๋งฅ๋ฝ๊ณผ ํ‰๋ฉด์ƒ์˜ ์‹ ๋ฌธ์—์„œ ์ฃผ์–ด์ง„ ๊ธ€์ž์˜ ๋ฐฉํ–ฅ์ด ์ธ์ ‘ํ•œ ์†๊ทธ๋ฆผ์˜ ๋ฐฐ์—ด์— ์˜ํ–ฅ์„ ๋ฏธ์นœ ์ž‘์€ ๋งฅ๋ฝ์œผ๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ, ์ฝ๊ธฐ/์“ฐ๊ธฐ ๋ฐฉํ–ฅ์˜ ๋ณ€ํ™”๋Š” ๊ทธ๋ฆผ ๋ฐฐ์—ด ์Šต๊ด€์— ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€๋งŒ, ๊ทธ ์˜ํ–ฅ์€ ๊ทธ๋ฆผ์˜ ์ข…๋ฅ˜์— ๋”ฐ๋ผ ์ œํ•œ๋œ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค.Letters and pictures are commonly used together as a tool to exchange meanings and to record. However, despite such vast use, there has not been much research investigating the relationship between the two. Past researches argued that the reading/writing directional habit affect preference on the direction of pictures, but due to cultural and periodical limits, it has been hard to accurately find out the relation. Correlations for this phenomenon have only been found in cross-cultural studies. Will a directional change in reading/writing habits within a culture relate to changes in picture preference? Korea is a good place to research this question because the country underwent gradual changes in reading/writing direction habits, from leftward to rightward, during the 20th century. In this study, we analyzed the direction of drawings and photos published in the a oldest newspaper in Korea from 1920โ€“2013. The results show that the direction of the drawings underwent a clear shift from the left to the right, but the direction of the photos did not change. This finding suggests a close psychological link between the habits of reading/writing and drawing that cannot be accounted for simply by an accidental correspondence across different cultures. Such can be explained in two terms, one is in larger terms, that the direction of people's reading/writing habit affect the arrangment of hand-drawings. And in closer terms, that the direction of written letters on plain newspaper affect the arrangement of nearby hand-drawings. In conclusion, change in reading/writing direction affect the habit of picture arrangement, but its effect seems to be limited depending on the type of pictures.์ œ 1 ์žฅ ์„œ๋ก , ์ด๋ก ์  ๋ฐฐ๊ฒฝ ๋ฐ ์„ ํ–‰์—ฐ๊ตฌ์˜ ๊ณ ์ฐฐ . 1 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  .1 ์ œ 2 ์ ˆ ๊ธ€์ž์™€ ๊ทธ๋ฆผ์—์„œ์˜ ๋ฐฉํ–ฅ์„ฑ ์—ฐ๊ตฌ ๊ฐœ๊ด„ 3 ์ œ 3 ์ ˆ ์‹ ๋ฌธ ๋ฐฉํ–ฅ ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ . 6 ์ œ 4 ์ ˆ ํ•œ๊ธ€๊ณผ ์‹ ๋ฌธ์˜ ์ฝ๊ธฐ/์“ฐ๊ธฐ ๋ณ€ํ™˜ ๊ณผ์ • . 7 ์ œ 5 ์ ˆ ์—ฐ๊ตฌ ๊ฐ€์„ค 17 ์ œ 2 ์žฅ ์—ฐ๊ตฌ๋ฐฉ๋ฒ• . 19 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ ๋Œ€์ƒ . 19 ์ œ 2 ์ ˆ ์ธก์ • ๋ฐฉ๋ฒ• ๋ฐ ์ ˆ์ฐจ . 19 ์ œ 3 ์ ˆ ์ž๋ฃŒ ๋ถ„์„ . 21 ์ œ 3 ์žฅ ๊ฒฐ๊ณผ . 22 ์ œ 1 ์ ˆ 10๋…„๋‹จ์œ„ ์—ฐ๋„์ง‘๋‹จ . 22 ์ œ 2 ์ ˆ 4์‹œ๊ธฐ์˜ ๊ธฐ๊ฐ„๋ณ„ ๋ถ„์„ . 28 ์ œ 4 ์žฅ ๋…ผ์˜ 37 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ ์š”์•ฝ . 37 ์ œ 2 ์ ˆ ํ•ด์„ 38 ์ œ 3 ์ ˆ ์ถ”๊ฐ€ ๋…ผ์˜ . 40 ์ œ 4 ์ ˆ ์—ฐ๊ตฌ ์˜์˜์™€ ํ•œ๊ณ„ . 41 ์ฐธ๊ณ  ๋ฌธํ—Œ 44 Abstract 47 ๋ถ€๋ก : ์‹ ๋ฌธ ์†๊ทธ๋ฆผ๊ณผ ์‚ฌ์ง„ ์˜ˆ์‹œ . 1Maste

    Development of Pyrene-modified Fluorescent Probes Based on Nucleic Acid Structures

    No full text
    Doctorํ•ต์‚ฐ ๊ตฌ์กฐ์— ๊ธฐ๋ฐ˜ํ•œ ํ˜•๊ด‘ ํ”„๋กœ๋ธŒ ์‹œ์Šคํ…œ์€ ์„œ์—ด์— ๋”ฐ๋ผ ์˜ˆ์ธก ๊ฐ€๋Šฅํ•œ ์ด์ฐจ๊ตฌ์กฐ๋ฅผ ์ด๋ฃฐ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ƒ๋ฌผํ•™์ ์œผ๋กœ ์ค‘์š”ํ•œ ํ•ต์‚ฐ๋“ค์„ ํƒ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ์ˆ˜๋‹จ์œผ๋กœ ์‚ฌ์šฉ๋˜์–ด ์™”๋‹ค. ํ•ต์‚ฐ ์‹œ์Šคํ…œ์—์„œ ํ•ต์‚ฐ์˜ ์„œ์—ด๊ณผ ํ˜•๊ด‘์ฒด์˜ ๋„์ž… ์œ„์น˜๋ฅผ ์กฐ์ ˆํ•จ์œผ๋กœ์จ ํ•ต์‚ฐ์— ๋„์ž…๋œ ํ˜•๊ด‘์ฒด ๊ฐ„ ๋˜๋Š” ํ˜•๊ด‘์ฒด์™€ ๋‹ค๋ฅธ ๋ถ„์ž ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ์กฐ์ ˆํ•˜์—ฌ ์˜๋„๋œ ๊ด‘๋ฌผ๋ฆฌ์  ๋ฐ ๊ตฌ์กฐ์  ํŠน์„ฑ์„ ์œ ๋„ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฐ˜๋ณต ์„œ์—ด์„ ๊ฐ€์ง„ DNA, miRNA, mRNA์™€ ๊ฐ™์€ ํ•ต์‚ฐ๋“ค์„ ํƒ์ง€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๋†’์€ ์–‘์ž์ˆ˜์œจ๊ณผ ํ•ต์‚ฐ์˜ ๊ตฌ์กฐ์— ๋”ฐ๋ผ ํŠน์ง•์ ์ธ ํ˜•๊ด‘์„ ๋ฐœ์‚ฐํ•˜๋Š” ํŒŒ์ด๋ Œ์ด ๋„์ž…๋œ ๋‰ดํด๋ ˆ์˜ค์‹œ๋“œ๋ฅผ ์ด์šฉํ•˜์˜€์œผ๋ฉฐ, ํ™”ํ•™์ ์œผ๋กœ ๋ณ€ํ˜•๋œ ๋‰ดํด๋ ˆ์˜ค์‹œ๋“œ๋ฅผ ๋‹ค์–‘ํ•œ ๊ตฌ์กฐ์˜ ํ•ต์‚ฐ์— ๋„์ž…ํ•˜์—ฌ (1) ์ฝ”ํ•„๋ฆฐ mRNA์˜ 3'-UTR, (2) AAG ์‚ผ์—ผ๊ธฐ ๋ฐ˜๋ณต์„œ์—ด, (3) ๋‹ค์–‘ํ•œ miRNA๋ฅผ ํƒ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ํ˜•๊ด‘ ํ•ต์‚ฐ ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. Chapter I. Hybridization์— ๋ฏผ๊ฐํ•œ ํ˜•๊ด‘ ํ”„๋กœ๋ธŒ๋ฅผ ์ด์šฉํ•œ ์ฝ”ํ•„๋ฆฐ mRNA์˜ ํƒ์ง€ ์ฃผ๋ณ€ ํ™˜๊ฒฝ์— ๋ฏผ๊ฐํ•œ ํ˜•๊ด‘ ๋‰ดํด๋ ˆ์˜ค์‹œ๋“œ์ธ PyU๋ฅผ ํ”„๋กœ๋ธŒ ์„œ์—ด์— ๋„์ž…ํ•˜์—ฌ ์‹ ๊ฒฝ์„ธํฌ์—์„œ ์‹ ํ˜ธ ์ „๋‹ฌ์— ๊ด€๋ จ๋œ ์ฝ”ํ•„๋ฆฐ mRNA๋ฅผ ํƒ์ง€ํ•˜๋Š” ํ˜•๊ด‘ ํ•ต์‚ฐ ํ”„๋กœ๋ธŒ ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ํ˜•๊ด‘์ฒด๊ฐ€ ๋„์ž…๋œ ํ”„๋กœ๋ธŒ์˜ ๋ฐฐ๊ฒฝ ์‹ ํ˜ธ๋ฅผ ๋‚ฎ์ถ”๊ธฐ ์œ„ํ•˜์—ฌ PyU ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ํ†ตํ•ด ๋†’์€ ์†Œ๊ด‘ ํšจ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ๋ถ€๋ถ„ ์ด์ค‘๋‚˜์„  ๊ตฌ์กฐ๋ฅผ ์ ์šฉํ•˜์˜€๋‹ค. ์ด์ „์˜ ์†Œ๊ด‘์ฒด๊ฐ€ ์—†๋Š” ๋ถ„์ž ๋น„์ปจ์€ ํŠน์ • ๋ฐ˜๋ณต์„œ์—ด์—๋งŒ ์ ์šฉ์ด ๊ฐ€๋Šฅํ•˜์˜€์ง€๋งŒ, ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœ๋œ ํ˜•๊ด‘ ํ•ต์‚ฐ ํ”„๋กœ๋ธŒ๋Š” ๋ถ€๋ถ„ ์ด์ค‘๋‚˜์„  ๊ตฌ์กฐ์˜ ๋„์ž…์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์„œ์—ด์„ ๊ฐ–๋Š” ํ‘œ์  RNA์—๋„ ์ ์šฉ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ถ€๋ถ„ ์ด์ค‘๋‚˜์„  ํ”„๋กœ๋ธŒ์™€ ํ‘œ์  RNA์™€์˜ ์„œ์—ด ์žฌ๋ฐฐ์น˜๋ฅผ ํ†ตํ•ด ๋†’์€ ํ˜•๊ด‘ ํ–ฅ์ƒ์„ ์ดˆ๋ž˜ํ•œ๋‹ค. Chapter II. AAG ์‚ผ์—ผ๊ธฐ ๋ฐ˜๋ณต์„œ์—ด ํƒ์ง€๋ฅผ ์œ„ํ•œ ์‚ผ์ค‘๋‚˜์„ ์— ๊ธฐ๋ฐ˜ํ•œ PyA-๋ณ€ํ˜• ๊ตฌ์•„๋‹Œ ํด๋Ÿฌ์Šคํ„ฐ ์‚ผ์ค‘๋‚˜์„ ๊ณผ PyA-๋ณ€ํ˜• ๊ตฌ์•„๋‹Œ ํด๋Ÿฌ์Šคํ„ฐ (G-ํด๋Ÿฌ์Šคํ„ฐ)์˜ ์กฐํ•ฉ์€ DNA AAG ๋ฐ˜๋ณต์„œ์—ด์„ ๊ฒ€์ถœํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํ˜•๊ด‘ ํ•ต์‚ฐ ํ”„๋กœ๋ธŒ ์‹œ์Šคํ…œ์„ ์ œ์‹œ ํ•˜์˜€๋‹ค. AAG ๋ฐ˜๋ณต์„œ์—ด๊ณผ ์ด์— ์ƒ๋ณด์ ์ธ ์„œ์—ด๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ ์ค‘์„ฑ pH์—์„œ ํŠน์ด์ ์œผ๋กœ ์•ˆ์ •ํ™”๋˜๋Š” ์‚ผ์ค‘๋‚˜์„  ๊ตฌ์กฐ๋ฅผ ํ”„๋กœ๋ธŒ ๊ตฌ์กฐ๋กœ ์„ ํƒํ•˜์˜€๋‹ค. PyA๊ณผ ์ด์›ƒํ•œ ๊ตฌ์•„๋‹Œ ์—ผ๊ธฐ๋“ค๋กœ ๊ตฌ์„ฑ๋œ G-ํด๋Ÿฌ์Šคํ„ฐ๋Š” A-ํด๋Ÿฌ์Šคํ„ฐ๋ณด๋‹ค ๋” ๋†’์€ ์—ด์—ญํ•™์  ์•ˆ์ •์„ฑ๊ณผ ํ–ฅ์ƒ๋œ ์žฅํŒŒ์žฅ ํ˜•๊ด‘ ๋ฐฉ์ถœ์„ ๋ณด์˜€๋‹ค. ์ด ์‹œ์Šคํ…œ์—์„œ๋Š” ํ‘œ์  AAG ๋ฐ˜๋ณต์„œ์—ด๊ณผ์˜ ๊ฒฐํ•ฉ์„ ํ†ตํ•ด ๊ทน์ ์ธ ํ˜•๊ด‘ ์ƒ‰ ๋ณ€ํ™”๋ฅผ ์œ ๋„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ G-ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ํ˜•๊ด‘ ๋‹จ์œ„์ฒด๋กœ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์‚ผ์ค‘๋‚˜์„  ๊ตฌ์กฐ๋ฅผ ํ˜•์„ฑํ•˜๋Š” G-ํด๋Ÿฌ์Šคํ„ฐ ํ”„๋กœ๋ธŒ๋Š” ๋‹ค์–‘ํ•œ ๋ฐ˜๋ณต ์„œ์—ด์— ๋Œ€ํ•˜์—ฌ ๋†’์€ ์„ ํƒ์„ฑ์„ ๋ณด์˜€์œผ๋ฉฐ, ํ”„๋กœ๋ธŒ์˜ ํ˜•๊ด‘ ์‹ ํ˜ธ๋Š” AAG ๋ฐ˜๋ณต ์„œ์—ด์— ๋Œ€ํ•˜์—ฌ ๋งค์šฐ ๋ฏผ๊ฐํ•œ ํ˜•๊ด‘ ๋ณ€ํ™”๋ฅผ ๋ณด์˜€๋‹ค. ๋˜ํ•œ, ๊ธด AAG ๋ฐ˜๋ณต์„œ์—ด์— ๋Œ€ํ•ด์„œ๋„ ๋†’์€ ์žฅํŒŒ์žฅ ํ˜•๊ด‘์„ ๋ฐฉ์ถœํ•˜๋ฉฐ FRDA๋ฅผ ์œ ๋ฐœํ•˜๋Š” DNA AAG ๋ฐ˜๋ณต์„œ์—ด์˜ ํƒ์ง€ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์˜€๋‹ค. Chapter III. ๋‹ค์–‘ํ•œ miRNA ํƒ์ง€๋ฅผ ์œ„ํ•œ G-ํด๋Ÿฌ์Šคํ„ฐ three-way junction ํ”„๋กœ๋ธŒ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ค์–‘ํ•œ miRNA์˜ ํƒ์ง€์™€ ์‹œ๊ฐํ™”๋ฅผ ์œ„ํ•˜์—ฌ three-way junction ํ”„๋กœ๋ธŒ ์‹œ์Šคํ…œ์— G-ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ์ ์šฉํ•˜์˜€๋‹ค. PyA์™€ ๊ตฌ์•„๋‹Œ ์—ผ๊ธฐ๋กœ ๊ตฌ์„ฑ๋œ G-ํด๋Ÿฌ์Šคํ„ฐ๋Š” ํ‘œ์  miRNA์™€ three-way junction ๊ตฌ์กฐ๋ฅผ ํ˜•์„ฑํ•˜๋ฉฐ ๊ฐ•ํ•œ ์žฅํŒŒ์žฅ ํ˜•๊ด‘ ๋ฐœ์‚ฐ์„ ์œ ๋„ํ•˜์˜€๋‹ค. ๋‹ค์–‘ํ•œ miRNA ์„œ์—ด์— ๋Œ€ํ•˜์—ฌ G-ํด๋Ÿฌ์Šคํ„ฐ three-way junction ์‹œ์Šคํ…œ์„ ์ ์šฉํ•˜์˜€์œผ๋ฉฐ, ํ”„๋กœ๋ธŒ๋Š” ๊ฐ๊ฐ์˜ ํ‘œ์  miRNA์™€์˜ ๊ฒฐํ•ฉํ•˜์—ฌ three-way junction ๊ตฌ์กฐ๋ฅผ ํ˜•์„ฑํ•จ์œผ๋กœ์จ ๋†’์€ ํ˜•๊ด‘ ํŒŒ์žฅ ๋ณ€ํ™”๋ฅผ ๋ณด์˜€๋‹ค. ์„ธ ์ข…๋ฅ˜์˜ ์•” ์„ธํฌ (HeLa, MCE-f, HepG2)์— three-way junction ํ”„๋กœ๋ธŒ๋ฅผ ์ ์šฉํ•˜์—ฌ ์•” ์„ธํฌ์—์„œ ๋ฐœํ˜„๋˜๋Š” ํ‘œ์  miRNA๋ฅผ ๊ฐ์ง€ํ•˜๊ณ  ์‹œ๊ฐํ™”ํ•˜์—ฌ, G-ํด๋Ÿฌ์Šคํ„ฐ ํƒ์ง€ ์‹œ์Šคํ…œ์ด ์„ธํฌ ๋‚ด ๋‹ค์–‘ํ•œ miRNA๋ฅผ ํƒ์ง€ํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.Nucleic acid-based fluorescent probe systems have been fascinating tools for detecting biologically important nucleic acids. They construct predictable secondary structures according to the sequence. Thus, by changing the sequence and the modification position to control the interaction between fluorophores or fluorophore and other molecules, it is possible to induce the intended photophysical and structural properties of the probe. To detect nucleic acids such as repeating DNA, miRNA, mRNA, pyrene-modified nucleosides were chosen because of their high quantum yield and unique properties depending on nucleic acid structures. In this study, novel fluorescent nucleic systems are demonstrated by incorporating chemically modified nucleosides into various nucleic acid structures. Several fluorescent nucleic acid probes have been developed for (1) 3ยด-UTR sequence of cofilin mRNA, (2) AAG trinucleotide repeat sequence, and (3) various miRNA sequences. Chapter I. Detection of cofilin mRNA by hybridization-sensitive fluorescent probes A universal fluorescent nucleic acid probe system was developed using an environmentally sensitive fluorescent nucleoside, PyU, here, for 3ยด-UTR of cofilin mRNA. A partial double-stranded structure was applied to reduce background fluorescence signal through ฯ€-stacking interaction between two PyU units. While the previous quencher-free molecular beacon containing PyU units have been used for specific repeat sequence, the double-stranded probe can be applied to a variety of target RNA sequences, resulting in high fluorescence enhancement through strand displacement process upon binding with target. Chapter II. Triplex-based PyA-modified guanine cluster for detection of AAG trinucleotide repeat Combination of triplex structure and PyA-modified guanine cluster (G-cluster) unit presented a novel fluorescent nucleic acid probe system for detection of DNA AAG repeat sequence. Triplex structures containing AAG repeats and their complementary sequences were selected as probe structures that are stabilized even at neutral pH. The G-cluster scaffold having flanking guanine bases next to PyA units exhibited higher thermal stability and more enhanced red-shifted fluorescence emission than those of A-cluster. In this system, G-cluster was employed as fluorescent part in the probe based on triplex structure to induce a dramatic fluorescence color change upon binding with target AAG repeats. The triplex-forming G-cluster probes displayed high selectivity toward various repeat sequences due to their high sequence-selective property. In addition, the fluorescence signals of the probes were very sensitive to the AAG repeat sequences. For long AAG repeats, the probe emitted high red-shifted fluorescence signal, showing the possibility to detect AAG repeats inducing FRDA disease in gene. Chapter III. G-cluster three-way junction probes for detection of various miRNAs In this study, G-cluster were used in three-way junction probe systems for detection and visualization of various miRNA sequences. The G-cluster composed of PyA and flanking guanine bases induced an intense red-shifted fluorescence emission by forming three-way junction structure with target miRNA. The G-cluster three-way junction probe system was also applied to various miRNAs. The probes for various kinds of miRNAs exhibited high fluorescence wavelength shift when binding with each target miRNA. Further, the probes have been used to detect and visualize miRNAs in various cancer cells
    corecore