2 research outputs found

    νŒ¨ν„΄μ„ μ΄μš©ν•œ ν‘œλ©΄μ œμ–΄μ™€ κ·Έ ν™œμš©μ— λŒ€ν•œ 연ꡬ

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 화학생물곡학뢀(μ—λ„ˆμ§€ν™˜κ²½ ν™”ν•™μœ΅ν•©κΈ°μˆ μ „κ³΅), 2021. 2. μ°¨κ΅­ν—Œ.ν‘œλ©΄μ€ ꡬ쑰적 λ˜λŠ” 화학적 μ„±μ§ˆμ— 따라 고유의 νŠΉμ„±μ„ κ°–μœΌλ©°, μ™ΈλΆ€μ—μ„œ κ°€ν•΄μ§€λŠ” νž˜μ— μ˜ν•΄ λ³€ν˜•μ΄ μΌμ–΄λ‚˜κΈ°λ„ ν•œλ‹€. ν‘œλ©΄μ„ λ‚˜λ…Έ λ‹¨μœ„λ‘œ κ΄€μ°° κ°€λŠ₯ν•œ μ „μžν˜„λ―Έκ²½ μ‹œμŠ€ν…œμ΄ λ°œμ „ν•¨μ— 따라 ν‘œλ©΄μ—μ„œ λ°œμƒν•˜λŠ” μœ„μ™€ 같은 ν˜„μƒμ— λŒ€ν•œ μ—°κ΅¬λŠ” μ§€λ‚œ μˆ˜μ‹­ λ…„κ°„ ν™œλ°œν•˜κ²Œ μ§„ν–‰λ˜μ—ˆλ‹€. μ—°μžŽ, μ†ŒκΈˆμŸμ΄ λ“± μžμ—°κ³„μ—μ„œ 발견된 λ…νŠΉν•œ μ„±μ§ˆμ„ λ‚˜νƒ€λ‚΄λŠ” μ΄ˆλ°œμˆ˜ν‘œλ©΄μ€ 마이크둜 ꡬ쑰 μœ„μ— λ―Έμ„Έν•œ λ‚˜λ…Έ ꡬ쑰둜 이루어진 계측 ꡬ쑰에 μ˜ν•œ νŠΉμ„±μœΌλ‘œ λ‚˜νƒ€λ‚˜λŠ” ν˜„μƒμΈ 것이 λ°ν˜€μ§€λ©΄μ„œ 이λ₯Ό λͺ¨λ°©ν•˜μ—¬ κ³΅ν•™μ μœΌλ‘œ μ΄μš©ν•΄λ³΄κ³ μž ν•˜μ˜€κ³ , ν‘œλ©΄μ— λ°œμƒν•˜λŠ” 주름, κ· μ—΄ 등은 ꡬ쑰적 μ‹€νŒ¨ ν˜Ήμ€ νŒŒμ†μœΌλ‘œ κ°„μ£Όλ˜μ–΄ 이λ₯Ό μ œμ–΄ν•˜κ³ μž ν•˜μ˜€λ‹€. νŒ¨ν„°λ‹μ€ ν‘œλ©΄μ—μ„œ λ°œμƒν•˜λŠ” ν˜„μƒμ„ μ²΄κ³„μ μœΌλ‘œ μ œμ–΄ν•˜κ³  뢄석할 수 μžˆλŠ” ν”Œλž«νΌμ„ μ œκ³΅ν•œλ‹€. νŒ¨ν„΄μ˜ 크기, μ’…λ₯˜, 간격 등을 λ‚˜λ…Έ λ‹¨μœ„λ‘œ 자유둭게 μ‘°μ ˆν•˜μ—¬ ν‘œλ©΄μ˜ ꡬ쑰적 νŠΉμ„±μ„ μ œμ–΄ν•  수 있기 λ•Œλ¬Έμ΄λ‹€. ν‘œλ©΄μ— νŒ¨ν„΄μ„ μ œμž‘ν•˜λŠ” λ°©λ²•μœΌλ‘œλŠ” λΉ›κ³Ό 마슀크λ₯Ό μ΄μš©ν•œ κ΄‘ν•™ λ¦¬μ†Œκ·Έλž˜ν”Ό, 화학적 νŠΉμ„±μ„ μ΄μš©ν•œ 식각, 그리고 PDMSλͺ°λ“œλ₯Ό μ΄μš©ν•œ μ†Œν”„νŠΈ μž„ν”„λ¦°νŒ… 방법 등이 μ•Œλ €μ Έ μžˆλ‹€. μ΄ˆλ°œμˆ˜ν‘œλ©΄μ€ μžκ°€μ„Έμ •μœ λ¦¬, μžκ°€μ„Έμ •μžλ™μ°¨, 얼지 μ•ŠλŠ” ν‘œλ©΄ λ“±κ³Ό 같이 μ‚°μ—…μ μœΌλ‘œ 이용 κ°€μΉ˜κ°€ λΆ€κ°λ˜λ©΄μ„œ 이λ₯Ό κ΅¬ν˜„ν•˜κΈ° μœ„ν•΄ λ‹€μ–‘ν•œ 연ꡬ가 μ§„ν–‰λ˜μ—ˆλ‹€. 특히, 계측ꡬ쑰λ₯Ό μ œμž‘ν•¨μ— μžˆμ–΄ κ³΅ν•™μ μœΌλ‘œ μ΄ˆλ°œμˆ˜ν˜„μƒμ„ 체계적 λΆ„μ„ν•˜κ³ μž νŒ¨ν„΄μ„ ν™œμš©ν•˜λŠ” 방법이 μ μš©λ˜μ—ˆλ‹€. ν•˜μ§€λ§Œ, λŒ€λΆ€λΆ„ λ°œν‘œλœ μ—°κ΅¬λŠ” 계측ꡬ쑰λ₯Ό μ œμž‘ν•˜λŠ” 과정이 λ³΅μž‘ν•˜μ—¬ μ‚°μ—…μ μœΌλ‘œ μ΄μš©ν•˜κΈ°μ—λŠ” ν•œκ³„κ°€ 있으며 λ”°λΌμ„œ, μ΄ˆλ°œμˆ˜ν‘œλ©΄μ„ κ°„λ‹¨ν•˜κ²Œ μ œμž‘ν•˜μ—¬ 산업뢄야에 μ μš©μ‹œν‚¬ 수 μžˆλŠ” 방법에 λŒ€ν•œ 연ꡬ가 ν•„μš”ν•œ λ•Œμ΄λ‹€. ν•œνŽΈ, ν‘œλ©΄μ— λ‹€μ–‘ν•œ ν˜•νƒœμ˜ 힘이 가해지면 이λ₯Ό μ™„ν™”μ‹œν‚€κΈ° μœ„ν•΄ λ³€ν˜•μ΄ μΌμ–΄λ‚œλ‹€. κ·Έ 쀑 인μž₯응λ ₯에 μ˜ν•΄ λ°œμƒν•˜λŠ” κ· μ—΄ν˜„μƒμ€ λΆˆκ·œμΉ™μ μ΄κ³  μ‹œμŠ€ν…œμ΄ λ³΅μž‘ν•˜κΈ° λ•Œλ¬Έμ— μ‘°μ ˆν•˜κΈ° νž˜λ“€ 뿐만 μ•„λ‹ˆλΌ λŒ€λΆ€λΆ„ 결점으둜 μ—¬κ²¨μ§€λ©΄μ„œ. 이λ₯Ό λ°©μ§€ν•˜κ³ μž ν•˜λŠ” 연ꡬ에 μ§‘μ€‘λ˜μ–΄ μ™”λ‹€. 특히 κ°€λ­„ ν˜„μƒκ³Ό 같이 μš©λ§€κ°€ μ¦λ°œν•¨μ— 따라 λ°œμƒν•˜λŠ” 균열은 κ³ λΆ„μž λ°•λ§‰μ—μ„œ λ°œμƒν•˜λŠ” κ· μ—΄ν˜„μƒλ³΄λ‹€ λ”μš± λ³΅μž‘ν•˜κ³  λΆˆκ· μΌν•˜κ²Œ ν˜•μ„±λ˜κΈ° λ•Œλ¬Έμ— ν˜„μž¬κΉŒμ§€ 이λ₯Ό μ œμ–΄ν•˜λŠ” 방법에 λŒ€ν•œ μ—°κ΅¬λŠ” 거의 μ§„ν–‰λ˜μ§€ μ•Šμ•„ 이에 λŒ€ν•œ 연ꡬ가 ν•„μš”ν•˜λ‹€. λ³Έ ν•™μœ„λ…Όλ¬Έμ—μ„œλŠ” ν‘œλ©΄μ—μ„œ λ°œμƒν•˜λŠ” ν˜„μƒ 쀑 νŒ¨ν„΄μ„ 적용 ν•˜μ—¬μ΄ˆλ°œμˆ˜ ν‘œλ©΄κ³Ό κ· μ—΄ μ œμ–΄μ— κ΄€ν•œ 체계적인 연ꡬλ₯Ό μ œμ‹œν•œλ‹€. μ‚°μ—…μ μœΌλ‘œ 이용 κ°€λŠ₯ν•œ μ΄ˆλ°œμˆ˜ν‘œλ©΄μ„ κ°„λ‹¨ν•˜κ²Œ μ œμž‘ν•˜λŠ” 방법을 μ—°κ΅¬ν•˜μ˜€κ³ , μ΄ˆλ°œμˆ˜ν‘œλ©΄μ— μ„±μ§ˆμ΄ λ‹€λ₯Έ 화학적 νŒ¨ν„΄μ„ κ°μΈν•˜μ—¬ 물방울 좩격 μ—­ν•™μ˜ 기계적 μ‘°μ ˆμ— λŒ€ν•œ 연ꡬλ₯Ό ν•˜μ˜€λ‹€. λ˜ν•œ 결점으둜 μ—¬κ²¨μ‘Œλ˜ 건쑰 μ½œλ‘œμ΄λ“œ λ°•λ§‰μ—μ„œ λ°œμƒν•˜λŠ” κ· μ—΄ ν˜„μƒμ„ νŒ¨ν„΄μ„ μ΄μš©ν•˜μ—¬ μ²΄κ³„μ μœΌλ‘œ μ œμ–΄ν•˜μ˜€μœΌλ©°, 더 λ‚˜μ•„κ°€ κ· μ—΄λ‘œ μƒμ„±λ˜λŠ” 쑰각의 ν¬κΈ°κΉŒμ§€ 자유둭게 μ‘°μ ˆν•˜λŠ” 방법을 μ œμ‹œν•˜μ—¬ κ³΅ν•™μ μœΌλ‘œ 균열을 μœ μš©ν•˜κ²Œ ν™œμš©ν•  수 μžˆλŠ” 연ꡬλ₯Ό μ œμ‹œν•œλ‹€. 제 1μž₯μ—μ„œλŠ” μŠ€ν”„λ ˆμ΄μ‹œμŠ€ν…œμ„ ν™œμš©ν•˜μ—¬ λŒ€λŸ‰ 면적에도 κ°„λ‹¨νžˆ μ΄ˆλ°œμˆ˜ν‘œλ©΄μ„ κ΅¬ν˜„ν•˜λŠ” 방법에 λŒ€ν•œ 연ꡬλ₯Ό μ œμ‹œν•˜μ˜€λ‹€. μƒμ˜¨μ—μ„œλ„ λΉ λ₯Έ λ°˜μ‘μ„ μœ λ„ν•˜κΈ° μœ„ν•΄ μ—ν­μ‹œ-μ‚¬μ΄μ˜¬ λ°˜μ‘μ„ λ„μž…ν•˜μ—¬ μ‹€λ¦¬μΉ΄λ‚˜λ…Έμž…μžμ™€ 바인더, 용맀둜 이루어진 μ½œλ‘œμ΄λ“œ μš©μ•‘μ„ μ œμ‘°ν•˜κ³  각 μš”μ†Œμ˜ λΉ„μœ¨μ΄ 접촉각, 투λͺ…μ„±, ν‘œλ©΄ ꡬ쑰에 λ―ΈμΉ˜λŠ” 영ν–₯을 μ—°κ΅¬ν•˜μ˜€λ‹€. λ˜ν•œ λ‹€μ–‘ν•œ ν‘œλ©΄μ— μ μš©μ‹œμΌœ λ²”μš©μ μΈ ν‘œλ©΄μ— 초발수효과λ₯Ό λ‚˜νƒ€λ‚΄λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. 제 2μž₯μ—μ„œλŠ” μ΄ˆλ°œμˆ˜ν‘œλ©΄μ— μΉœμˆ˜μ„±μ„ 가진 λΉ„λŒ€μΉ­ 화학적 νŒ¨ν„΄μ„ κ°μΈμ‹œμΌœ 물방울의 거동이 쑰절 κ°€λŠ₯ν•œ ν‘œλ©΄μ„ μ œμž‘ν•˜μ˜€λ‹€. 꼭지점이 μžˆλŠ” νŒ¨ν„΄μ„ μ„€κ³„ν•˜μ—¬ 물방울이 ν‘œλ©΄μ— μΆ©κ²©ν•˜κ³  λ‹€μ‹œ νŠ€μ–΄ 였λ₯Ό λ•Œ, 꼭지점 λ°©ν–₯으둜 νŠ€μ–΄ 였λ₯΄λ„둝 μœ λ„ν•˜μ˜€λ‹€. νŒ¨ν„΄μ˜ 각도와 좩돌 거리λ₯Ό μ‘°μ ˆν•˜μ—¬ λ°©ν–₯μ„±μ˜ 정도에 영ν–₯을 μ£ΌλŠ” μš”μΈμ„ μ°Ύμ•„λ‚΄μ—ˆκ³ , 이λ₯Ό κΈ°ν•˜ν•™μ  이둠 κ°’κ³Ό λΉ„κ΅ν•˜μ—¬ 차이가 μ—†λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. 이와 같은 ν‘œλ©΄μ€ 물리적 ꡬ쑰가 μ—†λŠ” ν‰ν‰ν•œ ν‘œλ©΄μ—μ„œλ„ 화학적 νŒ¨ν„΄μ— μ˜ν•΄ 물방울의 거동이 μ‘°μ ˆλ˜μ—ˆκ³ , λ‚˜μ•„κ°€ λ¬Όλ°©μšΈμ„ 꼭지점과 같은 νŠΉμ • μœ„μΉ˜μ— λͺ¨μ„ 수 μžˆλ‹€λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. 제 3μž₯μ—μ„œλŠ” 제 1μž₯μ—μ„œ ν‘œλ©΄μ„ μ œμž‘ν•˜λŠ” κ³Όμ •μ—μ„œ λ°œμƒν•œ κ· μ—΄ ν˜„μƒμ„ λ§ˆμ΄ν¬λ‘œνŒ¨ν„΄μ„ μ΄μš©ν•˜μ—¬ μ œμ–΄ν•˜λŠ” 방법을 μ œμ‹œν•˜μ˜€λ‹€. TiO2둜 이루어진 μ½œλ‘œμ΄λ“œ 필름에 μ†Œν”„νŠΈ μž„ν”„λ¦°νŒ… 기법을 μ΄μš©ν•˜μ—¬ ν”„λ¦¬μ¦˜ ν˜Ήμ€ ν”ΌλΌλ―Έλ“œ λ§ˆμ΄ν¬λ‘œνŒ¨ν„΄μ„ κ°μΈμ‹œν‚€κ³ , μ†Œκ²° 과정을 톡해 ν•„λ¦„μ˜ μœ κΈ°λ¬Όμ„ λͺ¨λ‘ μ œκ±°ν•˜λ©΄ 필름에 λΆ€ν”Ό μˆ˜μΆ•μ΄ λ°œμƒλ˜κ³  μŠ€νŠΈλ ˆμŠ€λŠ” 각 νŒ¨ν„΄μ˜ κ°€μž₯μžλ¦¬μ— μ§‘μ€‘λ˜κ³  균열이 이곳에 μƒμ„±λ˜λ„λ‘ μœ λ„ν•˜μ˜€λ‹€. κ· μ—΄ 집쀑 ν˜„μƒμ˜ μ •λ„λŠ” ν•„λ¦„μ˜ λ‘κ»˜, λ‚˜λ…Έ μž…μžμ˜ 크기, κ°€μ—΄ 속도에 영ν–₯을 λ°›λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. 특히 필름 λ‘κ»˜λŠ” μƒμ„±λ˜λŠ” κ· μ—΄ 쑰각의 면적에도 영ν–₯을 μ£Όμ—ˆμœΌλ©°, 각 κ· μ—΄ 쑰각은 μ •μ‚¬κ°ν˜• ν”ΌλΌλ―Έλ“œλ‘œ κ΅¬μ„±λœ μž₯점을 ν™œμš©ν•˜μ—¬ 면적을 μ‰½κ²Œ μ •λŸ‰ν™” ν•˜μ˜€κ³ , 필름 λ‘κ»˜μ™€ 면적이 κ°–λŠ” μŠ€μΌ€μΌλ§ 관계λ₯Ό ν™•μΈν•˜μ˜€λ‹€. 제 4μž₯μ—μ„œλŠ” 균열을 μ œμ–΄ν•˜λŠ” κ²ƒμ—μ„œ 더 λ‚˜μ•„κ°€ κ· μ—΄ 쑰각의 ν¬κΈ°κΉŒμ§€ 자유둭게 μ‘°μ ˆν•˜μ—¬ 쑰각을 κΈ°νŒμ—μ„œ λ–Όμ–΄λ‚΄μ–΄ 마이크둜 블둝을 λŒ€λŸ‰μœΌλ‘œ λ§Œλ“€ 수 μžˆλŠ” ν”Œλž«νΌμ„ κ°œλ°œν•˜μ˜€λ‹€. μ„œλ‘œ λ‹€λ₯Έ 높이λ₯Ό κ°–λŠ” 라인 ν˜Ήμ€ 필라 νŒ¨ν„΄μ΄ μžˆλŠ” κΈ°νŒμ„ μ‚¬μš©ν•˜μ—¬ 기판이 균열에 λ―ΈμΉ˜λŠ” 영ν–₯을 λΆ„μ„ν•˜μ˜€λ‹€. μ œμ–΄λœ μ‚¬μ΄μ¦ˆμ˜ κ· μ—΄ 쑰각은 κΈ°νŒμ—μ„œ λ–Όμ–΄λ‚΄μ–΄ λ§ˆμ΄ν¬λ‘œλΈ”λ‘μœΌλ‘œ μ‚¬μš©ν•  수 μžˆμ—ˆκ³ , 이λ₯Ό ν™œμš©ν•˜λŠ” 방법을 μ œμ‹œν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ 연ꡬ κ²°κ³ΌλŠ” νŒ¨ν„΄μ„ ν™œμš©ν•˜μ—¬ ν‘œλ©΄μ„ μ œμ–΄ν•  수 μžˆλŠ” 방법을 μ œμ‹œν•˜κ³ , 이λ₯Ό 톡해 결점으둜 μ—¬κ²¨μ‘Œλ˜ κ· μ—΄ ν˜„μƒμ„ κ³΅ν•™μ μœΌλ‘œ μ‘μš© κ°€λŠ₯ν•˜λ„λ‘ μ˜μ—­μ„ λ„“ν˜€ 쀄 것을 κΈ°λŒ€ν•œλ‹€.The surface properties are affected by the physical structures or chemical characteristics of the surface. As the electron microscope system advanced to allow observing in nanoscale, the fundamental researches of surface properties conducted last few decades. The superhydrophobic surfaces, which was unique property found in lotus leaf, was revealed due to the effect of hierarchical structure, many researchers try to imitate them. Patterning method was introduced to fabricate hierarchical structure to systematic analysis, however, most researches showed limitations for industrial application due to the complicated process. It was necessary to study how to create supernumerary surfaces by implementing hierarchies in a simple way. Meanwhile, mechanical instabilities such as wrinkles, folds and cracks arise when the surface is subjected to various kind of stresses. Among them, the crack phenomenon caused by tensile stress regarded as defect due to its random generation, research was focus on to prevent them. Especially in the drying colloidal film system, there has been little research on how to control it so far, because it is more complex and unevenly formed than the crack phenomenon occurring in the polymer thin film. Pattering provides a platform for systematically controlling and analyzing these phenomena occurred on surfaces. This is because the structural characteristics of the surface can be controlled by freely adjusting the size, type, and spacing of patterns in nano unit. The patterning methods are known as photo lithography, etching and soft imprinting, etc. This dissertation presents a systematic study of superhydrophobic surface and crack manipulation by applying pattern. A simple method to fabricate hierarchical structure was studied for applying industrial field and mechanical control of drop impact dynamics on patterned surfaces was analyzed. The surface crack in desiccation film was controlled by stress localization effect induced by micropatterns. Furthermore, we controlled the size of crack fragments with substrate effect to fabricate homogeneous microblocks and suggest that crack can be usefully utilized in the engineering field. In Chapter 1, we presented a study on fabricating method to transparent superhydrophobic surfaces in large areas. In order to induce a rapid reaction even at room temperature, epoxy-thiol click reaction was introduced into the binder to manufacture a colloid solution consisting of silica nanoparticles, binders and solvents. We investigated the effect of the proportion of each element on the contact angle, transparency and surface structure. Finally, we suggest the spray coating to applicable on a universal surface to coating with superhydrophobicity. In Chapter 2, an asymmetrical chemical pattern with hydrophilic properties was imprinted on the surface to control droplet after impacting the surface. A pattern with vertex was designed to induce droplets bouncing toward vertex after impacting the surface. By adjusting the angle of the pattern and the impacting distance from the vertex, we find factors that influence the degree of directionality, and compare them with geometric theoretical values. This idea provided the platform to collect the droplets on flat surface without any physical patterns in surface. In Chapter 3, we studied the method of controlling random cracks generated during surface fabrication process in Chapter 1 to well-ordered cracks via micropatterns (prisms and pyramids). Micropatterned films were fabricated by the soft imprinting technique with wet TiO2 nanoparticle pastes, followed by calcination to remove organic components. During the calcination, the volume shrinkage occurred in film and stress was concentrated on the edges of each pattern induced cracks to be produced. The degree of stress localization effect was affected by film thickness, nanoparticle size, and heating rate. In particular, film thickness also affected the area of the crack fragments. Utilizing the advantages of our experimental system, we could use a pyramid as a unit to accurately quantify the area of fragments by simply counting the number of pyramids in isolated cracks to identify the scaling relationship between film thickness and area. In Chapter 4, we developed a platform to fabricate various size of pyramidal microblocks by cracking over patterned surfaces. We studied the substrate effect on control cracks and manipulate the fragmentation of TiO2 microscopic pyramids by cracking on prepatterned substrates that have different depths in the substrate. The homogeneous mesoporous microblocks with multifunctionality and various sizes for versatile applications by detaching them from the substrate. This crack engineering method can be used to economically produce a large number of mesoporous microblocks with tunable sizes and functionalities. We believe these studies suggest the ways to control surface properties by utilizing patterns and can give guide to the new strategies on manipulating cracks in desiccation crack system.Contents Chapter 1. Large-Scale Transparent Hydrophobic Surfaces Fabricated by Spray Coating Formulation 1 1.1. Introduction 1 1.2. Experimental Section 3 1.3. Results and Discussion 5 1.3.1. Design of the One-Step Transparent Superhydrophobic Coating Formulation through Spray Process 5 1.3.2. Development of Rapid Curing Binder System in Ambient Condition through Thiol Epoxy Reaction 7 1.3.3. Effects of the Ratio of Binder and Silica NPs on Surface Morphology and Transparency 10 1.3.4 Demonstrate to the Universal Surface by Spray Coating Formulation 15 1.4. Conclusion 17 Chapter 2. Mono Directional Bouncing of Droplets Impacting on Asymmetric Hydrophilic Patterned Surfaces 18 2.1. Introduction 18 2.2. Experimental Section 20 2.3. Results and Discussion 22 2.3.1. Fabrication of Vertex Hydrophilic Patterns on Hydrophobic Surfaces 22 2.3.2. Drop Impacting on Asymmetric Hydrophilic Patterned Surfaces 24 2.3.3. Mechanical Analysis 29 2.4. Conclusion 33 Chapter 3. Control of Surface Cracks by Stress Localization Induced Micropatterns 34 3.1. Introduction 34 3.2. Experimental Section 36 3.3. Results and Discussion 40 3.3.1. Imprinting Effect on Crack Manipulation by Stress Localization Effect 40 3.3.2. Degree of Stress Localization Effect in Film Thickness 45 3.3.3. Effect of Temperature on Crack Propagation 49 3.3.4. Effect of Particle Size and Heating Rate on Critical Cracking Thickness(CCT) 51 3.3.5. Analysis of Crack Fragment Phenomena above the Critical Film Thickness 54 3.4. Conclusion 64 Chapter 4. Tiled Microblocks Obtained on Crack Template with Substrate Patterns 65 4.1. Introduction 65 4.2. Experimental Section 68 4.3. Results and discussion 71 4.3.1. Crack Manipulation Induced by Substrate Effect 71 4.3.2. Control of the Crack Initiation Tips Depending on the Substrate Effect 80 4.3.3. Fabrication of Size and Porosity Controlled Microblocks 84 4.3.4. Multifunctional TiO2 Microblocks 90 4.4. Conclusion 93 Conclusions 94 Bibliography 97 κ΅­λ¬Έ 초둝 109Docto
    corecore