54 research outputs found

    Fabrication of layers based on printed Indium-Tin-Oxide and their application to Hazard and Noxious Substance sensor

    Get PDF
    A sensor is a device that converts physical or chemical states of a matter into an electrical signal. Sensor technology can be described as a technology that expands a human sense to a machine. And those information are used valuably in accord with present IT technology. Sensor technology clearly reveals a tendency of miniaturization, integration, intellectualization, and systematization etc. Furthermore, it has been used extensively from our daily life to marine or space exploration. However, At the field of application, sensor technology should be improved in many aspects. Moreover, I felt the need to develop environmentally friendly and Low-power sensor is growing. Also, Introduction of new technology is required to take of suitable material in harsh environments. And reliability is inevitable. In this thesis, I have researched a new hazardous and noxious substances sensor to apply for offshore plants and seacoast. I considered that higher sensitivity and stability could be acquired by using chemically stable metal oxides. Especially, metal oxide nano particles will be suitable since it provides wide contact surface. In addition, I suggested a print coating technology to fabricate the sensors. Using this method, I have demonstrated the hazardous and noxious substances sensor, and verified the feasibility of the sensors at harsh environments. In the chapter 1, I described the sensor technology, physical properties of ITO, the importance of hazardous and noxious substances sensor, and the purpose of this dissertation. In the chapter 2, I described the detail of experiment. A printing technology and the fabrication method were described. It is also described the analysis methods used in this research. In the chapter 3, I optimized a printing method by printing process conditions , surface treatment and ITO films. In the chapter 4, I suggested a hazardous and noxious substances sensor using the ITO layer. The sensor was operated at room temperature without additional heating. Also, we observed the ITO sensing properties under wide pH ranges. In the chapter 5, I verified the reliability of the fabricated ITO sensor, it was carried out discussion of change and its cause of properties. Finally, all results were summarized and concluded in the chapter 6.μ„Όμ„œλŠ” λŒ€μƒλ¬Όμ˜ 물리 λ˜λŠ” 화학적 μ‹ ν˜Έλ₯Ό 전기적인 μ‹ ν˜Έλ‘œ λŒ€μ‹ ν•˜κ±°λ‚˜, λ³€ν˜•μ‹œν‚€λŠ” μ†Œμžμ΄λ©°, μ„Όμ„œκΈ°μˆ μ€ 기계μž₯μΉ˜μ— 감각기λŠ₯을 λΆ€μ—¬ν•˜λŠ” 기술둜 μΈκ°„μ˜ 감각기λŠ₯을 ν™•μž₯ν•˜λŠ” κΈ°μˆ μ΄λ‹€. μ΄λŸ¬ν•œ μ •λ³΄λŠ” ν˜„μž¬μ˜ 정보톡신 기술과 맞물렀 μœ μš©ν•˜κ²Œ μ‚¬μš©λ˜κ³  μžˆλ‹€. μ„Όμ„œκΈ°μˆ μ€ 집적화, 지λŠ₯ν™”, μ‹œμŠ€ν…œν™”, μ†Œν˜•ν™” λ“±μ˜ κ²½ν–₯이 λ‚˜νƒ€λ‚˜κ³  μžˆλ‹€. λ˜ν•œ κ°€μ •μ—μ„œλΆ€ν„° μ‚°μ—…ν˜„μž₯, ν•΄μ–‘ 및 μš°μ£Όνƒμ‚¬μ— 이λ₯΄κΈ° κΉŒμ§€ κ΄‘λ²”μœ„ν•˜κ²Œ ν™œμš©λ˜κ³  μžˆλ‹€. ν•˜μ§€λ§Œ μ„Όμ„œμ˜ 보닀 폭넓은 ν™œμš©μ„ μœ„ν•΄μ„œ κ°œμ„ λ˜μ–΄μ•Ό ν•  점도 λ‹€μˆ˜ μ‘΄μž¬ν•œλ‹€. μ„Όμ„œμ˜ μ‘μš©μ˜ κ΄€μ μ—μ„œλŠ” 집적화, μ €μ „λ ₯, μΉœν™˜κ²½μ μΈ μ„Όμ„œμ˜ μ€‘μš”μ„±μ΄ λ”ν•΄κ°€λŠ” 상황이닀. 이λ₯Ό μœ„ν•΄μ„œλŠ” μ„Όμ„œμ˜ 신뒰성을 ν™•λ³΄ν•˜κ³ , μ„Όμ„œμ˜ μ‚¬μš© ν™˜κ²½μ— μ•Œλ§žμ€ λ¬Όμ§ˆμ„ ν™œμš©ν•˜λŠ” μƒˆλ‘œμš΄ 기술의 λ„μž…μ΄ μš”κ΅¬λœλ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” μœ„ν—˜μœ ν•΄λ¬Όμ§ˆ μ§‘μ μ„Όμ„œμ˜ κ°œλ°œμ„ μœ„ν•˜μ—¬ μ•ˆμ •λœ μ„Όμ„œ 재료의 선택과 경제적인 μ œμž‘λ°©λ²•μ˜ κ²€ν† , 이λ₯Ό ν†΅ν•œ μ„Όμ„œ μ œμž‘ 및 μ„±λŠ₯의 검증에 κ΄€ν•˜μ—¬ μ—°κ΅¬ν•˜μ˜€λ‹€. μš°μ„  ν™”ν•™μ μœΌλ‘œ μ•ˆμ •μ μΈ κΈˆμ† μ‚°ν™”λ¬Ό 쀑 λ‚˜λ…Έ μž…μžλ₯Ό ν™œμš©ν•˜μ—¬ 접촉 면적을 λ„“νž˜μœΌλ‘œμ¨ 높은 감도와 μ•ˆμ •μ„±μ„ 확보할 수 μžˆλ‹€κ³  νŒλ‹¨ν•˜μ˜€λ‹€. λ˜ν•œ κΈˆμ† μ‚°ν™”λ¬Ό λ‚˜λ…Έ μž…μžλ₯Ό μ΄μš©ν•˜μ—¬ μ„Όμ„œλ₯Ό μ œμž‘ν•˜κΈ° μœ„ν•˜μ—¬ 인쇄곡학적 접근법을 μ œμ•ˆν•˜μ˜€λ‹€. 이λ₯Ό ν†΅ν•˜μ—¬ μ œμž‘λœ μ„Όμ„œμ˜ 감지 μ„±λŠ₯κ³Ό μ‚¬μš©ν•  ν™˜κ²½μ— λŒ€ν•œ 내ꡬ성 및 신뒰성에 λŒ€ν•˜μ—¬ κ²€ν† ν•˜μ—¬ νŠΉμˆ˜ν•œ ν™˜κ²½μ—μ„œ μ‹ ν˜Έλ₯Ό κ²€μΆœν•  수 μžˆλŠ” μ„Όμ„œλ₯Ό κ΅¬ν˜„ν•˜μ˜€λ‹€. 특히 ν•΄μ–‘ν”ŒλžœνŠΈμ—μ„œ ν™œμš©λ  수 μžˆλŠ” μœ„ν—˜μœ ν•΄λ¬Όμ§ˆ μ„Όμ„œλ₯Ό κ΅¬ν˜„ν•  λͺ©μ μœΌλ‘œ λ³„λ„μ˜ νžˆν„°μž‘λ™ 없이 μƒμ˜¨μ—μ„œ ν­λ°œμ„± λ¬Όμ§ˆμ„ κ²€μΆœν•  수 μžˆλŠ” κΈ°λŠ₯을 κ΅¬ν˜„ν•˜κΈ° μœ„ν•œ κ°λ„μ˜ ν–₯상과 ν•΄μ–‘μ΄λΌλŠ” νŠΉμˆ˜ν•œ ν™˜κ²½μ—μ„œμ˜ μ‹ λ’°μ„± μžˆλŠ” μ‹ ν˜Έλ₯Ό λ°œμƒμ‹œν‚€κ³  μœ μ§€ν•˜κΈ° μœ„ν•œ 방법을 μ—°κ΅¬ν•˜μ˜€λ‹€. 제1μž₯은 μ„Όμ„œκΈ°μˆ μ— λŒ€ν•œ 기본적인 λ‚΄μš©κ³Ό ITO의 λ¬Όμ„±, 그리고 μœ„ν—˜μœ ν•΄λ¬Όμ§ˆ μ„Όμ„œμ˜ μ€‘μš”μ„± 및 λ³Έ μ—°κ΅¬μ˜ λͺ©μ μ— λŒ€ν•˜μ—¬ μ„€λͺ…ν•˜μ˜€λ‹€. 제2μž₯μ—μ„œλŠ” μ‹€ν—˜λ°©λ²• λΆ€λΆ„μœΌλ‘œμ„œ, μΈμ‡„κ³΅ν•™κΈ°μˆ  및 μΈμ‡„κ³΅ν•™κΈ°μˆ μ„ μ΄μš©ν•œ ITOλ°•λ§‰μ œμž‘ 방법에 λŒ€ν•΄ μ„œμˆ ν•˜κ³ , λ³Έ 연ꡬ에 μ‚¬μš©λœ νŠΉμ„± 뢄석 κΈ°μˆ μ— λŒ€ν•΄ μ„€λͺ…ν•˜μ˜€λ‹€. 제3μž₯μ—μ„œλŠ” μΈμ‡„κ³΅ν•™κΈ°μˆ λ‘œ μ œμž‘λœ ITO μ„Όμ„œμ˜ νŠΉμ„±μ„ κ°œμ„ μ‹œν‚€κΈ° μœ„ν•œ μ΅œμ ν™”μ— λŒ€ν•˜μ—¬ κ³ μ°°ν•˜μ˜€κ³ , 이λ₯Ό μ μš©ν•œ μΈμ‡„λœ ITO λ°•λ§‰μ˜ 물성평가 결과에 λŒ€ν•΄ μ„€λͺ…ν•˜μ˜€λ‹€. 제4μž₯μ—μ„œλŠ” μ œμž‘λœ ITO의 μ‹€μ˜¨μ—μ„œμ˜ μœ„ν—˜μœ ν•΄λ¬Όμ§ˆμ— λŒ€ν•œ μ„Όμ„œ μ„±λŠ₯κ³Ό μ‘μš©μ— κ΄€ν•˜μ—¬ κ³ μ°°ν•˜μ˜€λ‹€. 제5μž₯μ—μ„œλŠ” μ œμž‘λœ ITO의 μ‹ λ’°μ„± 및 νŠΉμ„± λ³€ν™” 와 κ·Έ 원인에 λŒ€ν•œ κ³ μ°° κ²°κ³Όλ₯Ό μ„€λͺ…ν•˜μ˜€λ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ 제6μž₯μ—μ„œλŠ” λ³Έ μ—°κ΅¬μ—μ„œ 얻은 κ²°κ³Όλ₯Ό μ •λ¦¬ν•˜μ—¬ μš”μ•½ 및 결둠에 λŒ€ν•˜μ—¬ κΈ°μˆ ν•˜μ—¬, λ³Έ μ—°κ΅¬μ—μ„œ λͺ©μ ν•œ μ•ˆμ •μ„±μ΄ 높은 μœ„ν—˜μœ ν•΄λ¬Όμ§ˆ μ„Όμ„œλ₯Ό κ΅¬ν˜„ν•˜μ˜€μœΌλ©°, 경제적인 λ°©λ²•μœΌλ‘œ μ„Όμ„œλ₯Ό μ œμž‘ν•  수 있음과, μ΄λŸ¬ν•œ μ„Όμ„œλ₯Ό ν†΅ν•˜μ—¬ μ‹ λ’°μ„± μžˆλŠ” μ‹ ν˜Έλ₯Ό λ°œμƒν•  수 μžˆμŒμ„ μž…μ¦ν•˜μ˜€λ‹€.1. Introduction 1.1 Sensor technology 1 1.2 Sensor technology application 3 1.2.1 Necessity of Hazardous and Noxious Substances sensor 3 1.2.2 Current state of HNS sensing technology 4 1.3 Metal oxide based sensor 5 1.4 Properties of ITO (Indium Tin Oxide) 7 1.5 Proposal and purpose of this study 14 Reference 15 2. Experimental methods 2.1 Film printing method 18 2.2 ITO layer printing 21 2.3 Characterization Methods 23 2.3.1 Optimization of ITO layer 23 2.3.2 Surface and material properties of printed layers 27 2.3.3 Sensor performances 39 Reference 41 3. Characteristics of ITO film by printing coat method 3.1 Material properties of the ITO 43 3.2 Optimization of the printed ITO layer manufacturing method 45 3.2.1 Determination of printing patterns 45 3.2.2 Transfer ratio of the ITO layer 48 3.3 Properties of the printed ITO layer 50 3.3.1 Shape control 50 3.3.2 Electrical properties 52 3.3.3 Optical properties 54 3.4 Conclusion 56 Reference 57 4. HNS sensor based on printed ITO layer 4.1 Introduction 59 4.2 Experiment details 60 4.3 Sensor properties 61 4.4 Sensor mechanisms 63 4.5 Conclusion 65 Reference 66 5. Characteristic evaluation of ITO sensor 5.1 Introduction 67 5.2 Experiment details 67 5.3 Reliability of the sensor 68 5.3.1 Dynamic characteristics of ITO sensor 68 5.3.2 Robustness tests of ITO sensor 70 5.3.3 Selectivity of ITO sensor 73 5.4 Conclusion 75 Reference 76 6. Conclusion 77 Resume 78 Acknowledgement 8

    지속 κ°€λŠ₯ν•œ λ§ˆμ„ λ§Œλ“€κΈ°μ˜ 원칙 : μž₯μ†Œμ‹œλŒ€λ₯Ό μœ„ν•˜μ—¬

    No full text
    μ–΄λ¦° μ‹œμ ˆ μ‹œκ³¨ λ§ˆμ„1)을 생각해 보자. 길을 κ°€λ‹€κ°€ μ–΄λ₯Έμ„ λ§Œλ‚˜λ©΄ 으레 진지 λ“œμ…¨μŠ΅λ‹ˆκΉŒ?λΌλŠ” 인사 말씀을 λ“œλ¦°λ‹€. 그러면 μ–΄λ₯΄μ‹ κ»˜μ„œλŠ” 그래 λ„ˆλ„ λ°₯ λ¨Ήμ—ˆλ‹ˆ? μ–΄λ”” κ°€λ‹ˆ?라고 λ‹΅ν•˜μ‹ λ‹€. μ•„μ΄μ˜ 이름을 μ•Œκ³  μžˆλŠ” 것은 당연해도 주둜 λˆ„κ΅¬μ˜ μ•„λ“€, λˆ„κ΅¬μ˜ λ”Έμ΄λΌλŠ” 말도 μ΅μˆ™ν–ˆλ‹€. λ§ˆλ£¨μ— λˆ„κ΅°κ°€ κ°–λ‹€ 놓은 κΉ€μΉ˜κ°€ νˆ¬λ°•ν•œ 그릇에 담겨 μžˆλ‹€. μ–΄λ¨Έλ‹ˆλŠ” 그것이 λˆ„κ΅¬ μ§‘μ—μ„œ μ€€ 것인지λ₯Ό λ°”λ‘œ μ•Œμ•„μ°¨λ¦°λ‹€. 저녁이 λ˜κ±°λ‚˜ ν˜Ήμ€ ν•œκ°€ν•œ 겨울이 되면 μ–΄λ₯Έλ“€μ΄λ‚˜ 애듀은 친ꡬλ₯Ό λ§Œλ‚˜κΈ° μœ„ν•΄ λ§ˆμ‹€μ„ κ°„λ‹€(이웃집에 λ†€λŸ¬ κ°„λ‹€). ν•œλ§ˆλ””λ‘œ λ§ˆμ„μ€ μ£Όλ―Ό 간에 μƒν˜Έ λ°€μ ‘ν•œ ꡐλ₯˜κ°€ μžˆλŠ” μΌμ •ν•œ λ²”μœ„μ˜ μ •μ£Όμ§€μ˜€λ˜ 것이닀. ν•˜λ£¨μ˜ 일상을 생각해 λ³Έλ‹€. 아침에 μΌμ–΄λ‚˜ λ°₯ ν•œμˆ˜κ°€λ½ μ λ‹Ήνžˆ 뜨고 자리λ₯Ό 일어선닀. μ—˜λ¦¬λ² μ΄ν„°μ—μ„œ 주민을 λ§Œλ‚˜λ©΄ μ•ˆλ…•ν•˜μ„Έμš”!라고 κ΅¬λ‘λ‘œ μΈμ‚¬ν•˜κ±°λ‚˜ μ•„λ‹ˆλ©΄ λͺ©λ‘€λ‘œ 인사λ₯Ό λ‚˜λˆˆλ‹€. μΉ λ…„ 전에 μ‚΄μ•˜λ˜ μ•„νŒŒνŠΈ λ‹¨μ§€μ—μ„œλŠ” μ—˜λ¦¬λ² μ΄ν„° μ•ˆμ—μ„œ 주민을 λ§Œλ‚˜λ©΄, 왠지 μ„œλ¨Ήμ„œλ¨Ήν•œ λΆ„μœ„κΈ°λ₯Ό λͺ¨λ©΄ν•΄ 보렀고, κ°€λŠ₯ν•œ μ—˜λ¦¬λ² μ΄ν„° 벽면의 κ±°μšΈμ— λΉ„μΉœ λ‚΄ λͺ¨μŠ΅μ„ λ°”λΌλ³΄κ³ λ§Œ μžˆμ—ˆλ‹€. μ§€κΈˆ μ‚΄κ³  μžˆλŠ” 우리 μ•„νŒŒνŠΈ λ‹¨μ§€λŠ”, λΆ€λͺ¨λ‹˜μ„ λͺ¨μ‹œκ³  μ‚¬λŠ” 주민듀이 λ§Žμ•„μ„œ κ·ΈλŸ°μ§€, 이런 인사가 그리 낯섀지가 μ•Šλ‹€. κ·Έλ ‡μ§€λ§Œ 우리 μ•„νŒŒνŠΈ μ˜†μ§‘μ—, 그리고 μœ„ μ•„λž«μ§‘μ— λˆ„κ°€ μ‚¬λŠ”μ§€ λ‚˜λŠ” λͺ¨λ₯Έλ‹€. λ¬Όλ‘  μ§‘μ‚¬λžŒμ€ λͺ‡ λͺ… 정도 μ•Œκ³  μ§€λ‚΄λŠ” 것 κ°™λ‹€. μ–΄λ¨Έλ‹˜λ„ λ…ΈμΈμ •μ—μ„œ λ§Œλ‚œ λΆ„λ“€κ³Ό 자주 연락을 ν•˜κ³  계신닀. λ‹€λ₯Έ 주민듀도 λ‚˜μ™€ λ³„λ°˜ λ‹€λ₯΄μ§€ μ•Šμ„ λ“―ν•˜λ‹€. μ§€ν•˜μ£Όμ°¨μž₯μ—μ„œ μ°¨λ₯Ό λͺ°κ³  ν•™κ΅λ‘œ κ°„λ‹€. 연ꡬ싀에 λ“€μ–΄κ°€ κ°•μ˜μ€€λΉ„, λ…Όλ¬Έμ€€λΉ„, 그리고 μ£Όλ―Όλ“€ λ§Œλ‚  일, λ„μ‹œμž¬μƒ κ΄€λ ¨ 일듀을 μ •λ¦¬ν•˜λ‹€λ³΄λ©΄ ν•˜λ£¨κ°€ ν›Œμ© μ§€λ‚˜λ²„λ¦°λ‹€. 가끔씩 λ™λ£Œ κ΅μˆ˜λ“€κ³Ό λ‹΄μ†Œλ₯Ό λ‚˜λˆ„κ±°λ‚˜ 점심식사λ₯Ό ν•˜λŠ” 일을 λΉΌκ³  λ‚˜λ©΄, λ¬Όλ‘  λ‹€λ₯Έ λ™λ£Œλ“€λ³΄λ‹€λŠ” μƒλŒ€μ μœΌλ‘œ 더 많이 λ§Œλ‚˜λŠ” 편이라고 μƒκ°ν•˜μ§€λ§Œ, λ‚˜ 혼자만의 κ³΅κ°„μ—μ„œ ν•˜λ£¨ 쒅일 λ³΄λ‚΄λŠ” 일이 전뢀이닀. λ„μ‹œμž¬μƒκ³Ό λ§ˆμ„ λ§Œλ“€κΈ°μ— μ°Έμ—¬ν•˜κ³  μžˆλŠ” λ‚˜λŠ” κ³Όμ—° μ–Όλ§ˆλ‚˜ 우리 λ§ˆμ„κ³Ό 우리 ν•™κ΅μ—μ„œ, 그리고 λ‚΄κ°€ μ†ν•œ λ„μ‹œμ—μ„œ κ·Έ ꡬ성원듀과 μ–Όλ§ˆλ‚˜ μ†Œν†΅ν•˜κ³  μžˆλŠ”μ§€, μ–Όλ§ˆλ‚˜ μ‹ λ’°λ₯Ό ν˜•μ„±ν•˜κ³  μžˆλŠ”μ§€, μ–Όλ§ˆλ‚˜ μ—΄λ¦° 관계λ₯Ό λ§Ίκ³  μžˆλŠ”μ§€λ₯Ό 생각해본닀

    The Placeness in urban street : a case study of Daehak street in Seoul, Korea

    No full text
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :ν˜‘λ™κ³Όμ • μ‘°κ²½ν•™ λ„μ‹œΒ·ν™˜κ²½μ„€κ³„μ „κ³΅,1998.Docto

    λ ˆμ΄μ € μœ λ„ ν”ŒλΌμ¦ˆλ§ˆ 및 초음파 κΈ°μˆ μ„ ν™œμš©ν•œ μ—΄μœ μ²΄ 진단기법 연ꡬ

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 기계항곡곡학뢀, 2015. 8. μ—¬μž¬μ΅.We investigated the LIBS (laser-induced breakdown spectroscopy) characteristics in various phase conditions including single-phase (gas) and two-phase (liquid gas, solid gas) for thermo-fluid applications. For single-phase (gas) analysis, two-dimensional mapping of the LIBS signals from chemical species information was performed in propane flames with in situ diagnostics. Key combustion information, such as density, fuel concentration, and fuel/air equivalence ratio were provided by the LIBS measurement. For the two-phase spray flame, the simultaneous laser ignition and spectroscopy enabled rapidly determining the local equivalence ratio and condensed fuel concentration during the reaction. In parallel with the laser ignition, the equivalence ratio and droplet characteristics, such as concentration, size, and distribution of spray combustion, were simultaneously obtained for a feedback control system. For the two-phase aerosol analysis, LIBS detected solid carbon particulates in a flow system that was designed to replicate aircraft exhaust flow conditions. The detected signals from the emissions stream at velocities of up to 70 m/s showed that in-situ characterization of carbon particulates in the high-speed exhaust were proven feasible. The results obtained through this research will allow for more practical diagnostics in various applications such as biology, combustion and the environment. In addition, basic research was conducted for the thermo-fluid diagnostics using LIUS (laser-induced ultrasound) waves. We demonstrated that the reduced-graphene-oxide-coated thin aluminum film (rGO-Al) and rGO-coated polydimethylsiloxane (rGO-PDMS) were effective optoacoustic transmitters for generating high-pressure and high-frequency ultrasound waves. Under pulsed laser excitation, rGO-Al and rGO-PDMS transmitters generated enhanced optoacoustic pressure that was 64 and 76 times stronger, respectively, than Al alone. Promising optoacoustic wave generation was made possible by optimizing the thermoelasticity of metal, the PDMS film and the thermal conductivity of rGO in the proposed transmitter for laser-induced ultrasound applications. LIBS and LIUS have great advantages as analytical techniques, namely, real-time rapid analysis and stand-off detection capability, which are all material phases for diagnosing thermo-fluid phenomena.CHAPTER 1 INTRODUCTION 1 1.1 Motivation and purpose 1 1.2 Laser-material interaction 5 1.2.1 Laser 5 1.2.2 Various phenomena in laser-matter interactions 6 1.3 Laser-Induced Breakdown Spectroscopy (LIBS) for Thermo-Fluid Diagnostics 10 1.3.1 Introduction of LIBS 10 1.3.2 The theory of LIBS 11 1.3.3 Comparison of LIBS and conventional diagnostic methods for thermo-fluid applications 17 1.3.4 LIBS for thermo-fluid applications 23 1.4 Laser-Induced Ultrasound Wave for Thermo-Fluid Diagnostics 27 1.4.1 Introduction of LIUS 27 1.4.2 The theory of LIUS 30 CHAPTER 2 EXPERIMENTAL SETUP 34 2.1 Experimental apparatus 34 2.1.1 Laser 34 2.1.2 Spectroscopy 35 2.1.3 Hydrophone 36 2.2 Shadow graph 37 2.3 Light scattering 38 CHAPTER 3 DIAGNOSTIC OF GAS PHASE REACTING FLOW USING LIBS 39 3.1 Background and objective 39 3.2 Experimental condition 41 3.3 Results 45 3.4 Conclusion 52 CHAPTER 4 DIAGNOSTIC OF TWO PHASE (LIQUID-GAS) REACTING FLOW USING LIBS 54 4.1 Background and objective 54 4.2 Experimental condition 60 4.3 Results 62 4.4 Conclusion 94 CHAPTER 5 DIAGNOSTIC OF TWO PHASE (SOLID-GAS) FLOW USING LIBS 96 5.1 Background and objective 96 5.2 Experimental condition 99 5.3 Data analysis 105 5.4 Results 107 5.4.1 LIBS spectra in particle stream 107 5.4.2 Visualization of particle and plasma 110 5.4.3 LIBS signal for delay time 113 5.4.4 LIBS signal for carbon concentration 117 5.4.5 Limit Of Detection (LOD) 125 5.5 Conclusion 126 CHAPTER 6 DIAGNOSTIC OF LIQUID PHASE SAMPLE USING LIUS : PART 1 REDUCED GRAPHENE OXIDE COATED THIN ALUMINUM FILM 128 6.1 Background and objective 128 6.2 Experimental condition 130 6.3 Results 132 6.4 Conclusion 140 CHAPTER 7 DIAGNOSTIC OF LIQUID PHASE SAMPLE USING LIUS : PART 2 REDUCED GRAPHENE OXIDE COATED POLYDIMETHYLSILOXANE (PDMS) FILM 141 7.1 Background and objective 141 7.2 Experimental condition 143 7.3 Results 145 7.4 Conclusion 154 CHAPTER 8 CONCLUSION 156 REFERENCES 158 ABSTRACT IN KOREAN 167 ACKNOWLEDGEMENTS IN KOREAN 169Docto

    Improved crashworthiness of polygonal tubes by using trigger

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사) --μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :기계항곡곡학뢀,2007.Maste

    Impacts of Changes in Intergovernmental Grants Policy on the Efficiency and Equity of Local Government Financial Management

    No full text
    λ³Έ μ—°κ΅¬λŠ” μ •λΆ€ κ°„ μž¬μ •μ§€μ› μ œλ„μ˜ λ³€ν™”κ°€ μ§€λ°©μ •λΆ€μ˜ νš¨μœ¨μ„±κ³Ό ν˜•ν‰μ„±μ— λ―ΈμΉ˜λŠ” 영ν–₯을 λΆ„μ„ν•˜μ˜€λ‹€. μ •μ±…ν•™, ν–‰μ •ν•™ 및 κ²½μ œν•™ μ—°κ΅¬μ—μ„œ νš¨μœ¨μ„±κ³Ό ν˜•ν‰μ„±μ€ 기본적으둜 상좩 κ΄€κ³„λ‘œ 받아듀여짐에도 λΆˆκ΅¬ν•˜κ³  μ •μ˜ μƒκ΄€κ΄€κ³„μ˜ κ°€λŠ₯성에 λŒ€ν•œ 이둠적 정책적 λ…Όμ˜κ°€ μ§€μ†λ˜κ³  μžˆλ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” λ―Έκ΅­ νŠΉλ³„μ§€λ°©μ •λΆ€ 쀑 ν•˜λ‚˜μΈ 학ꡐꡬλ₯Ό λŒ€μƒμœΌλ‘œ 뉴저지 주의 κ΅μœ‘μž¬μ •μ œλ„μ˜ λ³€ν™”κ°€ νš¨μœ¨μ„±κ³Ό ν˜•ν‰μ„±μ— λ―ΈμΉ˜λŠ” 영ν–₯을 λΆ„μ„ν•˜μ—¬ μ–‘μž κ°„μ˜ 관계에 λŒ€ν•œ 싀증 뢄석 κ²°κ³Όλ₯Ό μ œκ³΅ν•˜κ³ μž ν•œλ‹€. 뢄석 κ²°κ³Ό, 뉴저지 주의 지방 κ°„ μž¬μ •μ§€μ› μ œλ„μ˜ λ³€ν™”λŠ” ν•™κ΅κ΅¬μ˜ νš¨μœ¨μ„±κ³Ό ν˜•ν‰μ„±μ— λͺ¨λ‘ 뢀정적인 영ν–₯을 λ―ΈμΉ˜λŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€. μ΄λŸ¬ν•œ κ²°κ³ΌλŠ” μž¬μ •μ§€μ› μ œλ„μ˜ λ³€ν™”κ°€ ν•™κ΅κ΅¬μ˜ 곡곡선택둠적, 관리적 유인의 λ³€ν™”λ₯Ό μœ λ„ν•˜μ—¬ ν–‰νƒœλ³€ν™”, 즉, 즉, μ œμ‚°μ„Έμœ¨ μ‘°μ •, μ˜ˆμ‚° κ²°μ • 및 μž¬μ • 운영 λ“±μ˜ λ³€ν™”λ₯Ό κ°€μ Έμ˜¬ 수 μžˆλ‹€λŠ” 점을 μ‹œμ‚¬ν•˜κ³  μžˆλ‹€. This study attempts to analyze the impact of changes in the intergovernmental transfer system on local government equity and efficiency. Even though efficiency and equity have been regarded as trade-offs in the fields of public policy, public administration, and economics, the search for a possible positive relationship has continued. Taking advantage of the quasi-experimental research opportunity of New Jersey's educational finance reform, the impact of the institutional changes on equity and efficiency are analyzed. The results reveal that the institutional changes have detrimental impacts on both the equity and efficiency of school districts. It implies that the institutional changes are more likely to affect the public choice and managerial incentives of school districts and thereby induced changes in property tax rates, education budget reallocation, and financial management.이 논문은 2008년도 μ •λΆ€μž¬μ›(κ΅μœ‘κ³Όν•™κΈ°μˆ λΆ€ μΈλ¬Έμ‚¬νšŒμ—°κ΅¬μ—­λŸ‰κ°•ν™”μ‚¬μ—…λΉ„)으둜 ν•œκ΅­μ—°κ΅¬μž¬λ‹¨μ˜ 지원을 λ°›μ•„ μ—°κ΅¬λ˜μ—ˆμŒ(NRF-2008-332-B00549 (I00967))

    The Indigenous Placeness in the Works of Walt Whitman: Focusing on Brooklyn

    No full text
    • …
    corecore