26 research outputs found
Environmental Justice in Solar Energy Development
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :ํ๊ฒฝ๋ํ์ ํ๊ฒฝ๊ณํํ๊ณผ,2019. 8. ๊นํํ.Energy transition efforts in Korea are largely driven by increasing solar energy development, exemplified by the largest capacity plant planned in and around the inland sea of Saemangeum. As a space created through reclamation, Saemangeum has a complex history of severe environmental destruction and displacement of local fishers. As the group in the community who has the most intimate relationship with the marine ecosystem, fishers perception of the solar project has unique implications on its community acceptance. This study thus investigates Saemanguem fishers perspective on the solar project based on the environmental justice framework. In-depth interviews indicate that while fishers support renewable energy transition, they find this particular project unjust, for they are disproportionately burdened and marginalized from the decision-making processes.
Much of the burdens are felt locally by a specific, vulnerable group in the community (fishers). The inland sea vessel fishers would experience immediate and direct impact on their fishery, for the floating panels would be installed in sites that compete with and reduce inland sea fishers fishing grounds. Fishers of all regions and practices, especially the inland sea hand-gatherers, would be burdened by disruption to their potential to recover from the reclamation-induced displacement. For years, fishers have been demanding for water quality and ecosystem restoration through free flow of seawater across the dike. However, the sites that were expected to function as key habitat for spawning and marine life are planned to be surrounded with impervious structure to protect the panels.
While different fishers would be the exposed to slightly different types and severity of losses, their opinions on the distribution of outcome did not reflect their diversity; instead, they share strong beliefs against development in the sea. Although there are promises of financial return, the benefit-sharing mechanism is largely designed for the whole community and perceived as inaccessible and/or inapplicable to the fishers. Fishers losses cannot be compensated with investment profit because their concept of equitable distribution requires coexistence of fishery and solar energy in the shared space. This is because through the shared reclamation experiences, they collectively learned and created discourse that identifies their status of a social minority as the reason for repeatedly unequitable outcomes, which extends to future generation fishers as well.
Indeed, fishers voices are systematically excluded from the decision-making processes. Even with a low-risk technology such as solar energy, this project resulted in serious burden to the less visible group because of its top-down process. Local context and specificity were disregarded in the absence of public discussion prior to the project authorization, and the information sessions and joint negotiations committee put in place in response to community backlash also provided only limited opportunities for participation. Of all, fishers right to participate was particularly oppressed based on the legal inability of some inland sea fishers to oppose development in the reclamation site. However, fishers were grouped into an undistinguishable, insignificant minority in the community, and thus even the rightful fishers were excluded. Such procedural injustice reaffirms the oppressive interaction with development authorities from the past, where they do not make the effort to rebuild nor maintain a communicative relationship with fishers. As such, fishers evaluate the very character of decisionmakers as authoritative and detached from the local context, and express both frustration and exhaustion in demanding for their right to participation.
Ultimately, Saemanguem solar needs better justice considerations to be truly sustainable.Chapter 1. Introduction 1
Chapter 2. Literature Review 5
Chapter 3. Case Description 14
Chapter 4. Data and analytical framework 18
Chapter 5. Results 23
Chapter 6. Discussion 65
Chapter 7. Conclusion 70
Bibliography 74Maste
A case study of Gyeonggi-do Uiwang Urban Park
ํ์๋
ผ๋ฌธ(์์ฌ) -- ์์ธ๋ํ๊ต๋ํ์ : ํ๊ฒฝ๋ํ์ ํ๊ฒฝ์กฐ๊ฒฝํ๊ณผ, 2023. 8. ์ก์๊ทผ.๋์๊ณต๊ฐ์ ์ฆ๊ฐ๋ก ์ธํ ์ธ๊ตฌ ๋ฐ ๊ฒฝ์ ๋ฐ์ ๊ณผ ํจ๊ป ๋์ ๋ด ๊ทธ๋ฆฐ์ธํ๋ผ์ ํ์์ฑ์ด ์ง์์ ์ผ๋ก ์ ๊ธฐ๋๊ณ ์๋ค. ๋์ ๊ณต์์ ์ฌ๋ฌ ํ๊ฒฝ๋ฌธ์ ๋ค์ด ๋ฐ์ํ๋ ๋์ ๋ด์์ ๊ฒฝ๊ด์ ์ง์ ์ ์ง์ํฌ ๋ฟ๋ง ์๋๋ผ ์ํ์ ์ผ๋ก๋ ์ค์ํ ์์ฉ์ ํ๋ค. ํนํ, ๋์์ง์ญ์์ ๊ฐ์ฅ ๋ง์ ๋
น์ง ๊ณต๊ฐ์ ์ ๊ณตํ๊ณ ์๋ ์๋ชฉ์ ๊ฑด๊ฐํ ์ํ๊ณ์ ์ ์ง์ ๋ฐ์ ํ๊ฒ ์ฐ๊ด๋์ด์๋ ์์์ด๋ค. ํ์ง๋ง ๋์ ๊ณต์์ด ๊ฐ์ง๋ ์ด์ฉ ๋ฐ ์กฐ์ฑ ๋ชฉ์ ์ ์ํด ๋์ ๊ณต์ ๋ด์ ์๋ ์ํ์ฑ์ ํฌ๊ฒ ๋๋๋ฌ์ง์ง ์์ผ๋ฉฐ, ์ํ์ ํํฉ์ ๋ฐ์ํ ๊ฐ์ด๋๋ผ์ธ ๋ํ ๋ถ์กฑํ ์ค์ ์ด๋ค. ๋ฐ๋ผ์ ๋์ ๊ณต์์ ์ํ์ ๊ธฐ๋ฅ์ ํฌ๊ฒ ๋ด๋นํ๋ ์๋ชฉ์ ์ํ์ฑ์ ๋ํ ์ ์ ํ ํ๊ฐ๊ฐ ์ด๋ฃจ์ด์ ธ์ผ ํ๋ฉฐ, ์ด๋ ์ถํ ๋์๊ณต์์ ๊ด๋ฆฌ์ ์ธ ์ธก๋ฉด์์๋ ํ์ํ ๊ฒ์ผ๋ก ํ๋จ๋๋ค. ๋์ ๋ด ๋
น์ง๊ฐ ๊ฐ์ง๋ ํ๊ฒฝ์ ์ธ ๊ฐ์น์ ์ฆ๋์ ๋์๋ฏผ์ ์๊ตฌ ์ถฉ์กฑ์ ์ํด์๋ ๋
น์ง ๋ชจ๋ํฐ๋ง ๋ฐ ํ๊ฐ๊ฐ ํ์ํ๋ค. ์๋ชฉ์ ์ํ์ฑ์ ํ๊ฐํ๊ธฐ ์ํ ๊ธฐ์กด์ ๋ฐฉ๋ฒ์ ๋
ธ๋ ๋ฐ ์๊ฐ ์ง์ฝ์ ์ด์ง๋ง, ๋ผ์ด๋ค์ ์ด๋ถ๊ด ์ด๋ฏธ์ง ๊ฐ์ ๊ณ ํด์๋ ์๋ฃ์ ์ฌ์ฉ์ ๋น ๋ฅด๊ณ ์ ํํ ์ ๋ณด ์ทจ๋๊ณผ ์ธก์ ๊ฐ๋ฅ ๋ฒ์ ๋ฑ์ ์ด์ ์ผ๋ก ์ธํด ์ด๋ฌํ ๋ฌธ์ ๋ฅผ ๊ทน๋ณตํ ์ ์๊ฒ ํ๋ค. ๋์ฑ์ด, ๊ณ ํด์๋ ์๋ฃ๋ ์๋ฃ ์ทจ๋ ๋ฐฉ์์ด๋ ์๊ธฐ ๋ฑ์ ๋ฐ๋ผ ์ป์ ์ ์๋ ์ ๋ณด์ ์ฐจ์ด๊ฐ ์์ง๋ง, ์ด ์๋ฃ๋ค์ ์๋ก ์ค์ฒฉํจ์ผ๋ก์จ ๋ ๋ง์ ์ ๋ณด๊ฐ๋ค์ ์ป์ ์ ์๋ค. ๋ํ, ๋
น์ง ํ๊ฐ๋ฅผ ์ํด ์งํ๋ฅผ ์ด์ฉํ ์ฐ๊ตฌ๋ค์ด ๋ค์ ์งํ๋์ด์๋๋ฐ, ์ด๋ ์๊ฐ ๋ฐ ๊ณต๊ฐ์ ๋ฐ๋ฅธ ๋
น์ง ๋ฐ ๊ตฌ์ฑ์์์ ์ค์ํ ๋ณํ๋ฅผ ์ธก์ ํ ์ ์๋ ๋ณ์์ด๋ฉฐ, ๊ณต์ ๊ด๋ฆฌ์ ๋ํ ์์ฌ๊ฒฐ์ ์ ์ค์ํ ์ ๋ณด๋ฅผ ์ ๊ณตํ ์ ์๋ค.
์ด์ ๋ณธ ์ฐ๊ตฌ๋ ๊ณ ํด์๋ ์๋ฃ๋ฅผ ์ด์ฉํ์ฌ ๋์ ๋ด์ ๋ค์ํ ๊ณต์๋ค์ ์๋ชฉ์ ์ค์ฌ์ผ๋ก ํ ์ํ์ ํน์ฑ์ ๋ํด ํ์
ํ๊ณ ์ ํ๋ค. ๋ํ ํน์ฑ๋ค์ ์์ดํํ์ฌ ๊ธฐ์กด ์ด์ฉ ๋ชฉ์ ์ ๋ฐ๋ผ ๊ตฌ๋ถ๋์๋ ๊ณต์ ์ ํ์ด ์๋ ์ํ์ ํน์ฑ์ ๋ฐ๋ผ ๊ณต์์ ๋ถ๋ฅํ์ฌ ์ํ์ ์ธก๋ฉด์์์ ๊ฐ์น๋ฅผ ๋ฐ๊ตดํด๋ณด๊ณ ์ ํ๋ค. ์ฐ๊ตฌ์ ๊ณต๊ฐ์ ๋ฒ์๋ ์์์ ๋ด์ ๋์๊ณต์ 40๊ฐ์ด๋ค. 40๊ฐ ๊ณต์์ ๋ํด ๋ ์๊ธฐ์ ํญ๊ณต LiDAR์ ์ฌ๋จ LiDAR, ๊ทธ๋ฆฌ๊ณ ์ด๋ถ๊ด ์ด๋ฏธ์ง ์๋ฃ๊ฐ ์์ง๋์ด ์ ํฉ๋์์ผ๋ฉฐ, ์ ํ์ฐ๊ตฌ ๋ถ์์ ํตํ 13๊ฐ์ ์งํ ์ ์ ๋ํ ์ด๋ฃจ์ด์ก๋ค. ์ด๋ฅผ ํตํด ๊ฐ๋ณ ์๋ชฉ์ ํน์ฑ๊ฐ ๋ฐ ๊ณต์๋ณ ํน์ฑ๊ฐ์ ์ถ์ถํ์๊ณ , ์ถ์ถ๋ ํน์ฑ๊ฐ์ NMDS ๋ถ์์ ๊ฑฐ์ณ 40๊ฐ ๊ณต์์ 6๊ฐ์ ๊ตฐ์ง์ผ๋ก ๋๋์๋ค.
์ดํ ๊ณต์๋ค ๊ฐ์ ๊ฑฐ๋ฆฌ์ ๋ฐ๋ฅธ ๋ถํฌ์ 6๊ฐ ๊ตฐ์ง๊ฐ์ ์ฐจ์ด๊ฐ ์๊ฐ์ ์ผ๋ก ํํ๋์์ผ๋ฉฐ, ๊ตฐ์ง๋ณ ํน์ฑ ๋น๊ต๋ฅผ ํตํด ๊ณต์ ๊ด๋ฆฌ ๋ฐฉ์์ด ์ ์๋์๋ค. 6๊ฐ์ ๊ตฐ์ง์ ์ํ์ ๊ฐ์น๊ฐ ๋์ ๊ณ ๋ฆฝํ ๊ณต์์ผ๋ก ์ธ๋ถ์ ์ผ๋ก ์ฐ๊ฒฐ์ ํตํด ์ํ์ ์ง๊ฒ๋ค๋ฆฌ์ ์ญํ ์ด ๊ธฐ๋๋๋ ๊ณต์, ์ฃผ๋ณ ๋
น์ง์ ์ธ์ ํ์ฌ ์
์ง์ ์ธ ์ ์ฌ์ฑ์ ๋์ง๋ง ๋ด๋ถ์ ์ผ๋ก๋ ์ํ์ฑ์ด ๋ฎ์ ์ฃผ๋ณ์ ์ํ์ฑ์ ํ์ฉ์ด ํ์ํ ๊ณต์, ๊ฑด๊ฐ์ฑ์ด ์ํธํ ๊ฑฐ๋ชฉ์ด ์ ์ ๋ฐ๋๋ก ์์ฌ๋์ด ์ง์์ ์ธ ๋ชจ๋ํฐ๋ง์ผ๋ก ํ์ฌ์ ์ํ์ ํน์ฑ์ ์ ์งํด์ผ ํ๋ ๊ณต์, ๋์ ์ธํ์จ์ ์กฐ์ ํจ์ผ๋ก์จ ํ์ธต ์์๋์ ๊ฑด๊ฐ์ฑ์ ํจ๊ป ๊ด๋ฆฌํ ํ์์ฑ์ด ์๋ ๊ณต์, ๋น๊ต์ ์ต๊ทผ์ ์์ฌ๋ ์ ๋ น๋ชฉ์ด ์ํธํ ์ฑ์ฅ์ธ๋ฅผ ๊ฐ์ ธ ๋ค์ํ ์๋ น์ ์๋ชฉ๊ณผ ํ์ธต์์์ ํตํ ๋ค์ธต์ ์ธ ์์ ๊ตฌ์กฐ๋ฅผ ํจ๊ป ์ด๋ฃจ๋๋ก ๊ด๋ฆฌํด์ผ ํ ํ์์ฑ์ด ์๋ ๊ณต์์ผ๋ก ๋ถ๋ฅ๋์๋ค. ๋ํ ๋์ ์ํ์ ํน์ฑ๊ณผ ์ ์ฌ์ฑ์ ๊ฐ์ง๋ ์์ค์ด ์ค์์๋๋ ๊ณต์์ ๋ฐ๊ตด์ ํตํด ์์ฐ๊ณผ ์ด์ฉ๊ฐ์ ๊ณ ๋ คํ ๋์ฑ ํจ๊ณผ์ ์ธ ๋์๊ณต์ ๊ด๋ฆฌ ๋ฐฉ์์ ์ ์ํ์๋ค.
๋ณธ ์ฐ๊ตฌ๋ ๊ณ ํด์๋ ์๋ฃ๋ฅผ ํตํ ์๋ชฉ ๋ฐ ๋
น์ง์ ์ํ์ ํน์ฑ ์๋ฃ๋ฅผ ๋์ถ ๋ฐ ๊ด๋ฆฌ๋ฐฉ์์ ์ ์ํ๋ ค๋ ์๋์ ์์๊ฐ ์๋ค. ํฅํ, ๋ณธ ์ฐ๊ตฌ์์ ๊ณ ๋ คํ์ง ๋ชปํ๋ ์์ข
๋ณ ์๋ชฉ์ ์ํ์ ์ธ ์ฐจ์ด, ์๋ชฉ์ ์์ก์ ์ํฅ์ ์ฃผ๋ ํ๊ฒฝ๋ณ์์ ์ด์ฉ๊ฐ๋ค์ ์ด์ฉ ๊ฐ๋ ๋ฑ์ ๋ฐ๋ฅธ ์ํฅ์ ๊ณ ๋ คํ๋ค๋ฉด ๋์ฑ ์ฒด๊ณ์ ์ธ ๋์๊ณต์์ ๊ด๋ฆฌ๋ฐฉ์์ ์ ์ํ ์ ์์ ๊ฒ์ผ๋ก ํ๋จ๋๋ค.With growing environmental challenges in city, urban parks maintain the quality of the landscape and play an important ecological role. In particular, trees are closely linked to the maintenance of healthy ecosystems. However, the tree-based ecology of urban parks is often overlooked, and there is also a lack of ecological guidelines. Hence, a thorough evaluation of tree ecology becomes imperative, particularly for the future management of urban parks. Green space monitoring and evaluation is necessary to increase the environmental value of urban green spaces and to meet the needs of urban residents. The high-resolution data such as LiDAR and hyperspectral imagery has an advantage with fast and accurate information acquisition and measurement range. Also to assess green spaces, many studies have used green indicators, which can measure important changes in green spaces and their components over time and space, and can provide important information for park management decisions.
This study aims to identify the ecological characteristics of various parks in the city, mainly trees, using high-resolution data. In addition, by sequencing the characteristics, we aim to discover the value of ecological aspects by classifying parks according to ecological characteristics rather than park types that have been classified according to the purpose of use.
The spatial scope of the study is 40 urban parks in Uiwang City. Airborne LiDAR from two seasons, slam LiDAR, and hyperspectral imagery data were collected and merged for 40 parks, and 13 indicators were selected through prior research analysis. Individual tree characteristics and park-specific characteristics were extracted, and were analyzed using NMDS to divide the 40 parks into six clusters. As a result, the distribution of the distance between the parks and the differences between the six clusters were visually represented, and the park management plan was suggested through the comparison of characteristics by cluster. Furthermore, through the identification of parks with high ecological characteristics and potential facilities, we proposed a more effective urban park management plan that considers both the natural environment and park users.
This study is significant in that it attempts to derive ecological characteristics of trees and green areas through high-resolution data and suggest management plans. In the future, it is believed that a more systematic management plan for urban parks can be proposed by considering the ecological differences of trees by species, environmental variables that affect the growth of trees, and the effects of intensity of use by users, which were not considered in this study.Abstractโ
ฐ
Table of Contents โ
ฒ
Lists of Tables โ
ด
Lists of Figures โ
ต
Chapter 1. Introduction 1
1. Background and research purpose 1
1.1 Research background 1
1.2 Analysis of prior research on urban green space and vegetation evaluation using indicators 4
1.3 Research objectives 8
Chapter 2. Methods 10
1. Study flow 10
2. Study area 11
3. Study materials and preprocess 16
3.1 Data acquisition 16
3.2 Preprocess and fusion of LiDAR data 19
3.3 Preprocess of hyperspectral imagery data and crown area derivation 23
4. Indicator selection and calculation 24
4.1 Indicator selection 24
4.2 Tree attribute and indicator value calculation 27
5. Park type analysis through sequencing 38
Chapter 3. Results 40
1. Ecological traits by park type 40
2. Integrated distribution according to traits 50
Chapter 4. Discussion and Conclusion 54
1. Management based on the characteristics of park types 54
2. Ecological potential of original park types 57
3. Conclusions and limitations 60
References 63
Appendix A 75
Abstract in Korean 78์
Adenovirus-IkBa-SR์ transduction ์ด cisplatin, paclitaxel์ ๋ํ ํ์์ธํฌ์ฃผ์ ๊ฐ์์ฑ์ ๋ฏธ์น๋ ์ํฅ
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :์ํ๊ณผ ๋ด๊ณผํ์ ๊ณต,2001.Maste
Cache miss stall reduction with Enhanced Pipeline Sscheduling(EPS)
ํ์๋
ผ๋ฌธ(์์ฌ) --์์ธ๋ํ๊ต ๋ํ์ :์ ๊ธฐ. ์ปดํจํฐ๊ณตํ๋ถ,2010.2.Maste
Stability Analysis of Systems with Time-varying Delays via Slack Matrix Based Approaches
Doctor์๊ฐ ์ง์ฐ ํ์์ ํ๋์จ์ด์ ์ ์ก ์๋ ๋ฐ ๊ณ์ฐ ์๊ฐ ๋ฑ์ ๋ฌผ๋ฆฌ์ ์ธ ์ ์ฝ์ผ๋ก ์ธํด ๋ฐ์ํ๋ฉฐ ๋คํธ์ํฌ ์์คํ
, ์๋ฌผํ์ ์์คํ
, ํํ ์์คํ
, ์ญํ ์์คํ
, ๊ณต์ ์ ์ด ์์คํ
๋ฑ ๋ง์ ๋์ ์์คํ
์์ ํ์ฐ์ ์ธ ํ์์ด๋ค. ์๊ฐ ์ง์ฐ ์์คํ
์ํ๋ณ์์ ๋ณํ๋์ ํ์ฌ๋ฟ๋ง ์๋๋ผ ๊ณผ๊ฑฐ ์ํ๋ณ์์ ๋ํด์๋ ์ข
์์ ์ธ ๊ฐ์ด ๋๋๋ฐ ์ด๋ ์์คํ
์ ์ ์ด ์ฑ๋ฅ์ ์ ํ์ํค๊ฑฐ๋ ๋ถ์์ ํ๊ฒ ํ๋ ์์๊ฐ ๋๋ค. ๋ฐ๋ผ์ ์๊ฐ์ง์ฐ์์คํ
์ ์์ ์ฑ ํด์ ๋ฐ ์ ์ด์ ๊ดํ ๋ง์ ์ฐ๊ตฌ๊ฐ ์งํ๋์ด์ ธ ์๋ค.
์๊ฐ์ง์ฐ์์คํ
์ ๋ํ ๊ฐ๋
์ 18์ธ๊ธฐ์ ์ ์๋์๊ณ 20์ธ๊ธฐ์ ๋ค์ด์ ์๋ฌผํ์ , ์ํํ์ ๊ทธ๋ฆฌ๊ณ ๊ณตํ์ ์์คํ
์ ๋ชจ๋ธ๋ง๊ณผ ๋๋ถ์ด ์ฃผ๋ชฉ๋ฐ๊ธฐ ์์ํ์๋ค. ๊ทธ์ ๋ํ ์์ ์ฑ ์ฐ๊ตฌ๋ 1940๋
๋์ Pontryagin ์ Bellman์ ์ํด ๋ณธ๊ฒฉ์ ์ผ๋ก ์ฐ๊ตฌ๋๊ธฐ ์์ํ์๋ค. ์ฐ๊ตฌ ์ด๊ธฐ์๋ ์ฃผํ์ ์์ญ์์์ ์์ ์ฑ ํด์ ๋ฐฉ๋ฒ์ด ์ฃผ๋ฅผ ์ด๋ฃจ์์ผ๋ ์๊ฐ์ง์ฐ์์คํ
์ ๋ฌดํ ์ฐจ์ํน์ฑ์ผ๋ก ์ธํด ์ ํํ ํด๋ฅผ ๊ตฌํ๊ธฐ ์ด๋ ค์ ๊ณ ์๊ฐ์ง์ฐ์ด ๋ถํ์ค์ฑ์ ๊ฐ์ง๊ฑฐ๋ ์๋ณ์ผ ๊ฒฝ์ฐ์ ์ ์ฉ์ด ์ด๋ ค์ด ํ๊ณ๊ฐ ์์๋ค. ๋ฐ๋ผ์ ํ์ฌ๋ ์๊ฐ ์์ญ์์ Lyapunov-Krasovskii ์์ ์ด๋ก ์ ๊ธฐ์ดํ์ฌ์์ ์ฑ์ ํ๋ณํ๋ ์ถฉ๋ถ์กฐ๊ฑด์ ๊ตฌํ๋ ๊ฒ์ด์ผ๋ฐ์ ์ธ ์ฐ๊ตฌ ๋ฐฉํฅ์ด๋ค. ๊ณ์ฐ์ ํ๊ณ ๋๋ฌธ์ 1990๋
๋ ์ด์ ์๋ ๋จ์ํ ํํ์ ์์ ์ฑ ์กฐ๊ฑด๋ง ์ ์๋์์ผ๋ ์ต๊ทผ 20๋
๊ฐ ์์นํด์ ์๊ณ ๋ฆฌ์ฆ์ ๋ฐ์ ๊ณผ ๊ฐ์ธ์ฉ ์ปดํจํฐ์ ๋ณด๊ธ์ผ๋ก ์ธํด ์๊ฐ์ง์ฐ์์คํ
์ ์์ ์ฑ์ ๊ดํ ๋ง์ ์ฐ๊ตฌ๊ฐ ์งํ๋์๋ค.
๋ณธ ๋
ผ๋ฌธ์ ์๊ฐ ์์ญ์์ ๋ค์ํ ์ฌ์ ํ๋ ฌ ์ ๊ทผ๋ฒ์ ์ด์ฉํ์ฌ ์๋ณ ์๊ฐ ์ง์ฐ์ ๊ฐ๋ ์ฐ์์๊ฐ ๋ฐ ์ด์ฐ์๊ฐ์์คํ
์ ์์ ์ฑ์ ํด์ํ๋ ๋ฐฉ๋ฒ์ ์ ์ํ๋ค. Lyapunov-Krasovskii ์์ ์ ๋ฆฌ์์๋ ์๊ฐ์ง์ฐ์ด ์๋ ๊ฒฝ์ฐ์ ๋ํ Lyapunov ์์ ์ ๋ฆฌ์ ๋ฌ๋ฆฌ ๊ณผ๊ฑฐ์ ์ํ ๋ณํ์ ์ข
์์ ์ธ ์๊ฐ์ง์ฐ์์คํ
์ ํน์ฑ์ ๋ฐ๋ผ Lyapunov function์ด functional์ ํํ๋ก
๋ํ๋๋ค. ์ค์ ํด์ ๊ฐ๊น์ด ์์ ์ฑ ์กฐ๊ฑด์ ๊ตฌํ๊ธฐ ์ํ ์ฐ๊ตฌ๋ ํฌ๊ฒ ๋ ๊ฐ์ง ๋ฐฉํฅ์ผ๋ก ๋ถ ๋ฅํ ์ ์๋ค. ์ฒซ์งธ๋ ํจ์จ์ ์ธ Lyapunov functional์ ์ค๊ณํ๋ ๊ฒ์ด๋ฉฐ ๋์งธ๋ Lyapunov functional์ ๋ํจ์ ๋๋ ์ ํฅ์ฐจ๋ถ์ ์ํ๊ฐ์ ์ ๋ฐํ๊ฒ ๊ตฌํ๋ ๊ฒ์ด๋ค. ์ด๋ฌํ ๋ ๋ฐฉํฅ์ ์ฐ๊ตฌ์ ๋ํด์ ๋ณธ ๋
ผ๋ฌธ์์๋ Lyapunov-Krasovskii functional ์ ๋ํจ์ ๋๋ ์ ํฅ์ฐจ๋ถ์์ ์ ๋๋๋ ๋ค์ํ ํํ์ ์ ๋ถํญ ๋ฐ ํฉํญ์ ๋ํด ์ฌ์ ํ๋ ฌ ์ ๊ทผ๋ฒ์ ์ ์ฉํ์ฌ ๋์ฑ ๋์ Linear matrix inequality(LMI) ์กฐ๊ฑด๋ค์ ๊ตฌํ๋ค. ์ ์ํ๋ ๋ฐฉ๋ฒ์ ํตํด ์๋ณ ์๊ฐ์ง์ฐ์ ๊ฐ์ง๋ ์ฐ์ ์๊ฐ ์ ํ์์คํ
๊ณผ ์ด์ฐ ์๊ฐ ์ ํ์์คํ
์ ์๋ก์ด ์์ ์ฑ ์กฐ๊ฑด์ ๊ตฌํ๊ณ ์์น์์ ๋ฅผ ํตํด ์ฑ๋ฅ์ ๊ฒ์ฆํ๋ค.This thesis proposes several numerical methods to deal with stability analysis problems of time-delay systems whose future evolution depend not only on their present states but also on their past states. In the real world, a time delay is a natural phenomenon in many dynamic systems including mechanical, chemical, engineering, and networked control systems. Unfortunately, time delays often cause poor control performance or even instability of the related systems and thus have attracted considerable attention in many research fields such as stability analysis, control synthesis, and filtering. Among the researches, a stability analysis problem is a fundamental one since numerical methods for stability analysis problems can be simply applied to synthesis problems by utilizing existing relaxation techniques. Motivated by the above observations, this thesis aims at deriving improved stability criteria for time-delay systems. More specifically, several effective techniques to develop less conservative stability criteria, say slack matrix based approaches, are proposed with a novel Lyapunov-Krasovskii functional (LKF), novel zero equalities, and novel integral/summation inequalities.
Based on the proposed approaches, stability criteria for continuous- and discrete-time systems with time-varying delays are derived in terms of linear matrix inequalities (LMIs).
In Chapter 1, backgrounds for stability analysis problems of time-delay systems are given with several practical models. First, definitions of stability and Laypunov-Krasovskii stability theorem, which is an essential tool to derive stability criteria, are introduced. Second, some recent researches for stability analysis problems of continuous- and discrete-time systems with time-delays are briefly summarized with the motivation and the concept of the slack matrix based approaches. Lastly, the organization of the thesis is given.
In Chapter 2, two improved stability criteria for a linear system with time-varying delays are derived based on generalized zero equalities. A design of LKFs is a one of effective approaches for stability analysis of time-delay systems. Since there still exists a room for improvement of existing LKFs, this chapter proposes a new flexible LKF. Further, generalized zero equalities are proposed by combining slack matrices and system states.
In Chapter 3, two improved stability criteria for a discrete-time system with time-varying delays are proposed based on generalized zero equalities. Differently from the previous chapter that proposed generalized zero equalities for the continuous-time system, this chapter considers discrete-time cases. Since a LKF for discrete-time systems consists of summation quadratic functions, the techniques in the previous chapter cannot be directly utilized. Thus, generalized zero equalities for summation instead of integration are proposed with a
novel flexible LKF.
In Chapter 4, three improved stability criteria for a linear system with time-varying delays are developed based on a novel integral inequality. In the field of stability analysis of time-delays systems, the trial on obtaining tight lower bounds for integral quadratic functions has been a key part reducing the conservatism of the stability criteria. Thus the Jensen inequality, the Moonโs inequality, and a free-matrix-based integral inequality have been proposed. By extending the existing integral inequalities with slack matrices, this chapter proposes a general integral inequality, say a polynomials-based integral inequality.
In Chapter 5, the polynomials-based integral inequality presented in the previous chapter is refined into an orthogonal-polynomials-based integral inequality. Then, three improved stability criteria for a linear system with additive time-varying delays are developed based on the refined integral inequality.
In Chapter 6, three improved stability criteria for a discrete-time system with time-varying delays are derived based on a polynomials-based summation inequality. This chapter concerns the discrete-time counter parts of those of Chapter 4