4 research outputs found
๋ค์ํ ์ด์ ๋๋ถํ ์์คํ ์ ๋ฐ์์ ๋ ๋ฐ ๊ตฌ์กฐ ์ํธ์์ฉ ํด์์ ์ํ 3์ฐจ์ ์ฝ๋ ๊ฐ๋ฐ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ๊ณต๊ณผ๋ํ ๊ธฐ๊ณํญ๊ณต๊ณตํ๋ถ, 2019. 2. ์ฌ์ฌ์ต.Previously researched fluid-structure interaction analysis has mostly simulated an interaction between a structure and non-reactive flow, which does not consider the chemical reaction in flow. In the interaction analysis of large deformation of a structure due to high temperature and pressure flow accompanied by chemical reactions such as explosion or combustion, it is difficult to apply the geometry of the deformed structure to the fluid flow domain. In this reason, many studies have not been conducted to simultaneously analyze the interaction between the reactive flow and the structure deformation. Instead, the temperature and pressure conditions of the flow field analyzed in the body are applied to the boundary conditions of the structure analysis. In this case, the flow could not be interpreted according to the behavior of the structure, so the exact pressure and temperature near the structure could not be calculated. In this study, a three-dimensional simulation techniques were developed for analyze the reactive flow including the chemical reaction with the large deformation of structure. The numerical code is verified by comparing the simulation results with the experimental values.
In this study, various reactive flows were considered. The ethylene-air mixture and the kerosene-air mixture, which are gaseous high energy materials, simulate the combustion reaction through the 1-step Arrhenius equation. In addition, combustion characteristics of anisotropic PETN and HMX, which are solid energetic materials, were analyzed by using the modified anisotropic I&G model. The developed combustion model compared the C-J condition and the detonation cell size. Structure deformation was performed by using Eulerian or Lagrangian analysis method and the method was verified by comparing with the experimental data of Taylor impact problem. A level set technique and a ghost fluid method (GFM) were used to set boundary values and trace the interface between the reactive flow and the structure. In order to verify the multi-material analysis method, the cantilever motion in the flow field and the tube deformation problem due to detonation load were simulated. The numerical results are verified by comparing with the theoretical and experimental values. For the three dimensional simulation, the STL file to level converting algorithm was developed. Moreover, the adaptive mesh refinement (AMR) and message passing interface (MPI) for parallel processing were conducted to reduce the computation time and resources.
The interactions between reactive flow and structure under various thermal hydrodynamic loading systems were analyzed based by developed code. The behavior of rear cover which is deformed by the launching rocket plume inside a vertical launching system (VLS) is analyzed. This analysis results were verified by comparing with the experimental data, and the influence of rear cover deformation on the flow was confirmed through the analysis results. In addition, the explosion of the solid explosives in the three-dimensional concrete building, which cannot be simplified in two dimensions, and the pressure transmitted to the wall are analyzed. The numerical analysis results were compared with experimental data. In the analysis of tube deformation due to detonation inside the metal tube was simulated. The yield stress of metal tube is dependent on wall temperature and thermal softening was considered. In case of pulse detonation engine (PDE), which is exposed to high temperature environment, accurate results can be obtained by using temperature dependent properties and simulation results verified by comparison with theoretical failure model. The elastically vibrating tube was considered for detonation inside the PDE simulation. Due to the repetitively detonation propagation inside PDE, the PDE wall is vibrated with its natural frequency even if the PDE does not be destroyed. The simulation results confirms that propagation of detonation is affected by the deformation of tube.๊ธฐ์กด์ ์ํ๋์ด์จ ์ ์ฒด-๊ตฌ์กฐ ์ฐ์ฑ ํด์์ ๋๋ถ๋ถ ์ ๋์ ํํ ๋ฐ์์ ๊ณ ๋ คํ์ง ์๋ ๋น๋ฐ์์ฑ ์ ๋๊ณผ ๊ตฌ์กฐ์ฒด์ ์ํธ์์ฉ์ ํด์ํด ์๋ค. ์ด๋ ํญ๋ฐ์ด๋ ์ฐ์ ๊ฐ์ ํํ๋ฐ์์ ๋๋ฐํ๋ ๊ณ ์จ, ๊ณ ์์ ์ ๋๊ณผ ๊ตฌ์กฐ์ ์ฐ์ฑ ํด์ ์์ ๊ตฌ์กฐ์ฒด์ ๋๋ณํ์ด ์ผ์ด๋๊ธฐ ๋๋ฌธ์ด๋ค. ๊ธฐ์กด์ ์ ์ฒด-๊ตฌ์กฐ ์ฐ์ฑ ํด์ ๊ธฐ๋ฒ์ผ๋ก ๊ธ๊ฒฉํ๊ฒ ๋ณํ๋๋ ๊ตฌ์กฐ์ ํ์์ ์ฆ๊ฐ์ ์ผ๋ก ์ ๋์ฅ์ ์ ์ฉํ๋๋ฐ ๋งค์ฐ ๋ง์ ๊ณ์ฐ ์๊ฐ๊ณผ ์ค์ฐจ๊ฐ ์๊ธฐ ๋๋ฌธ์ ๋ฐ์์ฑ ์ ๋๊ณผ ๊ตฌ์กฐ์ ์ํธ์์ฉ์ ๋์์ ํด์ํ๋ ์ฐ๊ตฌ๋ ๋ง์ด ์ํ๋์ง ์์๋ค. ๋ฐ๋ผ์ ๊ธฐ์กด ์ฐ๊ตฌ์์๋ ๊ณ ์ ๋ ๊ตฌ์กฐ์ฒด์์ ํด์๋ ํํ๋ฐ์์ ํฌํจํ ์ ๋์ ์จ๋์ ์๋ ฅ์ ๊ตฌ์กฐ ํด์์ ์ ์ฉํ๋ ๋ฐฉ๋ฒ์ผ๋ก ์ ์ฒด-๊ณ ์ฒด ์ฐ์ฑ ํด์์ ์ ํ์ ์ผ๋ก ์ํํ์๋ค. ์ด ๊ฒฝ์ฐ, ๊ตฌ์กฐ์ ๊ฑฐ๋์ ๋ฐ๋ผ ๋ฐ๋๋ ์ ๋์ ํด์ํ์ง ๋ชปํ๋ฏ๋ก ๊ตฌ์กฐ์ ์ ๋ฌ๋๋ ์ ํํ ์๋ ฅ ๋ฐ ์จ๋ ์กฐ๊ฑด์ ๋ฐ์ํ ์ ์๋ค. ํนํ 3์ฐจ์์ ๋ณต์กํ ํ์์์๋ ๊ตฌ์กฐ ๋ณํ์ ์ ๋ ํด์์ ์ ์ฉํ๊ธฐ ๋งค์ฐ ์ด๋ ต๊ธฐ ๋๋ฌธ์ 3์ฐจ์์ ๋ฐ์์ฑ ์ ๋๊ณผ ๊ตฌ์กฐ์ ์ฐ์ฑ ์ฐ๊ตฌ๋ ๊ฑฐ์ ์ํ๋์ง ์์๋ค. ๋ฐ๋ผ์ ๋ณธ ์ฐ๊ตฌ์์๋ ํํ๋ฐ์์ ํฌํจํ๋ ๋ฐ์์ฑ ์ ๋๊ณผ ์ด์ ๋ฐ๋ฅด๋ ๊ตฌ์กฐ์ฒด์ ๋๋ณํ์ ํจ๊ป ํด์ํ ์ ์๋ ๊ธฐ๋ฒ์ ๊ฐ๋ฐํ์๊ณ ์ด๋ฅผ 3์ฐจ์์ ํ์ฅ์ํค๊ธฐ ์ํ์ฌ ๋ค์ํ ์์น์ ๊ธฐ๋ฒ๋ค์ ๊ฐ๋ฐํ๊ณ ์ ์ฉํ์๋ค. ๊ฐ๋ฐ๋ ํด์ ๊ธฐ๋ฒ์ ์คํ ๊ฐ๊ณผ ๋น๊ตํ์ฌ ๊ทธ ํ๋น์ฑ์ ๊ฒ์ฆํ์๋ค.
๋ณธ ์ฐ๊ตฌ์์๋ ๋ค์ํ ๋ฐ์์ฑ ์ ๋์ ๊ณ ๋ คํ์๋ค. ๊ธฐ์ฒด ๊ณ ์๋์ง ๋ฌผ์ง์ธ ์ํธ๋ -๊ณต๊ธฐ ํผํฉ๋ฌผ, ์ผ๋ก์ -๊ณต๊ธฐ ํผํฉ๋ฌผ ๋ฟ๋ง ์๋๋ผ ๊ณ ์ฒด ๊ณ ์๋์ง ๋ฌผ์ง์ธ ์ด๋ฐฉ์ฑ PETN๊ณผ HMX์ ์ฐ์ ๋ฐ์ ๋ชจ๋ธ์ ์ ์ํ์๋ค. ๊ธฐ์ฒด์ ๊ฒฝ์ฐ 1๋จ๊ณ ์๋ ๋์ฐ์ค์์ ํตํ์ฌ ์ฐ์๋ฐ์์ ๋ชจ์ฌํ์๊ณ , ๊ณ ์ฒด์ ๊ฒฝ์ฐ ๋ณํ๋ ์ด๋ฐฉ์ฑ I&G ๋ชจ๋ธ์ ์ฌ์ฉํ์ฌ ์ถฉ๊ฒฉ ๋ฐฉํฅ์ ๋ฐ๋ฅธ ์ฐ์ ํน์ฑ์ ํด์ํ์๋ค. ๊ฐ๋ฐ๋ ์ฐ์ ๋ชจ๋ธ์ C-J ์กฐ๊ฑด ๋ฐ ๋ฐํ ๋ค์ด์
์
ํฌ๊ธฐ๋ฅผ ๋น๊ต ๊ฒ์ฆ ํ์๋ค. ๊ตฌ์กฐ์ฒด ๋ณํ์ ์ค์ผ๋ฌ๋ฆฌ์๊ณผ ๋ผ๊ทธ๋์ง์์ ๊ธฐ๋ฐ์ ๊ตฌ์กฐ ํด์ ๋ฐฉ์์ ์ฌ์ฉํ์ฌ ์ ํํ ๊ตฌ์กฐํด์์ ์ํํ์์ผ๋ฉฐ ํ
์ผ๋ฌ ์ถฉ๊ฒฉ๋ฌธ์ ๋ฅผ ์คํ๊ฐ๊ณผ ๋น๊ตํ์ฌ ๊ฒ์ฆํ์๋ค. ๋ฐ์์ฑ ์ ๋๊ณผ ๊ตฌ์กฐ์ฒด์ ๊ฒฝ๊ณ๋ฉด ์ถ์ ๊ณผ ๊ฒฝ๊ณ๊ฐ ์ค์ ์ ์ํ์ฌ ๊ฐ๊ฐ ๋ ๋ฒจ์
๊ธฐ๋ฒ๊ณผ ๊ฐ์์ ์ฒด๊ธฐ๋ฒ์ ํ์ฉํ์๋ค. ๋ค๋ฌผ์ง ํด์์ ์ ์ ์ฑ์ ๊ฒ์ฆํ๊ธฐ ์ํ์ฌ, ์ ๋์ฅ ๋ด์์์ ์ธํ๋ณด์ ์์ง์๊ณผ ๋ฐํ ๋ค์ด์
ํ์ค์ ์ํ ๊ด ๋ณํ ๋ฌธ์ ๋ฅผ ์ด๋ก ๊ฐ ๋ฐ ์คํ๊ฐ๊ณผ ๋น๊ตํ์ฌ ๊ฒ์ฆํ์๋ค. 3์ฐจ์์์์ ํด์์ ์ํ์ฌ STL ํ์ผ์ ๋ ๋ฒจ๋ก ๋ณํํ๋ ์๊ณ ๋ฆฌ์ฆ์ ๊ฐ๋ฐ ํ์์ผ๋ฉฐ ๊ณ์ฐ ์๊ฐ ๋จ์ถ์ ์ํ์ฌ ์ ์์ ๊ฒฉ์ ์ธ๋ถํ ๊ธฐ๋ฒ ๋ฐ ๋ณ๋ ฌ ์ฒ๋ฆฌ ๊ธฐ๋ฒ์ ์ ์ฉํ์๋ค.
๊ฐ๋ฐ๋ ์ฝ๋๋ฅผ ๋ฐํ์ผ๋ก ๋ค์ํ ์ด๋ถํ ์์คํ
์ ๋ฐ์์ฑ ์ ๋ ๋ฐ ๊ตฌ์กฐ์ ์ํธ์์ฉ์ ํด์ํ์๋ค. ์์ง๋ฐ์ฌ๋ ๋ด๋ถ์์ ๋ฐ์ฌ๋๋ ๋ก์ผ ํ์ผ์ ์ํด ๋ณํ๋๋ ๋ฐ์ฌ๋ ํ๋ถ์ ํ๋ฐฉ ๋ฎ๊ฐ ๊ฑฐ๋์ ํด์ ํ์๋ค. ํด์ ๊ฒฐ๊ณผ๋ ์คํ๊ฐ๊ณผ ๋น๊ตํ์ฌ ๊ฒ์ฆํ์๊ณ , ํด์ ๊ฒฐ๊ณผ๋ฅผ ํตํด ํ๋ฐฉ ๋ฎ๊ฐ์ ๋ณํ์ด ์ ๋์ ๋ฏธ์น๋ ์ํฅ์ ํ์ธ ํ์๋ค. ๋ํ 2์ฐจ์์ผ๋ก ๋จ์ํ ํ ์ ์๋ 3์ฐจ์ ๋ฒ์ปค ๋ด๋ถ์์ ๋ฐ์ํ๋ ๊ณ ์ฒด ํ์ฝ์ ํญ๋ฐ ํ์๊ณผ ๋ฒฝ๋ฉด์ผ๋ก ์ ๋ฌ๋๋ ์๋ ฅ์ ํด์ํ์๋ค. ํด์๊ฒฐ๊ณผ๋ ์คํ๊ฐ๊ณผ ๋น๊ตํ์ฌ ๊ฒ์ฆํ์๋ค. ๊ธ์๊ด ๋ด๋ถ์์์ ํญ๋ฐ์ ์ํ ๊ด ๋ณํ ํด์์์๋ ๊ด์ ์จ๋์ ๋ฐ๋ฅธ ํญ๋ณต์๋ ฅ์ ๊ณ ๋ คํ์ฌ ํด์ํ์๋ค. ๊ณ ์จ์ ํ๊ฒฝ์ ๋
ธ์ถ๋๋ Pulse Detonation Engine(PDE)์ ๊ฒฝ์ฐ์๋ ์จ๋๊ฐ ๊ณ ๋ ค๋ ๋ฌผ์ฑ์น๋ฅผ ์ฌ์ฉํ์ฌ์ผ ์ ํํ ๊ฒฐ๊ณผ๋ฅผ ์ป์ ์ ์๊ณ ์ด๋ก ์ ์ธ ํ๊ดด ๋ชจ๋ธ๊ณผ ๋น๊ตํ์ฌ ๊ฒ์ฆํ์๋ค.
์ ์ฒด-๊ณ ์ฒด ์ฐ๋ ํด์์ ์์ด์ ์ค์ ํ์์ ๋ณด๋ค ๊ทผ์ ํ๊ธฐ ์ํ์ฌ ๋จ๋ฆฌ๋ ๊ด ๋ด๋ถ์์์ ๋ฐํ ๋ค์ด์
ํ์์ ํ์ธํ์๋ค. PDE์ ๊ฒฝ์ฐ, ์ฐ์์ ์ธ ๋ฐํ ๋ค์ด์
์ด ๊ด ๋ด๋ถ๋ฅผ ์ง๋๊ธฐ ๋๋ฌธ์ ๊ด์ ํ๊ดด๊ฐ ์ผ์ด๋์ง ์๋๋ผ๋ ๊ณ ์ ์ง๋์๋ก ๋จ๋ฆฌ๊ณ ์์ ๊ฒ์ ๊ฐ์ํ์ฌ ๊ณ ์ ์ง๋์๋ก ๋จ๋ฆฌ๋ ๊ด ๋ด๋ถ์์์ ๋ฐํ ๋ค์ด์
์ ํด์ํ์๋ค. ์ด๋ฅผ ํตํด ๋ฐํ ๋ค์ด์
์ ์ ํ๊ฐ ๊ด์ ๋ณํ์ ์ํฅ์ ๋ฐ๋ ๊ฒ์ ํ์ธํ์๋ค.Contents
Abstract i
Contents iii
List of Tables vii
List of Figures viii
Preface xiv
Chapter 1. Introduction 1
Chapter 2. Numerical Method 5
2.1 Governing equations and constitutive relations 5
2.1.1 Two-dimensional Eulerian coordinate system 5
2.1.2 Three-dimensional Eulerian coordinate system 7
2.1.3 Lagrangian coordinate system 9
2.2 Interface tracking and treatment method 12
2.2.1 Level conversion method 13
2.2.3 Ghost fluid method 16
2.2.4 Fluid-solid interaction algorithm 19
2.3 Advanced numerical technics for 3D simulation 20
Chapter 3. Validation 25
3.1 Gaseous energetic materials 25
3.1.1 Kerosene-air mixture 25
3.2 Solid energetic materials 29
3.2.1 Anisotropic PETN 29
3.3 Structure deformation 46
3.3.1 Taylor impact problem 46
3.4 Fluid-structure interaction method 49
Chapter 4. Vertical Launching System 52
4.1 Background and motivation 52
4.2 Results and discussion 54
4.2.1 Incoming rocket plume modeling 54
4.2.2 Case I. Opening of the Rear Cover 57
4.2.3 Case II. Closure of the Opened Rear Cover after Launch 65
4.3 Conclusion 67
Chapter 5. Detonation in Concrete Building 69
5.1 Background and motivation 69
5.2 Results and discussion 71
Chapter 6. Detonation in Tube 78
6.1 Background and motivation 78
6.2 Validation of detonation-loaded tube 80
6.3 Detonation-loaded tube 81
6.4 Detonation in the elastic vibrating steel tube 93
Chapter 7. Conclusion 96
References 98
Abstract in Korean 107Docto