38 research outputs found

    Violin sonata no.1μ—μ„œ λ³΄μ—¬μ§€λŠ” Bela Bartok μŒμ•…μ˜ 과도기적 κ²½ν–₯에 κ΄€ν•œ κ³ μ°°

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μŒμ•…ν•™κ³Ό ν˜„μ•…μ „κ³΅,1998.Maste

    [Special Theme] New Mobility: New Idea

    No full text
    KDRIλŠ”New Mobility에 λŒ€ν•œ κ΅­λ‚΄μ™Έ λ””μžμ΄λ„ˆλ“€μ˜ μ˜κ²¬μ„ κ°„λ‹¨ν•˜κ²Œ μ‘°μ‚¬ν•˜μ˜€λ‹€. μš°λ¦¬λŠ” λ””μžμ΄λ„ˆλ“€μ—κ²Œ New Mobility에 λŒ€ν•˜μ—¬, i)μƒˆλ‘œμš΄ λ””μžμΈμ»¨μ…‰μ— λŒ€ν•œ 아이디어, ii)μ‚¬νšŒμ μΈ νŠΈλ Œλ“œλ‚˜ 변화에 λŒ€ν•œ 아이디어, iii)μƒˆλ‘œμš΄ λΌμ΄ν”„μŠ€νƒ€μΌμ΄λ‚˜ μΈκ°„μ˜ ν–‰λ™μ–‘μ‹μ˜ 변화에 λŒ€ν•œ 아이디어에 λŒ€ν•œ μ˜κ²¬μ„ 이메일을 톡해 κ΅¬ν•˜μ˜€μœΌλ©°, κ·Έ κ²°κ³Ό, λ‹€μ–‘ν•œ μ˜κ²¬μ„ λ“€μ–΄λ³Ό 수 μžˆμ—ˆλ‹€. KDRIκ°€ New Mobility에 λŒ€ν•΄μ„œ λ…Όμ˜ν•˜κ³ μž ν•˜λŠ” μ΄μœ λŠ”, 마치 μƒνƒœκ³„μ˜ λ¨Ήμ΄μ‚¬μŠ¬κ³Ό 같이, μƒˆλ‘œμš΄ 기술이 점점 μ„Έμƒμ˜ 거리λ₯Ό μ’ν˜€λ‚˜κ°€κ³  있고, 또 κ·ΈλŸ¬ν•œ ν˜„μƒμ€ μ‚¬λžŒλ“€μ˜ μƒν™œκ³Ό 행동양식을 λ³€ν™”μ‹œν‚€κ³  있으며, 이런 λΌμ΄ν”„μŠ€νƒ€μΌμ˜ λ³€ν™”λŠ” μš°λ¦¬κ°€ μ‚¬μš©ν•˜λŠ” 물건, μš°λ¦¬κ°€ λ³΄λŠ” μ •λ³΄μ˜ λ””μžμΈμ— 영ν–₯을 λ―ΈμΉœλ‹€λŠ” λ°€μ ‘ν•œ 인과관계λ₯Ό 가지고 있기 λ•Œλ¬Έμ΄λ‹€. λ””μžμ΄λ„ˆλ“€μ˜ μ˜κ²¬μ„ μ’…ν•©ν•΄ 보면, New MobilityλΌλŠ” 컨셉은 μœ λΉ„μΏΌν„°μŠ€κΈ°μˆ μ˜ λ°œμ „κ³Ό μ—¬κΈ°μ—μ„œ λŒ€λ‘λ˜λŠ” μ‘μš©λΆ„μ•Όμ˜ λ°œμ „μ— 따라 견고해 지며, New Mobilityκ°œλ…μ€ μš°λ¦¬κ°€ 기쑴에 μΈμ‹ν–ˆλ˜ 물리적인 κ±°λ¦¬μ—μ„œμ˜ μ΄λ™μ„±μ˜ κ°œλ…κ³Ό νŒμ΄ν•˜κ²Œ λ‹€λ₯΄λ©°, κ·Έ 물리적인 κ°œλ… μžμ²΄λŠ” 더 이상 μ€‘μš”ν•œ 것이 μ•„λ‹ˆλΌλŠ” 것이닀. 이에 μƒˆλ‘œμ΄ λŒ€λ‘λ˜λŠ” λΌμ΄ν”„μŠ€νƒ€μΌμ˜ λŒ€ν‘œμ μΈ ν˜•νƒœλŠ” μ–Έμ œ, μ–΄λ””μ„œλ‚˜ 정보λ₯Ό ꡐλ₯˜ν•  수 있게 ν•΄ μ£Όκ±°λ‚˜, μ‚¬μš©μžκ°€ μ œν’ˆμ„ μ‚¬κ±°λ‚˜ μ‚¬λžŒμ„ λ§Œλ‚˜λŠ” λ“±μ˜ λͺ©μ μ„ λ‹¬μ„±ν•˜κ³ μž ν•  λ•Œ κ±Έλ¦¬λŠ” μ‹œκ°„μ„ 상상할 수 없을 μ •μ •λ„λ‘œ λ‹¨μΆ•μ‹œν‚€λŠ” ν˜„μƒ λ“±μœΌλ‘œ μ••μΆ•λœλ‹€

    연속체 μ—­ν•™κ³Ό μ›μžμŠ€μΌ€μΌ 역학을 μ΄μš©ν•œ λ‚˜λ…ΈμŠ€μΌ€μΌ ꡬ쑰물의 λ©€ν‹°μŠ€μΌ€μΌ 해석에 κ΄€ν•œ 연ꡬ

    No full text
    Thesis(doctors) --μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :기계항곡곡학뢀,2009.2.Docto

    ε€šι’θ©•εƒΉκ°€ θ’«θ©•εƒΉθ€…μ˜ ε€–ηš„ θ²¬δ»»ζ„Ÿμ— λ―ΈμΉ˜λŠ” ε½±ιŸΏμ— ι—œν•œ 瑏穢

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :κ²½μ˜ν•™κ³Ό κ²½μ˜ν•™μ „κ³΅,1999.Maste

    UHV-CVD에 μ˜ν•œ 고밀도 Si μ–‘μžμ  μ„±μž₯에 κ΄€ν•œ 연ꡬ

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μž¬λ£Œκ³΅ν•™λΆ€,2003.Maste

    Siλ°•λ§‰νƒœμ–‘μ „μ§€λ₯Ό μœ„ν•œ μ•Œλ£¨λ―ΈλŠ„ λ„ν•‘λœ μ‚°ν™”μ•„μ—°λ°•λ§‰μ˜ λ‚˜λ…Έκ΅¬μ‘°μ œμ–΄μ— κ΄€ν•œ 연ꡬ

    No full text
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : μž¬λ£Œκ³΅ν•™λΆ€, 2015. 2. λ°•λ³‘μš°.Abstract The most fatal issue of the Si thin film solar cell is its low conversion efficiency due to the low absorption coefficient and short carrier diffusion length of the Si thin films deposited with low temperature PECVD. To overcome this weakness, light management technologies for more light absorption in Si layers has been aggressively adapted, and transparent conductive oxide (TCO) front contact has one of the most important roles among them. In this thesis, nanostructure control of the Aluminium-doped Zinc Oxide (ZnO:Al) front TCO is thoroughly studied to realize high efficiency Si thin film solar cells. At first, the overview of the backgrounds for this thesis is introduced in chapter 1. Introduction of the Si thin film solar cell and recent development of the light trapping technology is provided. Next, ZnO:Al deposition and etching process parameters for the high efficiency Si thin film solar cell, and carrier transport mechanism, that is to say, the theory about the carrier mobility of the ZnO:Al film are reviewed. The compactness and carrier mobility of the ZnO:Al films are suggested as key properties determining the performance as a front TCO, which is an important message throughout this thesis. Next, in chapter 2, the effect of oxygen controlled seed layer on the nanostructure and electrical properties of the ZnO:Al front TCO is examined for the application into the industrial manufacturing process in the future. Oxygen-controlled seed layer in Al-doped ZnO (ZnO:Al) thin films deposited by the industrially compatible dynamic DC-magnetron sputter results in both enhanced electron mobilities and appropriate etched morphologies for the Si thin-film solar cells. At the relatively low deposition temperature of 300Β°C, optimized ZnO:Al film grown on the seed layer has the carrier mobility of 45 cm2/Vs, and proper post-etching morphology with around 1-2 ΞΌm crater size. Reduced angular distribution of the (002) grains analyzed by the diffraction rocking curve is shown as the key structural feature for the improved carrier mobility. At last, the performance of the microcrystalline Si solar cell on the developed ZnO:Al substrate shows high efficiency potential of the tandem solar cell adapting this TCO substrate. In chapter 3, the origin of the mobility enhancement is systematically examined in terms of the nanostructural change with varied seed layer condition. The carrier mobility of the ZnO:Al films are controlled between 22 and 48 cm2/Vs by varying the ZnO:Al seed layer condition. The grain-boundary energy barrier (Eb) from Setos carrier transport model clearly exhibit linear dependence on the grain-boundary misorientation angle (Ο‰) estimated by the (002) rocking curve. In Chapter 4, the roughness control of as-deposited and post-etching films is shown as key optimization factors for maximize the efficiency of the solar cell. Surface roughness of the as-deposited ZnO:Al film estimated by spectroscopic ellipsometry is shown to be the easy but powerful tool to optimize the deposition condition for proper post-etching surface morphology. Wet-etching time is adjusted to form the U-shaped craters on the surface of the ZnO:Al film without sharp etch-pits causing the crack-like defects in overgrown Si absorbing layers and deterioration of Voc and FF of the Si thin film solar cells. At last, The a-Si:H/a-SiGe:H/ΞΌc-Si:H triple junction Si thin film solar cells grown on the optimized ZnO:Al front TCO with anti-reflection coatings show higher than 14% initial efficiency.Table of Contents Abstract i Table of Contents iv List of Figures vi List of Tables xv Chapter 1. The Overview of the backgrounds 1 1.1. General operation principle of the solar cell 2 1.2. Introduction of the Si thin film solar cell 5 1.3. Light management technology in Si thin film solar cell 15 1.4. Transparent Conducting Oxide for Si thin film solar cell 19 1.5. Sputter deposition of ZnO:Al for Si thin film solar cell 26 1.6. The wet etching behavior of ZnO 34 1.7. Carrier Transport Mechanism of ZnO thin film 40 1.8. Motivation and Objectives 49 1.9. References 50 Chapter 2. Oxygen-Controlled Seed Layer in DC Sputter-Deposited ZnO:Al Substrate for Si Thin-Film Solar Cells 2.1. Introduction 59 2.2. Experimental Procedure 60 2.3. Results and Discussion 62 2.4. Conclusions 76 2.5. References 77   Chapter 3. Nanostructural Analysis of ZnO:Al Thin Films for Carrier Transport 3.1. Introduction 81 3.2. Experimental Procedure 83 3.3. Results and Discussion 85 3.4. Conclusions 92 3.5. References 93 Chapter 4. Controlling the nanometer-scale roughness of the ZnO:Al for high efficiency Si thin film solar cell 4.1. Introduction 95 4.2. Experimental Section 97 4.3. Results and Discussion 99 4.4. Conclusions 111 4.5. References 112 Chapter 5. Overall Summary 115 Appendix A. 1. Analysisof a-Si:H/TCO contact resistance for the Si heterojunction back-contact solarcell A.1.1. Introduction 118 A.1.2. Evaluation of resistance loss from the emitter and BSF unit devices 120 A.1.3. Resistance loss in HBC cell for the correlation between FF and Rs 131 A.1.4. Conclusions 137 A.1.5. References 138 A. 2. List of Publications and Presentations A.2.1. Publications (International) 142 A.2.2. Presentation (International) 144 κ΅­λ¬Έ 초둝 147 κ°μ‚¬μ˜ κΈ€ 150Docto

    디지털뢁 λ‚΄μš©κ΅¬μ‘°μ˜ 뢄석적 ν‘œν˜„μ„ μœ„ν•œ μ‹œκ°μΈν„°λž™μ…˜λ””μžμΈ 연ꡬ : κ·Έλ¦¬μŠ€μ‹ ν™”μ œμž‘μ‚¬λ‘€λ₯Ό μ€‘μ‹¬μœΌλ‘œ

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :λ””μžμΈν•™λΆ€ μ‹œκ°λ””μžμΈμ „κ³΅,2004.Maste
    corecore