30 research outputs found

    μ„ λ°• ν•­λ‘œ κ³„νšμ„ μœ„ν•œ 졜적 경둜 및 속도 κ²°μ • 방법에 κ΄€ν•œ 연ꡬ

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (석사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› κ³΅κ³ΌλŒ€ν•™ 쑰선해양곡학과, 2017. 8. λ…Έλͺ…일.μ„ λ°• ν•­λ‘œ κ³„νšμ€ ν•΄μš΄νšŒμ‚¬μ˜ 경영 μ•…ν™” 문제, μ˜€μ—Ό λ¬Όμ§ˆμ— λŒ€ν•œ ꡭ제 κ·œμ •μ˜ κ°•ν™” 그리고 μš΄ν•­ μ€‘μ˜ ν•­λ‘œμ˜ μ•ˆμ „μ„± 문제 λ“±μ˜ 졜근의 μ§λ©΄ν•œ μ—¬λŸ¬ λ¬Έμ œλ“€μ— λŒ€ν•΄ 쒋은 해결책이 될 수 μžˆλ‹€. ν•˜μ§€λ§Œ ν˜„μž¬ μ„ λ°• ν•­λ‘œ κ³„νšμ€ ν•­ν•΄μ‚¬μ˜ κ²½ν—˜ λ˜λŠ” λ‹¨μˆœν•œ 맀뉴얼 λ“±μ˜ λΉ„μ •λŸ‰μ  λ°©λ²•μœΌλ‘œ κ²°μ •λœλ‹€. λ˜ν•œ ν•­λ‘œ κ³„νšμ— μ‚¬μš©λ˜λŠ” μ•Œκ³ λ¦¬μ¦˜ μ—­μ‹œ λŒ€λΆ€λΆ„ κ²½λ‘œλ§Œμ„ κ³„νšν•˜λŠ” 방법듀이 많으며 속도λ₯Ό ν•­λ‘œμ— ν¬ν•¨ν•˜μ—¬ λ™μ‹œμ— κ³„νšν•˜λŠ” 방법은 μΆ©λΆ„νžˆ μ—°κ΅¬λ˜μ§€ μ•Šμ•˜λ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” μ„ λ°• ν•­λ‘œ κ³„νšμ„ μ—°κ΅¬ν•˜κΈ° μœ„ν•œ ν”„λ ˆμž„μ›Œν¬λ₯Ό μ œμ•ˆν•˜κ³ , 이λ₯Ό λ°”νƒ•μœΌλ‘œ ν•­λ‘œμ™€ 속도λ₯Ό λ™μ‹œμ— μ΅œμ ν™”ν•˜λŠ” μ„ λ°• ν•­λ‘œ κ³„νš 방법을 μ œμ•ˆν•˜μ˜€λ‹€. λ¨Όμ € μ„ λ°• ν•­λ‘œ κ³„νš 문제λ₯Ό μ΅œμ ν™” 문제둜 ν’€μ΄ν•˜κΈ° μœ„ν•œ 정식화 과정을 μ œμ•ˆν•˜κ³ , 이 μ •μ‹ν™”λœ μ‹λ“€λ‘œ ν•­λ‘œλ₯Ό κ΅¬μ„±ν•˜λŠ” λͺ¨λΈμ„ μ œμ•ˆν•˜μ˜€λ‹€. 이λ₯Ό μœ„ν•΄ ν•­λ‘œλ₯Ό μ„ λ°•μ˜ 경둜 (μ„ μˆ˜κ°)와 속도 (엔진 rpm)의 집합이라고 μ •μ˜ν•˜μ—¬ μ‹€μ œ μ„ λ°•μ˜ μš΄ν•­ λͺ¨μŠ΅μ„ μ΅œλŒ€ν•œ λͺ¨μ‚¬ν•˜μ˜€λ‹€. ν•΄λ‹Ή ν•­λ‘œλ₯Ό ν‰κ°€ν•˜κΈ° μœ„ν•˜μ—¬ 크게 μ—°λ£Œ μ†Œλͺ¨λŸ‰, 이동거리, λ‚΄ν•­μ„±λŠ₯ 그리고 μœ‘μ§€ νšŒν”Όλ₯Ό λŒ€μƒμœΌλ‘œ, 이λ₯Ό 평가 ν•  수 μžˆλŠ” λͺ¨λΈμ„ 이둠과 κ·œμ • 등을 ν™œμš©ν•˜μ—¬ μ œμ•ˆν•˜μ˜€λ‹€. λ˜ν•œ ν•­λ‘œλ₯Ό μ΅œμ ν™”ν•˜λŠ” λͺ¨λΈμœΌλ‘œμ¨ μ΄ˆκΈ°ν•΄λ₯Ό μ œκ³΅ν•˜κ³  κ΄€λ¦¬ν•˜λŠ” μ΄ˆκΈ°ν•΄ μœ μ „μž μ•Œκ³ λ¦¬μ¦˜ (Seed genetic algorithm)을 μ œμ•ˆν•˜μ˜€λ‹€. μ•žμ„  3가지 λͺ¨λΈμ„ λ°”νƒ•μœΌλ‘œ 닀측ꡬ쑰λ₯Ό κ΅¬ν˜„ν•œ ν”„λ‘œκ·Έλž¨μ„ κ°œλ°œν•˜μ˜€μœΌλ©°, 6κ°€μ§€μ˜ κ²€μ¦μ˜ˆμ œμ™€ 3κ°€μ§€μ˜ 적용예제λ₯Ό 톡해 μ œμ•ˆν•œ 3가지 λͺ¨λΈκ³Ό κ΅¬ν˜„λœ ν”„λ‘œκ·Έλž¨μ˜ μš°μˆ˜μ„±κ³Ό μ μš©κ°€λŠ₯성을 ν™•μΈν•˜μ˜€λ‹€. μ œμ•ˆλœ μ„ λ°• ν•­λ‘œ κ³„νš 방법은 기쑴의 ν•­λ‘œκ³„νš 방법과 μƒμš© ν”„λ‘œκ·Έλž¨λ³΄λ‹€ μš°μˆ˜ν•œ ν•­λ‘œλ₯Ό μ‚°μΆœν•˜μ˜€λ‹€. λ˜ν•œ μ œμ•ˆλœ μ΅œμ ν™” λͺ¨λΈ, μ„±λŠ₯평가 λͺ¨λΈ, ν•­λ‘œνƒμƒ‰ λͺ¨λΈ 그리고 ν”„λ‘œκ·Έλž¨μ˜ νš¨μš©μ„± μ—­μ‹œ 확인 ν•  수 μžˆμ—ˆλ‹€.Ship-route planning is a good solution to some problems facing recent issues such as the problem of financial difficulty of shipping companies, the strengthening of international regulations of pollutants and the safety of operating ship etc. However, the current ship-route planning is determined by non-quantitative methods such as chief mates experience and simple manuals. In addition, algorithms used for ship-route planning are also mostly conducted only for path planning, and the method of simultaneously optimizing to include the speed planning was not sufficiently studied. In this study, a framework for studying ship-route planning is proposed, and based on this framework, a ship-route-planning method that simultaneously optimizes path and speed is also proposed. First, the optimization model is proposed to formulate the ship-route-planning problem as the optimization problem and to construct a route with this formulated element. For this, the route is defined as a set of path (heading angle) and speed (engine rpm), thereby maximally describing the actual appearance of ship. Second, in order to evaluate this route, targeting fuel oil consumption, distance, seakeeping and land avoidance, the performance-evaluation model is proposed using theory and regulations. Third, a seed genetic algorithm is proposed to provide and manage initial solution as the route-finding model to optimize route. A program that implements multilayer structure is developed based on three previously proposed models, the excellence and applicability of three models is confirmed through six verifications and three applications. The proposed ship-route-planning method provides better routes than the existing ship-route-planning method and commercial program. Moreover, the utility of the proposed optimization model, performance-evaluation model, route-finding model and program are confirmed.1. Introduction 1.1. Ship-route-planning problem of real world 1 1.2. Motivation for work 3 1.3. Related works 4 2. Ship-route-planning problem 8 2.1. Framework of ship-route-planning problem 8 2.2. Overview of this study 11 2.3. Input and output information 12 3. Optimization model 14 3.1. Theoretical background 15 3.1.1. Cell-based algorithm 16 3.1.2. Cell-free algorithm 20 3.1.3. Comparison 24 3.2. Formulation of the ship-route-planning problem as the optimization problem 25 3.2.1. Design variables 26 3.2.2. Objective functions 27 3.2.3. Constraints 27 3.3. Route construction from elements of formulation 29 3.3.1. Route definition 29 3.3.2. Route generation 31 3.3.3. Route evaluation 35 4. Performance-evaluation model 37 4.1. FOC estimation 38 4.1.1. Theoretical background 40 4.1.2. FOC estimation of this study 42 4.2. Space calculation 46 4.2.1. Theoretical background 46 4.2.2. Distance calcuation of this study 48 4.3. Seakeeping evaluation 48 4.3.1. Seakeeping evaluation of this study 50 4.4. Avoidance of obstacles 51 5. Route-finding model 53 5.1. Theoretical background 53 5.1.1. Metaheuristic algorithm 55 5.1.2. Genetic algorithm (GA) 55 5.1.3. Evolutionary strategy (ES) 57 5.1.4. Particle swarm method (PSO) 58 5.2. Seed genetic algorithm for optimal solution 60 6. Development of the program 64 6.1. Multilayer architecture as data structure 65 6.1.1. Map projection 66 6.1.2. Weather 68 6.2. Functions 69 7. Verifictaions 69 7.1. Verification of optimization model 71 7.1.1. Case 1 71 7.1.2. Case 2 76 7.2. Verification of performance-evaluation model 78 7.2.1. Case 3 78 7.2.2. Case 4 81 7.3. Verification of route-finding model 84 7.3.1. Case 5 84 7.3.2. Case 6 85 8. Applications 87 8.1. Application 1 88 8.2. Application 2 90 8.3. Application 3 91 9. Conclusion and future works 92 References 94 κ΅­λ¬Έ 초둝 100Maste

    Numerical Analysis of Dissociation Behavior in Mesoscale Gas Hydrate Production Experimental System

    Get PDF
    κ°€μŠ€ν•˜μ΄λ“œλ ˆμ΄νŠΈλŠ” μ²œμ—°κ°€μŠ€κ°€ μ €μ˜¨, κ³ μ•• μ‘°κ±΄μ—μ„œ λ¬Ό λΆ„μžμ™€ 물리적으둜 κ²°ν•©ν•˜μ—¬ ν˜•μ„±λœ 고체 μƒνƒœμ˜ κ²°μ •μœΌλ‘œ, μ£Ό ꡬ성 성뢄인 메탄은 μ—°μ†Œ μ‹œ μ„μœ , 석탄과 같은 일반적인 μ„μœ μžμ›μ— λΉ„ν•΄ μƒλŒ€μ μœΌλ‘œ μ΄μ‚°ν™”νƒ„μ†Œλ₯Ό 적게 λ°°μΆœν•˜λŠ” μΉœν™˜κ²½μ μΈ νŠΉμ„±μ„ 가지고 μžˆμ–΄ μ²­μ • μ—λ„ˆμ§€μ›μœΌλ‘œ 각광을 λ°›κ³  μžˆλ‹€. λ―Έκ΅­, μΊλ‚˜λ‹€, 쀑ꡭ, 일본 λ“± μ—¬λŸ¬ κ΅­κ°€μ—μ„œ κ°€μŠ€ν•˜μ΄λ“œλ ˆμ΄νŠΈ κ°œλ°œμ„ μœ„ν•œ 연ꡬ가 진행 쀑에 있으며, κ΅­λ‚΄μ˜ 경우 2007년에 동해 μšΈλ¦‰λΆ„μ§€ 1μ°¨ μ‹œμΆ”(UBGH1)와 2010λ…„ 2μ°¨ μ‹œμΆ”(UBGH2)λ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€. λ˜ν•œ μ‹œμΆ”μžλ£Œλ₯Ό λ°”νƒ•μœΌλ‘œ μ½”μ–΄μœ λ™μ‹€ν—˜μ„ μˆ˜ν–‰ν•˜μ—¬ 감압법을 μ΄μš©ν•˜μ—¬ 해리거동을 νŒŒμ•…ν•˜μ˜€μœΌλ©°, μ‹œν—˜μƒμ‚° ν›„λ³΄μ§€μ˜ μ „μ‚°μˆ˜μΉ˜ 해석λͺ¨λΈμ„ κ΅¬μΆ•ν•˜μ—¬ μ „μ‚°μˆ˜μΉ˜ 해석을 μˆ˜ν–‰ν•˜μ˜€λ‹€. κ·ΈλŸ¬λ‚˜ κ°€μŠ€ν•˜μ΄λ“œλ ˆμ΄νŠΈ ν•΄λ¦¬λŠ” λ¬Όμ§ˆμ „λ‹¬κ³Ό 열전달이 λ³΅ν•©μ μœΌλ‘œ μž‘μš©ν•˜λŠ” ν˜„μƒμœΌλ‘œ μ½”μ–΄ μŠ€μΌ€μΌμ—μ„œλŠ” 열전달이 해리에 큰 영ν–₯을 λ―ΈμΉ˜μ§€λ§Œ ν˜„μž₯ μŠ€μΌ€μΌμ—μ„œλŠ” λ¬Όμ§ˆμ „λ‹¬μ΄ 큰 영ν–₯을 λ―ΈμΉœλ‹€. λ”°λΌμ„œ μ½”μ–΄ μŠ€μΌ€μΌμ—μ„œμ˜ 연ꡬ κ²°κ³Όλ₯Ό κ³§λ°”λ‘œ κ°€μŠ€ν•˜μ΄λ“œλ ˆμ΄νŠΈ ν˜„μž₯ μ‹œν—˜μƒμ‚°μ— μ μš©ν•˜λŠ” 것은 ν•œκ³„κ°€ μžˆλ‹€. 졜근 μ΄λŸ¬ν•œ λ¬Έμ œμ μ„ κ·Ήλ³΅ν•˜κ³ μž ν•œκ΅­μ§€μ§ˆμžμ›μ—°κ΅¬μ›μ—μ„œ 동해 μšΈλ¦‰λΆ„μ§€ ν™˜κ²½μ„ λͺ¨μ‚¬ν•œ μ€‘κ·œλͺ¨ κ°€μŠ€ν•˜μ΄λ“œλ ˆμ΄νŠΈ 생산λͺ¨μ‚¬ μ‹€ν—˜μ‹œμŠ€ν…œμ—μ„œ 연ꡬλ₯Ό μˆ˜ν–‰ν•˜μ˜€μœΌλ©°, ν˜„μž₯ μ‹œν—˜μƒμ‚° ν›„λ³΄μ§€μ˜ κ°€μŠ€ν•˜μ΄λ“œλ ˆμ΄νŠΈ κ°œλ°œΞ‡μƒμ‚° κ³„νš μˆ˜λ¦½μ„ μœ„ν•΄ μ‹€ν—˜μ‹œμŠ€ν…œ λ‚΄ λ‹€μ–‘ν•œ μƒμ‚°μ‘°κ±΄μ—μ„œ 해리거동을 νŒŒμ•…ν•˜λŠ” 것이 ν•„μš”ν•˜λ‹€. λ”°λΌμ„œ 이 μ—°κ΅¬μ—μ„œλŠ” ν˜„μž₯ μ μš©μ„± ν™•μž₯을 μœ„ν•΄ μˆ˜ν–‰λœ μ€‘κ·œλͺ¨ κ°€μŠ€ν•˜μ΄λ“œλ ˆμ΄νŠΈ 생산λͺ¨μ‚¬ μ‹€ν—˜μ‹œμŠ€ν…œμ— λŒ€ν•œ μ „μ‚°μˆ˜μΉ˜ λͺ¨λΈμ„ κ΅¬μΆ•ν•˜μ—¬ 유체의 μœ λ™κ³Ό κ΄€λ ¨λœ λ³€μˆ˜λ₯Ό λ³€ν™”μ‹œμΌœ μ‹€ν—˜κ²°κ³Όμ™€ μ „μ‚°μˆ˜μΉ˜ 해석결과λ₯Ό λΉ„κ΅Ξ‡κ²€μ¦ν•˜κ³ μž ν•˜μ˜€λ‹€. λ˜ν•œ λ‹€μ–‘ν•œ κ°€μŠ€ν•˜μ΄λ“œλ ˆμ΄νŠΈ ν•¨μœ  ν‡΄μ μΈ΅μ˜ λ¬Όμ„± 변화에 λ”°λ₯Έ 민감도 뢄석을 μˆ˜ν–‰ν•˜μ—¬ μ€‘κ·œλͺ¨ κ°€μŠ€ν•˜μ΄λ“œλ ˆμ΄νŠΈ 생산λͺ¨μ‚¬ μ‹€ν—˜μ‹œμŠ€ν…œ λ‚΄ 해리거동을 νŒŒμ•…ν•˜κ³ μž ν•˜μ˜€λ‹€.With increasing energy demands and environment problems, gas hydrate may serve as a potentially important resources of future energy requirements. Gas hydrate is solid clathrate compound in which a large amount of methane is trapped with in a crystal structure of water. Depressurization method can be considered to the most productive and effective method for gas hydrate production because gas may be continuously produced. There are many researches and expeditions to develop the gas hydrate in USA, Canada, China and Japan. In Korea, the first Ulleung Basin Gas Hydrate drilling expedition(UBGH1) was performed in 2007 and the second Ulleung Basin Gas Hydrate drilling expedition(UBGH2) was performed in 2010 at the locations that have high potential gas hydrate bearing sediments in Ulleung basin, East Sea of Korea. Based on this expeditions, numerical simulation has been performed by considering the experiment of the gas hydrate production in core scale. However, it is limited to immediately apply to field production test using the result of core scale because the researches related to the productivity and stability are insufficient during the gas hydrate production. Therefore, Korea Institute of Geoscience and Mineral Resources(KIGAM) experimented with the Mesoscale Gas Hydrate Production Simulation Experimental System to solve this problems. It is necessary to analyze the results of the experiment with the numerical simulation for applying to field production test. In this study, numerical simulation model, reflecting the Mesoscale production simulation system, has been made for the extension of the field applicability and verified by comparing experimental and simulation results. The parameters related to fluid flow are changed and simulation results of the dissociation behavior are compared to the experimental result. Also. sensitivity of the sediments properties has been analyzed to predict gas, water production and flow behavior by gas hydrate dissociation.1. μ„œ λ‘  1 2. κ°€μŠ€ν•˜μ΄λ“œλ ˆμ΄νŠΈ 생산λͺ¨μ‚¬ 6 2.1 κ°€μŠ€ν•˜μ΄λ“œλ ˆμ΄νŠΈ 생산방법 6 2.2 μ€‘κ·œλͺ¨ κ°€μŠ€ν•˜μ΄λ“œλ ˆμ΄νŠΈ 생산λͺ¨μ‚¬ μ‹€ν—˜ 9 2.2.1 μ‹€ν—˜λ°©λ²• 9 2.2.2 μ‹€ν—˜κ²°κ³Ό 12 3. μ€‘κ·œλͺ¨ κ°€μŠ€ν•˜μ΄λ“œλ ˆμ΄νŠΈ 생산λͺ¨μ‚¬ μ‹€ν—˜μ‹œμŠ€ν…œ μ „μ‚°λͺ¨λΈ ꡬ좕 16 3.1 TOUGH+HYDRATE κ°œμš” 16 3.2 μ „μ‚°μˆ˜μΉ˜ λͺ¨λΈ ꡬ성 19 3.3 μ „μ‚°μˆ˜μΉ˜ 해석결과 비ꡐ·검증 24 4. κ°€μŠ€ν•˜μ΄λ“œλ ˆμ΄νŠΈ ν•¨μœ  퇴적측 물성에 λ”°λ₯Έ 민감도 뢄석 37 4.1 ν•˜μ΄λ“œλ ˆμ΄νŠΈν¬ν™”μœ¨ λ³€ν™” 38 4.2 μ ˆλŒ€μœ μ²΄νˆ¬κ³Όλ„ λ³€ν™” 41 4.3 열전도도 λ³€ν™” 43 5. κ²° λ‘  45 μ°Έκ³ λ¬Έν—Œ 4

    μ•„λΌν‚€λˆμ‚° μœ λ„μ„± 산화적 슀트레슀 및 세포 독성에 λŒ€ν•œ μ‚¬μš°μΉ˜λ…Όμ˜ 보호 효과

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사) --μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μ•½ν•™κ³Ό,2008.2.Maste

    λ”₯λŸ¬λ‹ 기반 병변 κ²€μΆœ 기법

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 전기·컴퓨터곡학뢀, 2018. 8. μœ€μ„±λ‘œ.ν•˜λ“œμ›¨μ–΄μ˜ λ°œμ „κ³Ό λ°©λŒ€ν•œ 크기의 λ°μ΄ν„°μ…‹μ˜ 곡개둜 인곡지λŠ₯ λΆ„μ•ΌλŠ” ν™©κΈˆκΈ°μ— μ ‘μ–΄λ“€μ—ˆλ‹€. 인곡지λŠ₯에 κΈ°λ°˜ν•œ 연ꡬ듀은 였랜 μ‹œκ°„ 닡보 μƒνƒœμ— 있던 μ˜μƒ 인식, 객체 κ²€μΆœ, μžμ—°μ–΄ 처리, 기계 λ²ˆμ—­ 및 μžμœ¨μ£Όν–‰ μžλ™μ°¨μ™€ 같은 λ‹€μ–‘ν•œ λΆ„μ•Όμ—μ„œ 성곡적인 κ²°κ³Όλ₯Ό λ³΄μ—¬μ£Όμ—ˆλ‹€. 생체 의료 데이터 뢄석 λΆ„μ•Όμ—μ„œλ„ λ°©λŒ€ν•˜κ²Œ μΆ•μ λ˜λŠ” 생체 의료 빅데이터λ₯Ό 효과적으둜 λΆ„μ„ν•˜κΈ° μœ„ν•΄ 기계 ν•™μŠ΅μ„ μ μš©ν•˜λ €λŠ” λ‹€μ–‘ν•œ 연ꡬ가 μ‹œλ„λ˜κ³  μžˆλ‹€. ν•œνŽΈ, 생체 의료 데이터에 κΈ°κ³„ν•™μŠ΅ 기법을 효과적으둜 μ μš©ν•˜κΈ° μœ„ν•΄μ„œλŠ” κ·Ήλ³΅ν•΄μ•Όλ§Œ ν•˜λŠ” λͺ‡ 가지 μ΄μŠˆκ°€ μ‘΄μž¬ν•œλ‹€. 첫번째 μ΄μŠˆλŠ” 기계 ν•™μŠ΅ 기법이 의료 ν˜„μž₯μ—μ„œ 진단 λ³΄μ‘°λ„κ΅¬λ‘œ 적용되렀면 κΈ°κ³„μ˜ 예츑 결과와 그에 λŒ€ν•œ μΆ”μ • κ·Όκ±°κ°€ 해석이 κ°€λŠ₯ν•΄μ•Ό ν•œλ‹€λŠ” 것이닀. λ‘λ²ˆμ§Έ 이슈둜 νŠΉμ • μ§ˆν™˜μ— λŒ€ν•œ 생체 λ°μ΄ν„°μ˜ 크기가 λ”₯λŸ¬λ‹κ³Ό 같은 λŒ€λŸ‰μ˜ ν•™μŠ΅λ°μ΄ν„°λ₯Ό μš”κ΅¬ν•˜λŠ” κΈ°κ³„ν•™μŠ΅ λͺ¨λΈμ˜ ν•™μŠ΅μ—λŠ” λΆ€μ‘±ν•  수 μžˆλ‹€λŠ” 것이닀. 더 λ‚˜μ•„κ°€, λͺ¨λΈμ˜ ν•™μŠ΅μ„ μœ„ν•œ κ·ΈλΌμš΄λ“œ 트루슀 λ°μ΄ν„°μ˜ 뢀쑱도 또 ν•˜λ‚˜μ˜ 이슈둜 μ—¬κΈΈ 수 μžˆλ‹€. 생체 의료 λ°μ΄ν„°μ˜ 경우 κ·ΈλΌμš΄λ“œ 트루슀 데이터λ₯Ό μƒμ„±ν•˜κΈ° μœ„ν•΄μ„œλŠ” μ˜μ‚¬λ₯Ό λΉ„λ‘―ν•œ μ „λ¬Έκ°€μ˜ λ…Έλ ₯이 λΆˆκ°€ν”Όν•˜μ—¬ 이λ₯Ό ν™•λ³΄ν•˜κΈ°λž€ 맀우 μ–΄λ €μš΄ 일이기 λ•Œλ¬Έμ΄λ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ 인간 μœ μ „μ²΄μ™€ 같이 λ°©λŒ€ν•œ μ–‘μ˜ 생체 데이터λ₯Ό 뢄석해야 ν•˜λŠ” 경우 뢄석 λ„κ΅¬μ˜ μž…μΆœλ ₯ νŒ¨ν„΄μ΄ μž₯μ• λ¬Όλ‘œ μž‘μš©ν•˜μ—¬ 전체적인 뢄석 μ‹œκ°„μ— 영ν–₯을 쀄 수 μžˆλ‹€λŠ” 점이닀. λ³Έ ν•™μœ„ λ…Όλ¬Έμ—μ„œλŠ” 각각의 μ΄μŠˆλ“€μ„ ν•΄κ²°ν•˜κΈ° μœ„ν•΄ μ œμ•ˆν•œ 접근법듀을 4개의 챕터에 걸쳐 μ œμ‹œν•œλ‹€. μ²«λ²ˆμ§Έλ‘œλŠ” λ”₯λŸ¬λ‹ 기반의 λͺ¨λΈμ„ 진단 λ³΄μ‘°λ„κ΅¬λ‘œ μ‚¬μš©ν•˜μ˜€μ„ λ•Œ, μ‚¬μš©μžκ°€ λͺ¨λΈμ˜ νŒλ‹¨ κ·Όκ±°λ₯Ό μ‹œκ°μ μœΌλ‘œ ν”Όλ“œλ°± 받을 수 μžˆλ„λ‘ ν•˜λŠ” pyramid Grad-CAM을 μ œμ•ˆν•˜μ˜€λ‹€. λ‘λ²ˆμ§Έλ‘œλŠ” ν•™μŠ΅ 데이터가 λΆ€μ‘±ν•œ μƒν™©μ—μ„œ λ”₯λŸ¬λ‹ λͺ¨λΈμ„ μ„±κ³΅μ μœΌλ‘œ ν•™μŠ΅μ‹œν‚€κ³ , λͺ¨λΈμ˜ 강인함을 ν–₯μƒμ‹œν‚€κΈ° μœ„ν•œ 방법을 μ†Œκ°œν•œλ‹€. ν•™μŠ΅λ°μ΄ν„° 뢀쑱을 κ·Ήλ³΅ν•˜κΈ° μœ„ν•˜μ—¬ κ°€μš°μ‹œμ•ˆ λ…Έμ΄μ¦ˆ 기반의 μ™œκ³‘μ„ ν™œμš©ν•œ 데이터 증강 기법을 μ‚¬μš©ν•˜μ˜€μœΌλ©°, ν•™μŠ΅λœ λͺ¨λΈμ„ 보쑰할 수 μžˆλŠ” μ‹ ν˜Έ 처리 기법 기반의 방법둠을 μƒλ³΄μ μœΌλ‘œ μœ΅ν•©ν•˜μ˜€λ‹€. μ„Έλ²ˆμ§Έ 이슈λ₯Ό κ·Ήλ³΅ν•˜κΈ° μœ„ν•΄μ„œ μ•½ν•œ 지도 ν•™μŠ΅λ²•μ— κΈ°λ°˜ν•œ μƒˆλ‘œμš΄ 병변 κ²€μΆœ 기법을 μ†Œκ°œν•œλ‹€. λ§ˆμ§€λ§‰μœΌλ‘œλŠ” λ°©λŒ€ν•œ 생체 의료 데이터 뢄석 기법을 μ €μž₯μž₯치 λ‹¨μ—μ„œ 가속화 ν•  수 μžˆλŠ” μž…μΆœλ ₯ νŒ¨ν„΄μ„ λ°œκ²¬ν•˜κΈ° μœ„ν•˜μ—¬, 23개의 생물정보학 μ–΄ν”Œλ¦¬μΌ€μ΄μ…˜μ— λŒ€ν•œ 심측적인 ν”„λ‘œνŒŒμΌλ§κ³Ό 계측적 ꡰ집화 기법을 ν†΅ν•œ μž…μΆœλ ₯ νŒ¨ν„΄ 뢄석을 μˆ˜ν–‰ν•˜μ˜€λ‹€. λ³Έ ν•™μœ„ λ…Όλ¬Έμ—μ„œλŠ” 이와 같이 생체 의료 λ°μ΄ν„°μ˜ 효과적인 뢄석을 μœ„ν•œ λ‹€μ–‘ν•œ 기계 ν•™μŠ΅ 기반의 뢄석 기법과 가속화 λ°©μ•ˆμ„ μ œμ•ˆν•˜μ˜€λ‹€.Abstract iii List of Figures x List of Tables xi 1 Introduction 1 2 Background 8 2.1 Modalities of biomedical data . . . . . . . . . . . . . . . . . . . . 8 2.1.1 Imaging modalities . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Sequence modalities . . . . . . . . . . . . . . . . . . . . . 12 2.1.3 Other modalities . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . 14 2.2.1 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Various CNN architectures . . . . . . . . . . . . . . . . . . 18 2.3 Major tasks in computer vision . . . . . . . . . . . . . . . . . . . . 21 2.3.1 Object detection . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.2 Semantic segmentation . . . . . . . . . . . . . . . . . . . . 26 2.4 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 Visualization approach for understandable diagnosis 32 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.1 Architecture and training . . . . . . . . . . . . . . . . . . . 36 3.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.1 Meningioma MR dataset . . . . . . . . . . . . . . . . . . . 40 3.3.2 Classification results . . . . . . . . . . . . . . . . . . . . . 41 3.3.3 Localization results . . . . . . . . . . . . . . . . . . . . . . 42 3.3.4 Additional results . . . . . . . . . . . . . . . . . . . . . . . 44 3.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4.1 The effectiveness of DC-FPN . . . . . . . . . . . . . . . . 45 3.4.2 Visualization of multi-scale features . . . . . . . . . . . . . 45 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4 Complementary fusion approach for lesion detection 50 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2.1 Preprocessing phase (PP) . . . . . . . . . . . . . . . . . . . 52 4.2.2 Finger extraction phase (FE) . . . . . . . . . . . . . . . . . 54 4.2.3 Joint detection phase (JD) . . . . . . . . . . . . . . . . . . 54 4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . 60 4.3.2 Accuracy of joint detection . . . . . . . . . . . . . . . . . . 60 4.3.3 Training CNN and AdaBoost . . . . . . . . . . . . . . . . . 61 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5 Weakly supervised approach for lesion detection 63 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.2.1 Surrogate ground truth . . . . . . . . . . . . . . . . . . . . 66 5.2.2 ROI extraction and masking . . . . . . . . . . . . . . . . . 70 5.2.3 Objectness scoring . . . . . . . . . . . . . . . . . . . . . . 72 5.2.4 Detection network . . . . . . . . . . . . . . . . . . . . . . 73 5.2.5 Model training . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2.6 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.3.1 Cerebral palsy classification performance . . . . . . . . . . 77 5.3.2 Lesion detection performance . . . . . . . . . . . . . . . . 78 5.3.3 Additional results . . . . . . . . . . . . . . . . . . . . . . . 79 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.4.1 Effect of classification accuracy . . . . . . . . . . . . . . . 86 5.4.2 Type comparison of surrogate ground truths . . . . . . . . . 86 5.4.3 Effectivness of background masking . . . . . . . . . . . . . 89 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6 Acceleration with a storage device 91 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.1.1 SSD-leveraged resurrection of hash-based aligners . . . . . 94 6.1.2 Measuring speedup of bioinformatics programs . . . . . . . 95 6.1.3 Accelerating bioinformatics pipelines by SSDs . . . . . . . 97 6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.2.1 Measuring storage features . . . . . . . . . . . . . . . . . . 101 6.2.2 Pattern discovery by clustering . . . . . . . . . . . . . . . . 102 6.2.3 Impact of IO randomness on speedup . . . . . . . . . . . . 107 6.2.4 Impact of input size on SSD effectiveness . . . . . . . . . . 109 6.2.5 Effect of main memory size on SSD-based acceleration . . . 110 6.2.6 Additional experiments . . . . . . . . . . . . . . . . . . . . 112 6.2.7 Summary and guidelines for employing SSDs in bioinformatics pipelines . . . . . . . . . . . . . . . . . . . . . . . . 114 6.2.8 Training of deep learning-based model on SSDs . . . . . . . 114 6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.4.1 Experiment setup and measurements . . . . . . . . . . . . . 120 6.4.2 More details of the storage features used . . . . . . . . . . . 123 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7 Conclusion 125 7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Bibliography 127 Abstract (In Korean) 149Docto

    2015 κ°œμ • κ΅μœ‘κ³Όμ •κ³Ό κ΅κ³Όμ„œλ₯Ό μ€‘μ‹¬μœΌλ‘œ

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μ‚¬λ²”λŒ€ν•™ μˆ˜ν•™κ΅μœ‘κ³Ό,2020. 2. μœ μ—°μ£Ό.ν˜„λŒ€μΈλ“€μ€ 개인적, μ‚¬νšŒμ  직업적 ν™˜κ²½μ—μ„œ λ‹€μ–‘ν•œ 톡계 정보λ₯Ό μ ‘ν•˜κ³  μžˆλ‹€. μΌμƒμ—μ„œ μ ‘ν•˜λŠ” 톡계 μ •λ³΄λŠ” 개인이 μ˜μ‚¬κ²°μ •μ„ λ‚΄λ¦¬λŠ” 데 도움을 μ€€λ‹€. λ˜ν•œ μ‹œλ―Όλ“€μ€ λ•Œλ•Œλ‘œ λ¬Έμ œν•΄κ²°μ„ μœ„ν•΄ 톡계 정보와 자료λ₯Ό μˆ˜μ§‘ν•˜κ³  뢄석해야 ν•œλ‹€. 톡계적 μ†Œμ–‘μ€ λ¬Έμ œν•΄κ²°μ„ μœ„ν•΄ 정보와 자료λ₯Ό μˆ˜μ§‘ν•˜κ³  ν†΅κ³„μ μœΌλ‘œ λΆ„μ„ν•˜μ—¬ 결둠을 λ‚΄λ¦¬λŠ” 데 ν•„μš”ν•œ λŠ₯λ ₯이닀. 톡계적 μ†Œμ–‘μ€ μ—¬λŸ¬ 톡계 κ΅μœ‘μžλ“€μ— μ˜ν•΄ μ€‘μš”μ„±μ„ κ°•μ‘°λ˜κ³  있으며 λ§Žμ€ λ‚˜λΌμ˜ κ΅μœ‘κ³Όμ •μ— μ£Όμš” λ‚΄μš©μœΌλ‘œ ν¬ν•¨λ˜μ–΄ μžˆλ‹€. 톡계학은 μˆ˜ν•™κ³Ό κ΅¬λ³„λ˜λŠ” ν•™λ¬Έμ΄μ§€λ§Œ μˆ˜ν•™μ˜ ν•œ λΆ„μ•Όλ‘œ μ§€λ„λ˜λŠ” κ²½ν–₯이 μžˆμ—ˆλ‹€. μˆ˜ν•™κ³Ό λ‹€λ₯΄κ²Œ 톡계학은 문제 λ°œμƒλΆ€ν„° 자료 μˆ˜μ§‘, 정리, 뢄석, νŒλ‹¨ 및 해석 λ˜λŠ” 결둠을 λ‚΄λ¦¬λŠ” κ³Όμ •κΉŒμ§€ μ§€μ†μ μœΌλ‘œ λ§₯락을 κ³ λ €ν•˜μ—¬ νŒλ‹¨ν•˜λŠ” 것이 μ€‘μš”ν•˜λ‹€. μš°λ¦¬λ‚˜λΌμ˜ 졜근 κ΅μœ‘κ³Όμ •μ€ 톡계적 μ†Œμ–‘μ„ κΈ°λ₯Ό 수 μžˆλŠ” λ°©ν–₯으둜 κ°œμ •λ˜λ©΄μ„œ 쀑학ꡐ 3ν•™λ…„ 과정에 산점도와 상관관계λ₯Ό μΆ”κ°€ν•˜μ˜€λ‹€. ν•˜μ§€λ§Œ κ΅μœ‘κ³Όμ •μ— μ œμ‹œλœ λ‚΄μš©μ€ 산점도와 상관관계가 μ‚­μ œλ˜κΈ° 전인 7μ°¨ κ΅μœ‘κ³Όμ •μ˜ λ‚΄μš©κ³Ό 큰 차이가 μ—†μœΌλ©°, 7μ°¨ κ΅μœ‘κ³Όμ • λ‹Ήμ‹œ μ—°κ΅¬μ—μ„œ μ§€μ λœ 상관관계 ꡐ윑의 문제점이 크게 κ°œμ„ λ˜μ§€ μ•Šμ•˜λ‹€. μƒκ΄€κ΄€κ³„λŠ” 곡변좔둠과 κ΄€λ ¨λ˜λŠ” κ°œλ…μœΌλ‘œ 과학적 μ‚¬κ³ μ—μ„œ μ€‘μš”ν•œ 역할을 ν•  뿐만 μ•„λ‹ˆλΌ μˆ˜ν•™, 톡계학, μžμ—° κ³Όν•™κ³Ό μ‚¬νšŒ κ³Όν•™ λ“±μ˜ μ—¬λŸ¬ λΆ„μ•Όμ—μ„œ μ‚¬μš©λœλ‹€. ν†΅κ³„μ˜ λ§₯락적인 νŠΉμ„±κ³Ό μƒκ΄€κ΄€κ³„μ˜ λ§Žμ€ ν™œμš©μ„±μ„ κ³ λ €ν•˜μ—¬ λ³Ό λ•Œ, 상관관계λ₯Ό 지도할 λ•Œ 톡계와 일반 μˆ˜ν•™, μ‹€μƒν™œκ³Ό 타 ꡐ과 λ“± λ‹€μ–‘ν•œ μ˜μ—­κ³Ό μ—°κ²°ν•˜μ—¬ 지도할 ν•„μš”μ„±μ΄ μžˆλ‹€. λ˜ν•œ μˆ˜ν•™κ΅μœ‘κ³Όμ •μ€ μ„œλ‘œ λ‹€λ₯Έ κ°œλ…κ³Ό μ˜μ—­μ„ μ—°κ²°ν•˜κ³  ν†΅ν•©ν•˜μ—¬ μ§€λ„ν•˜λŠ” μˆ˜ν•™μ  연결성을 μΆ©λΆ„νžˆ ν™•λ³΄ν•˜μ—¬ 지도할 것을 κΆŒν•˜κ³  있으며, κ΅μœ‘κ³Όμ •λ‘ μ—μ„œλ„ μ„œλ‘œ λ‹€λ₯Έ ꡐ과 μ˜μ—­μ„ ν†΅ν•©μ μœΌλ‘œ μ§€λ„ν•˜λŠ” 접근법이 νš¨κ³Όμ μ΄λΌλŠ” 관점이 μžˆλ‹€. 이 μ—°κ΅¬μ—μ„œλŠ” 2015 κ°œμ • μˆ˜ν•™κ³Ό κ΅μœ‘κ³Όμ •κ³Ό κ΅κ³Όμ„œμ—μ„œ 산점도, 상관관계λ₯Ό μ—°κ²°μ„±μ˜ κ΄€μ μ—μ„œ μ–΄λ–»κ²Œ μ§€λ„ν•˜λŠ”μ§€ μ‚΄νŽ΄λ³΄κΈ° μœ„ν•΄ μ—°κ²°μ„±μ˜ μœ ν˜•μ„ μ„ΈλΆ„ν™”ν•˜κ³  λ―Έκ΅­, 호주의 κ΅μœ‘κ³Όμ • 및 κ΅κ³Όμ„œμ™€ λΉ„κ΅ν•˜μ˜€λ‹€. 이λ₯Ό μœ„ν•΄ λ―Έκ΅­, 호주의 κ΅μœ‘κ³Όμ •κ³Ό μš°λ¦¬λ‚˜λΌμ˜ κ΅κ³Όμ„œ 4μ’…, 미ꡭ의 κ΅κ³Όμ„œ 2μ’…, 호주의 κ΅κ³Όμ„œ 1쒅을 μƒμ„Ένžˆ λΆ„μ„ν•˜μ˜€λ‹€. 상관관계 μ§€λ„μ˜ μ—°κ²°μ„± μœ ν˜• 뢄석을 μœ„ν•΄ 계열성, κ³΅μœ μ„±, 연계성, μ‘°μ§μ„±μ΄λΌλŠ” μ—°κ²°μ„±μ˜ λ„€ 가지 ν˜•μ‹μ  μœ ν˜•κ³Ό 톡계 μ˜μ—­, 톡계λ₯Ό μ œμ™Έν•œ μˆ˜ν•™ μ˜μ—­, μ‹€μƒν™œ 및 타 ꡐ과 μ˜μ—­, ν˜Όν•© μ˜μ—­μ˜ μ—°κ²°λœ μ˜μ—­μ˜ μ’…λ₯˜μ˜ λ„€ 가지 μœ ν˜•μ„ κ²°ν•©ν•œ 총 16κ°€μ§€μ˜ μœ ν˜•μœΌλ‘œ λΆ„λ₯˜ν•˜μ—¬ κ΅μœ‘κ³Όμ •κ³Ό κ΅κ³Όμ„œμ˜ λ‚΄μš©μ„ λΆ„μ„ν•˜μ˜€λ‹€. κ·Έ κ²°κ³Ό κ³„μ—΄μ„±μ˜ μΈ‘λ©΄μ—μ„œλŠ” μš°λ¦¬λ‚˜λΌ κ΅μœ‘κ³Όμ •μ˜ 상관관계 κ΄€λ ¨ λ‚΄μš©μ€ μ‚°μ λ„μ˜ λ„μž… 이후 μƒκ΄€κ΄€κ³„μ˜ 직관적 λΆ„λ₯˜μ— 그친데 λ°˜ν•΄ λ―Έκ΅­κ³Ό 호주의 κ²½μš°μ—λŠ” μƒκ΄€κ³„μˆ˜μ™€ νšŒκ·€λΆ„μ„μœΌλ‘œ μ΄μ–΄μ§€λŠ” 계열성이 ν™•λ³΄λ˜μ–΄ μžˆμŒμ„ ν™•μΈν•˜μ˜€λ‹€. λ˜ν•œ λ―Έκ΅­κ³Ό 호주의 경우 일차 ν•¨μˆ˜μ™€ μ§μ„ μ˜ μ„±μ§ˆλ“±κ³Ό μœ„κ³„μ  연결을 ν™•λ³΄ν•˜μ—¬ 상관관계λ₯Ό μ§€λ„ν•˜λŠ” λ‚΄μš©μ΄ κ΅κ³Όμ„œμ— λ“œλŸ¬λ‚œ 반면 μš°λ¦¬λ‚˜λΌμ˜ κ΅κ³Όμ„œλŠ” μƒλŒ€μ μœΌλ‘œ λΆ€μ‘±ν•˜μ˜€λ‹€. κ³΅μœ μ„±μ˜ κ²½μš°μ—λ„ λ―Έκ΅­, 호주의 κ΅κ³Όμ„œμ™€ λΉ„κ΅ν•˜μ˜€μ„ λ•Œ μ—¬λŸ¬ 츑면의 κ³΅μœ μ„±μ—μ„œ μš°λ¦¬λ‚˜λΌμ˜ κ΅κ³Όμ„œμ˜ λ‚΄μš©μ΄ μƒλŒ€μ μœΌλ‘œ 뢀쑱함을 λ°œκ²¬ν•  수 μžˆλ‹€. 연계성을 μ‚΄νŽ΄λ³Έ κ²°κ³Ό μš°λ¦¬λ‚˜λΌ κ΅κ³Όμ„œμ—λŠ” 주제λ₯Ό μ€‘μ‹¬μœΌλ‘œ 상관관계와 κ΄€λ ¨λœ ν™œλ™μ΄ μ œμ‹œλœ κ²½μš°κ°€ 더 λ§ŽκΈ°λŠ” ν•˜μ˜€μœΌλ‚˜ λŒ€λΆ€λΆ„ μˆ˜μ—…μ—μ„œ 닀루지 μ•Šμ„ κ°€λŠ₯성이 큰 단원 λ’·λΆ€λΆ„μ˜ 보쑰 ν™œλ™μ— ν¬ν•¨λœ κ²½μš°κ°€ λ§Žμ•˜λ‹€. μ‘°μ§μ„±μ˜ κ²½μš°μ—λ„ μš°λ¦¬λ‚˜λΌ κ΅κ³Όμ„œμ—λŠ” λ¬Έμ œν•΄κ²°, μ˜μ‚¬μ†Œν†΅, μ •λ³΄μ²˜λ¦¬ μ—­λŸ‰μ„ 염두에 두고 κ΅¬μ„±λœ ν™œλ™μ΄λ‚˜ λ¬Έμ œλ“€μ΄ μ œμ‹œλ˜μ–΄ μžˆμ—ˆμ§€λ§Œ, μ—­μ‹œ 보쑰 ν™œλ™μ— ν¬ν•¨λœ κ²½μš°κ°€ λ§Žμ•˜μœΌλ©° 미ꡭ의 κ΅κ³Όμ„œμ™€ λΉ„κ΅ν•˜μ—¬ 쑰직성이 μžˆλŠ” λ¬Έμ œλ“€μ˜ μˆ˜κ°€ 적은 것을 확인할 수 μžˆμ—ˆλ‹€. μ΄λŸ¬ν•œ 뢄석 κ²°κ³Όλ₯Ό λ°”νƒ•μœΌλ‘œ μš°λ¦¬λ‚˜λΌμ˜ κ΅μœ‘κ³Όμ •κ³Ό κ΅κ³Όμ„œμ—μ„œ μƒκ΄€κ΄€κ³„μ˜ 지도 λ‚΄μš©μ΄ 연결성을 ν™•λ³΄ν•˜κΈ° μœ„ν•΄μ„œλŠ” ν›„μ†μ μœΌλ‘œ μ—°κ²°λ˜λŠ” μƒκ΄€κ³„μˆ˜λ‚˜ μ„ ν˜•νšŒκ·€λΆ„μ„ λ“±μœΌλ‘œ μ΄μ–΄μ§ˆ 수 μžˆλ„λ‘ κ΅μœ‘κ³Όμ •μ˜ κ°œμ„ μ΄ ν•„μš”ν•˜λ©°, κ΅κ³Όμ„œμ˜ μ£Ό ν™œλ™μ—μ„œ κ³΅μœ μ„±, 연계성, 쑰직성이 λ‹€μ–‘ν•œ 츑면으둜 ν™•λ³΄λ˜μ–΄μ•Ό ν•  ν•„μš”κ°€ μžˆμŒμ„ ν™•μΈν•˜μ˜€λ‹€.Modern people are exposed to variety of statistical information in their personal, social and professional life. Statistical information in everyday life helps individuals make decisions. In addition, citizens sometimes need to collect and analyze statistical information and data to solve problems. Statistical literacy is the ability to draw conclusions by collecting and analyzing information and data. Statistical literacy is emphasized by many educators of statistics and is included in the curriculum of many countries. Statistics is a distinct science from mathematics, but it tends to be considered as a branch of mathematics. Unlike mathematics, statistical reasoning requires reflecting the context where the problem is set and data are collected for every aspect of statistical investigation such as data collection, organization, analysis, judgment and interpretation, or conclusions. Korea's recent curriculum has also been revised to meet this global standards. To meet the goal to teach statistics centered on statistical literacy, 'scatter plot' and 'correlation' were added to the third year of middle school in the 2015 new curriculum. However, these newly added contents are not significantly different from those of the 7th curriculum before the removal of 'scatter plot' and 'correlation' in 2009 new curriculum. Also the issues raised by the researchers regarding the approach to teach correlation during 7th curriculum was not resolved much in the new curriculum. Correlation is a concept related to covariational reasoning, which plays an important role in scientific thinking and is used in many fields such as mathematics, statistics, and natural and social sciences . Considering the nature of statistics such as being a contextual knowledge and the usage of correlation for the other sciences, it is required to teach correlation in connection with other concepts of statistics, mathematics, and other sciences along with real life problems. Also, in mathematics education, the mathematical connectivity, Connecting and integrating other concepts with mathematics concepts is recognized as an effective teaching method. Various models have been studied in that mathematics and many ideas have been developed to device an effective approach to integrating different subject areas in curriculum studies. In this study, we construct a framework to categorize the types of connection between two areas in terms of how the connections are formed and which areas are connected. Using this framework, we compare the connectivity related to teaching correlation by examining the curriculum and textbooks of Korea, US and Australia. Four textbooks of Korea, two textbooks of US and one textbook of Australia are analyzed for their items related to correlation. The connection models related to correlation we focused are "sequenced", "shared", "webbed", and "threaded" types. Also we categorized the areas which are connected as "within statistics", "with mathematics", "with real life or other discourse", and "mixed areas". Together we ended up with 16 different types of connectivity related to teaching correlation. As a result of the study, we find that the curriculum sequence of US and Australia follows the order of scatter plot, correlation, correlation coefficient and regression whereas in Korea only scatter plot and correlation (only informal concept) are taught lacking the sequential aspect in the connectivity related to the concept of correlation. Also, in US and Australia, correlation is taught sequentially by connecting the knowledge of linear function when teaching correlation whereas the Korean textbooks lack of such approaches. We also found lack of shared type of connectivity in Korean textbooks compared to the textbooks of US and Australia. For the webbed model of connectivity, Korean textbooks include many activities to explore the concept of correlation with a theme, but those are mostly presented as extra activities rather tan main ones. For the threaded model of connectivity, Korean textbooks included more items to cultivate problem solving, communication skills, and information technology but still as extra activities. Based on the result of this study, I suggest Korean curriculum include the subjects such as correlation coefficient and linear regression to maintain enough sequential connectivity. Also the main activities in the textbook should have more items with shared, webbed and threaded connectivity rather than the extra activities.β… . μ„œλ‘  1 β…‘. 이둠적 λ°°κ²½ 6 1. 상관관계 6 κ°€. μƒκ΄€κ³„μˆ˜μ™€ 산점도 6 λ‚˜. 곡뢄산과 μƒκ΄€κ³„μˆ˜ 7 λ‹€. μ„ ν˜• νšŒκ·€λΆ„μ„κ³Ό νšŒκ·€μ§μ„  9 2. μ—°κ²°μ„±μ˜ μœ ν˜• 10 κ°€. μˆ˜ν•™μ  μ—°κ²°μ„± 11 λ‚˜. μ—°κ²°μ„±μ˜ μœ ν˜• 12 3. 상관관계 지도에 κ΄€ν•œ 연ꡬ 16 4. μš°λ¦¬λ‚˜λΌ, λ―Έκ΅­, 호주의 κ΅μœ‘κ³Όμ •κ³Ό 상관관계 19 κ°€. 미ꡭ의 κ΅μœ‘κ³Όμ • 19 λ‚˜. 호주의 κ΅μœ‘κ³Όμ • 20 λ‹€. μš°λ¦¬λ‚˜λΌμ˜ 2015 κ°œμ • μˆ˜ν•™κ³Ό κ΅μœ‘κ³Όμ • 23 라. μš°λ¦¬λ‚˜λΌ, λ―Έκ΅­, 호주의 κ΅μœ‘κ³Όμ •κ³Ό 상관관계 25 β…’. 연ꡬ 방법 26 1. 연ꡬ λŒ€μƒ κ΅­κ°€ 및 자료 26 2. 뢄석 ν‹€ 28 κ°€. ν‹€ μ œμž‘ κΈ°μ€€ 28 λ‚˜. 상관관계 μ§€λ„μ˜ μ—°κ²°μ„± μœ ν˜• 30 γ„±. 계열성 30 γ„΄. κ³΅μœ μ„± 31 γ„·. 연계성 32 γ„Ή. 쑰직성 34 3. 뢄석 방법 36 β…£. 연ꡬ κ²°κ³Ό 38 1. 상관관계 μ§€λ„μ˜ 계열성 뢄석 38 κ°€. 톡계 μ˜μ—­ λ‚΄μ˜ 계열성(SQ) 38 λ‚˜. μˆ˜ν•™ μ˜μ—­κ³Όμ˜ 계열성(MQ) 42 λ‹€. μ‹€μƒν™œ 및 타 ꡐ과 μ˜μ—­κ³Όμ˜ 계열성(OQ) 48 라. ν˜Όν•© μ˜μ—­μ˜ 계열성(CQ) 56 2. 상관관계 μ§€λ„μ˜ κ³΅μœ μ„± 뢄석 59 κ°€. 톡계 μ˜μ—­ λ‚΄μ˜ κ³΅μœ μ„±(SS) 59 λ‚˜. μˆ˜ν•™ μ˜μ—­κ³Όμ˜ κ³΅μœ μ„±(MS) 64 λ‹€. μ‹€μƒν™œ 및 타 ꡐ과 μ˜μ—­κ³Όμ˜ κ³΅μœ μ„±(OS) 67 라. ν˜Όν•© μ˜μ—­μ˜ κ³΅μœ μ„±(CS) 70 3. 상관관계 μ§€λ„μ˜ 연계성 뢄석 74 κ°€. 톡계 μ˜μ—­ λ‚΄μ˜ 연계성(SW) 74 λ‚˜. μˆ˜ν•™ μ˜μ—­κ³Όμ˜ 연계성(MW) 76 λ‹€. μ‹€μƒν™œ 및 타 ꡐ과 μ˜μ—­κ³Όμ˜ 연계성(OW) 76 라. ν˜Όν•© μ˜μ—­μ˜ 연계성(CW) 80 4. 상관관계 μ§€λ„μ˜ 쑰직성 뢄석 82 κ°€. 톡계 μ˜μ—­ λ‚΄μ˜ 쑰직성(ST) 82 λ‚˜. μˆ˜ν•™ μ˜μ—­κ³Όμ˜ 쑰직성(MT) 86 λ‹€. μ‹€μƒν™œ 및 타 ꡐ과 μ˜μ—­κ³Όμ˜ 쑰직성(OT) 86 라. ν˜Όν•© μ˜μ—­μ˜ 쑰직성(CT) 92 β…€. κ²°λ‘  및 μ œμ–Έ 97 μ°Έκ³ λ¬Έν—Œ 101 Abstract 105Maste

    Assessment of radon concentration of subway tunnels in Seoul, Korea.

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사) --μ„œμšΈλŒ€ν•™κ΅ λ³΄κ±΄λŒ€ν•™μ› :ν™˜κ²½λ³΄κ±΄ν•™κ³Ό(산업보건전곡),2010.2.Maste

    Identification and characterization of Vibrio vulnificus hupA Encoding a Heme Uptake Protein

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사) --μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :농생λͺ…곡학뢀,2007.Maste

    μŠ€λ§ˆνŠΈν°μ„ μ΄μš©ν•œ μ„ λ°• λ‚΄ μžμ› λͺ¨λ‹ˆν„°λ§ 및 μ œμ–΄ μ‹œμŠ€ν…œ 섀계 및 κ΅¬ν˜„

    No full text
    졜근 μ‚°μ—…κ°„ IT κΈ°μˆ μ„ μ ‘λͺ©ν•œ 육&#8228IT λΆ„μ•Όμ˜ 경우 μ„ λ°•μ˜ μ•ˆμ „ν•œ ν•­ν•΄λ₯Ό μœ„ν•œ μ‹œμŠ€ν…œμ˜ μžλ™ν™” 및 μ‹œμŠ€ν…œ 톡합, μ„ λ°• 톡신 λ“±μ˜ IT 기반 μ„ λ°• ν† ν„Έ μ†”λ£¨μ…˜μ˜ 슀마트 쑰선을 지ν–₯ν•˜κ³  μžˆλ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ” μŠ€λ§ˆνŠΈν°μ„ μ΄μš©ν•˜μ—¬ μ„ λ°•μ˜ λ‹€μ–‘ν•œ μ„Όμ„œ λͺ¨λ“ˆμ„ λͺ¨λ‹ˆν„°λ§ ν•  수 μžˆλŠ” λ„€νŠΈμ›Œν¬ μ‹œμŠ€ν…œμœΌλ‘œ μ„ λ°•μ˜ λ§Žμ€ 정보듀을 μ„Όμ„œλ‘œλΆ€ν„° 전솑받고 그것을 ν† λŒ€λ‘œ 문제λ₯Ό μΈμ‹ν•˜λŠ” 기법이닀. 선박은 μ²  ꡬ쑰물둜 κ°‡ν˜€ μžˆλŠ” ꡬ쑰둜 λ˜μ–΄ μžˆμœΌλ‚˜ λ³Έ 논문에 μžˆμ–΄μ„œ μ „μžνŒŒμ˜ κ°μ‡„λŠ” μƒλž΅ν•˜κ³  무선 μ„Όμ„œ λ„€νŠΈμ›Œν¬ ꡬ좕과 μ‹œμŠ€ν…œ λͺ¨λ‹ˆν„°λ§μ— λͺ©ν‘œλ₯Ό 두고 μ—°κ΅¬ν•˜μ˜€λ‹€.볡합화에 관심이 κ³ μ‘°λ˜λ©΄μ„œ 세계 1μœ„μ˜ μ‘°μ„  μ‚°μ—…κ³Ό ν•œκ΅­μ˜ μ΅œλŒ€ 강점인 IT 기술의 μ ‘λͺ©μ„ μ‹œλ„ν•˜κ³  μžˆλ‹€. μ‘°μ„ &#8228제 1 μž₯ μ„œλ‘  1 1.1 연ꡬ배경 1 1.2 μ—°κ΅¬μ˜ ν•„μš”μ„± 및 λͺ©ν‘œ 2 제 2 μž₯ κ΄€λ ¨ 연ꡬ 5 2.1 선박에 μ‚¬μš© 쀑인 톡신μž₯λΉ„ ν‘œμ€€ 5 2.2 μ„ λ°• λ„€νŠΈμ›Œν¬ 기술 동ν–₯ 6 2.3 무선 μ„Όμ„œ λ„€νŠΈμ›Œν¬μ˜ μ •μ˜ 8 2.4 무선 μ„Όμ„œ λ„€νŠΈμ›Œν¬ κ΄€λ ¨ 기술 9 2.5 이동톡신 ν‘œμ€€ 14 2.6 무선 μ„Όμ„œλ„€νŠΈμ›Œν¬ ν•˜λ“œμ›¨μ–΄ 16 2.7 무선 μ„Όμ„œλ„€νŠΈμ›Œν¬ μ†Œν”„νŠΈμ›¨μ–΄ 21 제 3 μž₯ μ œμ•ˆλœ μ‹œμŠ€ν…œμ˜ 섀계 30 3.1 μ œμ•ˆλœ μ‹œμŠ€ν…œμ˜ λͺ©ν‘œ 30 3.2 μ œμ•ˆλœ μ‹œμŠ€ν…œμ˜ 섀계 32 제 4 μž₯ μ œμ•ˆλœ μ‹œμŠ€ν…œμ˜ κ΅¬ν˜„ 36 4.1 ν•˜λ“œμ›¨μ–΄ 섀계 36 4.2 μ†Œν”„νŠΈμ›¨μ–΄ 섀계 39 제 5 μž₯ κ²°λ‘  58 μ°Έκ³ λ¬Έν—Œ 6

    볡수 λ‹¨μ–΄λ‘œ κ΅¬μ„±λœ ν•©μ„±μ–΄κ°€ ν¬ν•¨λœ ν•΄μ‚¬μ˜μ–΄ μ½”νΌμŠ€ μ–Έμ–΄λ„€νŠΈμ›Œν¬ 뢄석: ν‚€μ›Œλ“œ λ„€νŠΈμ›Œν¬μ™€ μ—°μ–΄ λ„€νŠΈμ›Œν¬

    No full text
    As an official language within the international maritime community, maritime English is one of the branches of English for Specific Purposes (ESP). However, corpus linguists have paid little attention to maritime English. This thesis has two aims. The first aim is to compile a four million word maritime English corpus (MEC) consisting of academy, news, laws, and textbooks. The MEC contains tagged multi-word compounds, which can be called specific purpose terms in maritime English. Tagging multi-word compounds is essential for the ESP study because maritime vocabulary includes a great variety of n-grams such as ballast water, fore peak bulkhead, container freight station charges, etc. The second aim is to provide a further explanation of corpus linguistic data, adopting language network analysis and comparing keyword networks with collocation networks. My idea converging on corpus linguistics and language networks has been originally traced back to researches published by Jones in 1971 and Scott and Tribble in 2006. Jones discussed four types of links between keyword nodes such as strings, stars, cliques, and clumps in her keyword retrieval study. Based on Jones’ work, Scott and Tribble hypothesized that keywords could be redrawn as a network of connections to show a picture of understanding about a text or texts. By incorporating corpus linguistics and language networks, this thesis tries to explore what the structures of keywords networks and collocation networks can tell us about maritime English through centrality and cohesion algorithms. This thesis makes an attempt to answer the following two research questions. First, how can we build a corpus of maritime English to represent specific purpose terms such as multi-word compounds? Second, if language network analysis can be one of the explanatory analyses to make up for the present corpus linguistic descriptions, what can keyword networks and collocation networks tell us about the MEC? In pursuit of my research questions, I review previous studies about the concepts of keyness, collocations, and language networks. I then discuss how to compile the MEC focusing on representativeness, balance, size, and sampling, proposing a method of tagging English multi-word compounds. In addition, I propose a language network analysis in order to give a further explanatory power to the descriptions of maritime English. I compare keyword networks with collocation networks with regard to network structures using centrality and cohesion for the better understanding of maritime English. In conclusion, my network analysis and critical evaluation led us to clarify and confirm that centrality structures created by eigenvector and betweenness in collocation networks have more advantages over keyword network structures to find general purpose terms. On the other hand, the cohesion community structures created by eigenvector and betweenness in keyword networks distinguish a group of the specific purpose terms from a group of general purpose terms. More specifically, the eigenvector centrality structures in collocation networks represented better results than betweenness centrality in identifying general purpose terms. On the other hand, the eigenvector cohesion community structures in keyword networks represented better results than betweenness in identifying specific purpose terms.Chapter 1. Introduction 1.1 Focus of Inquiry 1 1.2 Outline of the Thesis 3 Chapter 2. Literature Review 2.1 Introduction 5 2.2 Maritime English as English for Specific Purposes 5 2.3 Keywords in Text 6 2.3.1 Strategies for a Reference Corpus 7 2.3.2 Statistical Measures for Keyword Analysis 8 2.3.3 Problems of Previous Keyword Analysis 12 2.4 Collocations in Text 14 2.4.1 Types of Collocations 14 2.4.2 Statistical Measures for Window Collocations 15 2.4.3 Problems of Previous Collocation Analysis 16 2.5 Visualization in Corpus Linguistics 17 2.5.1 Text Visualizations 18 2.5.2 Collocation Networks 21 2.6 Language Networks 28 2.6.1 Basic Concepts 29 2.6.2 Previous Studies 31 2.6.3 Definitions 33 2.6.4 Types of Language Network Constructions 34 Chapter 3. Maritime English Corpus 3.1 Introduction 37 3.2 Corpus Design 37 3.3 Corpus Compilation 44 3.3.1 Stratified Random Sampling 45 3.3.2 Web Crawling and Cleansing 46 3.3.3 Converting PDF to Texts 49 3.4 Multi-word Compounds 51 3.5 Critical Evaluation and Tagging for Multi-word Compounds 54 3.6 Comparison of With and Without Compounds 62 3.6.1 Comparison of Basic Statistics 63 3.6.2 Comparison of Word Lists, N-gram Lists, and Keyword Lists 65 3.6.3 Comparison of Visualizations 69 3.6.3.1 Dispersion Plots 69 3.6.3.2 GraphColl 1.0 71 3.7 Summary and Implications 74 Chapter 4. Language Network Structure Analysis 4.1 Introduction 76 4.2 Frameworks of Network Analysis 77 4.2.1 Source Nodes and Target Nodes 77 4.2.2 Two Mode Structures and One Mode Structures 85 4.2.3 Centrality and Cohesion Algorithms 90 4.3 Comparison of Keyword Networks and Collocation Networks 92 4.3.1 Centrality Structures: Eigenvector and Betweenness 92 4.3.2 Cohesion Structures: Eigenvector and Betweenness 105 4.4 Critical Evaluation 122 4.5 Summary and Implications 128 Chapter 5. Conclusion 5.1 Summary 131 5.2 Findings and Implications 132 References 13

    The Evaluation for the applicability of infinite element in tunnel stability analysis

    No full text
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈε€§ε­Έζ ‘ 倧學陒 :土木ε·₯學科 土木ε·₯ε­Έε°ˆζ”»,1996.Docto
    corecore