27 research outputs found

    An Investigation of Tidal Currents around the West Coast of Korea Responding to Bottom Roughness and Open Boundary Conditions

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€,2019. 8. Van Thinh Nguyen.The tide around the West Coast of Korea is large and the tidal current is strong and sensitive to tidal elevation. Moreover, since the tidal flow is the main forcing of water circulation around the West Coast of Korea, it is necessary to predict the tidal elevation accurately and find out characteristics of the tide around the West Coast of Korea. In this study, a number of the numerical simulations were carried out to investigate the effect of bottom roughness and open boundary conditions on the tidal elevation around the West Coast of Korea. The well-known open-source model, Telemac-2D, was applied as a simulation tool and three well-known ocean tide models, FES2014, NAO99Jb and TPXO9.1, were used to set the open boundary conditions for the numerical simulations in order to reproduce the tide. Besides, the complicated geometry around the West Coast of Korea influences to tide, so unstructured grid was used to represent the geometry and reflect its effect. The numerical results were calibrated and validated against observation data. It showed a good agreement between simulation results and observation data. Tidal elevation around the West Coast of Korea was evaluated corresponding to bottom friction coefficients, which were set as uniform and local distributions. The numerical results were enhanced when the bottom friction coefficients were applied differently depending on the regions based on the natural bathymetry and coastlines. Sensitivity analyses of tides corresponding to the open boundary conditions were carried out in order to understand the characteristic of the tide around the West Coast of Korea.ํ•œ๊ตญ ์„œํ•ด์•ˆ์—์„œ์˜ ์กฐ์„์€ ๊ทธ ํฌ๊ธฐ๊ฐ€ ํฌ๋ฉฐ, ์กฐ๋ฅ˜ ๋˜ํ•œ ๋น ๋ฅด๊ณ  ์กฐ์„์— ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ณ€ํ™”ํ•˜๋Š” ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ ์กฐ์„์€ ์„œํ•ด์•ˆ์˜ ํ•ด์ˆ˜ ํ๋ฆ„์˜ ์ฃผ ์š”์ธ์ด๊ธฐ ๋•Œ๋ฌธ์— ์กฐ์„์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ์˜ˆ์ธก๊ณผ ๊ทธ ํŠน์ง•์˜ ์ดํ•ด๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์กฐ๋„๊ณ„์ˆ˜์™€ ๊ฐœ๋ฐฉ๊ฒฝ๊ณ„์กฐ๊ฑด์ด ์„œํ•ด์•ˆ์˜ ์กฐ์„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์‚ดํŽด๋ณด๊ธฐ ์œ„ํ•œ ์ˆ˜์น˜ํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ˆ˜์น˜ํ•ด์„ ํˆด๋กœ๋Š” ์˜คํ”ˆ์†Œ์Šค์ธ Telemac-2D๋ฅผ ์‚ฌ์šฉํ•˜์˜€๊ณ , ์กฐ์„ ํ๋ฆ„์˜ ์žฌํ˜„์„ ์œ„ํ•œ ๊ฐœ๋ฐฉ ๊ฒฝ๊ณ„์กฐ๊ฑด์„ ์„ค์ •ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋™ํ™” ์กฐ์„ ๋ชจ๋ธ์ธ FES2014, NAO99Jb, TPXO9.1 ์„ธ๊ฐœ์˜ ๋ชจ๋ธ์˜ ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์ถ”์ถœ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์ •์˜ํ•˜์˜€๋‹ค. ์„œํ•ด์•ˆ์˜ ๋ณต์žกํ•œ ์ง€ํ˜•๋„ ์กฐ์„์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ธฐ ๋•Œ๋ฌธ์— ๋ณต์žกํ•œ ์ง€ํ˜•์˜ ํ‘œํ˜„๊ณผ ๊ทธ ์˜ํ–ฅ์„ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•ด ๋น„์ •๊ทœ๊ฒฉ์ž์ฒด๊ณ„๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ˆ˜์น˜ ํ•ด์„ ๊ฒฐ๊ณผ๋Š” ๊ด€์ธก์ž๋ฃŒ๋ฅผ ํ†ตํ•ด ๋ณด์ • ๋ฐ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๊ด€์ธก์ž๋ฃŒ์™€ ๋น„๊ตํ•˜์˜€์„ ๋•Œ ์ˆ˜์น˜ ํ•ด์„์„ ํ†ตํ•ด ์ƒ์„ฑ๋œ ์กฐ์„์€ ๊ด€์ธก ์ž๋ฃŒ์™€ ์ž˜ ๋ถ€ํ•ฉํ•˜์˜€๋‹ค. ๊ณ„์‚ฐ ์˜์—ญ์— ๋™์ผํ•œ ๊ฐ’์˜ ๋งˆ์ฐฐ๊ณ„์ˆ˜๊ฐ€ ์ ์šฉ๋œ ๊ฒƒ๊ณผ ์ง€์—ญ์— ๋”ฐ๋ผ ๋‹ค๋ฅด๊ฒŒ ์ ์šฉํ•œ ๊ฒฝ์šฐ์— ์„œํ•ด์•ˆ์— ๋ฐœ์ƒํ•˜๋Š” ์กฐ์„์— ๋Œ€ํ•˜์—ฌ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ํ•ด์„ ๊ฒฐ๊ณผ ์ˆ˜์‹ฌ๊ณผ ์ง€ํ˜•์  ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ๋งˆ์ฐฐ ๊ณ„์ˆ˜๋ฅผ ๋‹ค๋ฅด๊ฒŒ ์ ์šฉํ•œ ๊ฒฝ์šฐ ํ•ด์„ ๊ฒฐ๊ณผ๊ฐ€ ํ–ฅ์ƒ๋จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์„œํ•ด์•ˆ์—์„œ์˜ ์กฐ์„ ํŠน์„ฑ์„ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ฐœ๋ฐฉ ์กฐ๊ฑด์— ๋”ฐ๋ผ ๋ณ€ํ™”ํ•˜๋Š” ์กฐ์„์˜ ๋ฏผ๊ฐ๋„ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค.CHAPTER 1. INTRODUCTION 1 1.1 Introduction 1 1.2 Necessity and Objective 3 1.2.1 Necessity 3 1.2.2 Objective of this Study 4 CHAPTER 2. THEORETICAL BACKGROUND 6 2.1 Literature Review of Numerical Simulation of the Tide and Tidal Current in the Yellow Sea and the East China Sea 6 2.2 Model Description 9 2.2.1 Numerical Model Equations 9 2.2.2 Bottom Friction 11 2.2.3 Coriolis Force 12 2.2.4 Turbulence Modeling (k-ฮต model) 12 2.2.5 Boundary Condition 14 2.3 Tide 15 2.4 Tide Model 16 CHAPTER 3. METHODOLOGY 26 3.1 Computation Domain 26 3.2 Boundary Condition 29 3.3 Bottom Friction 29 CHAPTER 4. RESULTS 32 4.1 Tidal Elevation 32 4.2 Type of Tide 51 CHAPTER 5. SENSITIVITY ANALYSIS 53 5.1 Response to Individual Boundary Forcing 53 5.2 Response to the Tidal Amplitude at the Open Boundary 58 CHAPTER 6. CONCLUSION 66 REFERENCES 68Maste

    ์—ํƒ„ ์‚ฐํ™”ํƒˆ์ˆ˜์†Œํ™”๋ฐ˜์‘์„ ํ†ตํ•ด ์—ํ‹ธ๋ Œ์„ ์ƒ์‚ฐํ•˜๊ธฐ ์œ„ํ•œ ํ˜ผํ•ฉ๊ธˆ์†์‚ฐํ™”๋ฌผ ์ด‰๋งค ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2017. 8. ๊น€๋ณ‘์ˆ˜.The increasing demand for light olefins and the changing nature of upstream feedstock boosted up the substantial research activity into the development of alternative process routes. Ethylene is one of the most widely required primary building blocks for the preparation of value-added chemical products (e.g., polyethylene, ethylene oxide, ethylene glycol, styrene, vinyl acetate monomers, and polyvinyl chloride etc.) and many other intermediate products in current society. A steam cracking method, under high temperature pyrolysis in the presence of diluting steam, is the most settled industrial process for the manufacture of ethylene. Feedstocks for the steam cracking method have mostly been naphtha and natural gases in this process. Currently the basic feedstock for steam cracking has only shifted to ethane in the last decade, thus leading to attractive production costs. It should be noted that the emerging availability of shale gas will remarkably shift the overall petrochemical industry towards processes that use light alkanes to production of ethylene. The increase in the price of crude oil, in particular, and the availability of ethane from shale gas, has led to the interest in alternative processes for ethylene production, such as oxidative dehydrogenation of ethane (ODHE). This process offers diverse advantages, thus it has been attracting considerable attentions as a subject of substantial research activities. However, the lack of suitable catalysts that combine high activity and selectivity has prevented their industrial realization so far. In an attempt to develop efficient catalyst for the reaction, both the exterior and interior design of active catalysts was performed as below: Ni-Nb-O mixed oxide embedded on CexZr1-xO2 (denoted herein as Ni-Nb-O/CexZr1-xO2), which is a concept of exterior design, were designed based on the insights into reaction pathways. Compared with using Ni-Nb-O alone, the introduction of CexZr1-xO2 to the Ni-Nb-O active catalyst contributes on suppressing the formation of byproducts (CO, CO2, and CH4) at relatively high reaction temperature (450 ยฐC). The increased reaction temperature also leads to an enhancement of ethane conversion (~55%) and subsequent increase in the production of ethylene (6.3 ฮผmolgactive cat-1 s-1), compared to that of conventional Ni-Nb-O catalyst (1.5 ฮผmolgactive cat-1 s-1). Relevant control tests and the electrochemical tests suggest that the promotion effect of CexZr1-xO2 additive is attributed to the compensation of lattice oxygen from CexZr1-xO2 into the lattice oxygen vacancy in Ni-Nb-O active catalysts, which originates from consumed lattice oxygen during the ethane conversion. Ce-incorporated MoVTeNbO, which is a concept of interior design, was designed to improve catalytic activity with exhibiting almost 100% ethylene selectivity from ODHE process. In this study, the effect of Ce in MoVTeNbO was intensively characterized. Activation temperature (600 ยฐC) and amount of Ce atom (0.1 atom%) are optimized as attempts to maximize the ratio of reactive phase, M1 phase (unique structure for Mo-V based mixed metal oxide), for the selective production of ethylene. As a result, the Ce-incorporated MoVTeNbO catalyst exhibited comparable ethylene yield (~60 %) with reducing reaction temperature (~50 ยฐC) during the ODHE process, compared to pure MoVTeNbO catalyst. Results of physicochemical characterizations suggest that the improved catalytic performance of Ce-incorporated MoVTeNbO should corresponds with the location of Ce atoms in the lattice structure of M1 phase MoVTeNbO, and subsequent improvements in redox property of active sites.Chapter 1. Introduction 1 1.1 Current practice: Steam cracking and oxidative dehydrogenation of ethane 1 1.1.1 Steam cracking 1 1.1.2 Oxidative dehydrogenation of ethane 2 1.2 Single and paired-electron process for ODHE 6 1.3 Active sites for the ODHE of ethane 9 1.4 Parameters for determining activity and selectivity 10 1.4.1 Metal-oxygen bond strength 10 1.4.2 Rjole of O- and O2- 11 1.4.3 Desorption and re-adsorption of ethane 11 1.5 Objective 13 Chapter 2. Enhanced ethylene productivity by promotion of lattice oxygen in Ni-Nb-O/CexZr1-xO2 composite for oxidative dehydrogenation of ethane 14 2.1 Introduction 14 2.2 Experimental 17 2.2.1 Preparation of catalysts 17 2.2.2 Characterizations 18 2.2.3 Electrochemical tests 19 2.2.4 Catalytic reaction tests 20 2.3 Results and discussion 22 2.3.1 Catalyst characterizations 22 2.3.2 Catalytic performance in the ODH of ethane 24 2.3.3 Electrochemical tests 28 Chapter 3. Development of Ce-doped MoVTeNbO catalyst for low temperature oxidative dehydrogenation of ethane with almost 100% ethylene selectivity 47 3.1 Introduction 47 3.2 Experimental 50 3.2.1 Preparation of catalysts 50 3.2.2 Characterizations 50 3.2.3 Catalytic reaction tests 51 3.3 Results and discussion 53 3.3.1 Effect of heat treatment under nitrogen after M2 phase dissolution 53 3.3.2 Effect of Ce doping amount 54 Chapter 4. Summary and Conclusions 66 Bibliography 68 ๊ตญ๋ฌธ์ดˆ๋ก 74 List of publications 78Docto

    1000BASE-T๋ฅผ ์œ„ํ•œ ์ €์ „๋ ฅ ์—์ฝ” ์ œ๊ฑฐ๊ธฐ์™€ ์ฑ„๋„ ๋“ฑํ™”๊ธฐ ์„ค๊ณ„

    No full text
    Thesis (master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ „๊ธฐ๊ณตํ•™๋ถ€,2000.Maste

    Design and shuttling method for implementing scalable ion trap array

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021. 2. ์กฐ๋™์ผ.Abstract Design and shuttling method for implementing scalable ion trap array Minjae Lee Department of Electrical and Computer Engineering The Graduate School Seoul National University Quantum information processing (QIP) is expected to bring innovation in various technology fields by overcoming the limitations of the current classical information technology. An ion trap is a device to capture charged particles using electromagnetic fields, which can be used as a QIP platform by using the energy state of the captured ions as a qubit. The ion trap has a longer coherence time compared to other QIP platforms, thus can be used as a key device for realizing quantum computing and long-distance quantum communication. For the practical use of QIP, it is necessary to utilize thousands of qubits simultaneously, thus it is necessary to implement a scalable large-scale ion trap array structure with separated areas with different roles. A micro-electromechanics systems (MEMS)-fabricated ion trap is considered to the most appropriate production method for implementing large-scale ion trap array structure due to its high integrability and producibility. In order to operate a large-scale ion trap array, it is necessary to develop a method to move ions between separate areas. In this paper, an optimization method to design the junction structure that divides the zones between ion traps, a voltage set design method to move ions, and building a DAC system to input voltage sets are described. Through the technologies secured above, an ion shuttling experiment system is established, and ion shuttling experiment of reciprocating ion for 1920 ฮผm distance is shown. (This research was supported by Samsung Research Funding & Incubation Center of Samsung Electronics under Project Number SRFC-IT1901-09.) and by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2020-2015-0-00385) supervised by the IITP (Institute for Information & Communications Technology Planning & Evaluation.)์–‘์ž ์ •๋ณด ๊ธฐ์ˆ ์€ ํ˜„์žฌ์˜ ๊ณ ์ „ ์ •๋ณด ๊ธฐ์ˆ ์ด ๊ฐ€์ง„ ํ•œ๊ณ„๋“ค์„ ๊ทน๋ณตํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๊ธฐ์ˆ  ๋ถ„์•ผ์—์„œ ํฐ ํ˜์‹ ์„ ๊ฐ€์ ธ์˜ค๋ฆฌ๋ผ ๊ธฐ๋Œ€๋˜๊ณ  ์žˆ๋‹ค. ์ด์˜จํŠธ๋žฉ (Ion trap)์€ ์ „์ž๊ธฐ์žฅ์„ ์ด์šฉํ•˜์—ฌ ์ „ํ•˜๋ฅผ ๋ˆ ์ž…์ž๋ฅผ ํฌํšํ•˜๋Š” ์žฅ์น˜๋กœ, ํฌํš๋œ ์ด์˜จ์˜ ์—๋„ˆ์ง€ ์ค€์œ„ (Energy state)๋ฅผ ํ๋น„ํŠธ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ์–‘์ž ์ •๋ณด ์ฒ˜๋ฆฌ ํ”Œ๋žซํผ์œผ๋กœ์„œ ํ™œ์šฉ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด์˜จํŠธ๋žฉ์€ ๋‹ค๋ฅธ ์–‘์ž ์ •๋ณด ์ฒ˜๋ฆฌ ํ”Œ๋žซํผ๋“ค์— ๋น„ํ•ด ๊ธด ๊ฐ€๊ฐ„์„ญ์„ฑ ์‹œ๊ฐ„ (Coherence time)์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด ์–‘์ž ์ปดํ“จํŒ… ๋ฐ ์žฅ๊ฑฐ๋ฆฌ ์–‘์ž ํ†ต์‹  ๊ตฌํ˜„์„ ์œ„ํ•œ ํ•ต์‹ฌ ์žฅ๋น„๋กœ์„œ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ํ–ฅํ›„ ์–‘์ž ์ •๋ณด ๊ธฐ์ˆ ์˜ ์‹ค์šฉํ™” ๋‹จ๊ณ„์—์„œ๋Š” ์ˆ˜ ์ฒœ๊ฐœ ์ด์ƒ์˜ ํ๋น„ํŠธ๋“ค์„ ํ™œ์šฉํ•  ํ•„์š”๊ฐ€ ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด์„œ๋Š” ์—ญํ• ๋ณ„๋กœ ๋ถ„๋ฆฌ๋œ ๊ตฌ์—ญ์„ ์ง€๋‹Œ ํ™•์žฅ ๊ฐ€๋Šฅํ•œ (Scalable) ๋Œ€๊ทœ๋ชจ ์ด์˜จํŠธ๋žฉ ์–ด๋ ˆ์ด ๊ตฌ์กฐ๋ฅผ ๊ตฌํ˜„ํ•˜๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค. ๋ฏธ์„ธ์ „์ž๊ธฐ๊ณ„์‹œ์Šคํ…œ (MEMS) ๊ธฐ๋ฐ˜ ์ด์˜จํŠธ๋žฉ์€ ๋†’์€ ์ง‘์ ์„ฑ๊ณผ ์ƒ์‚ฐ์„ฑ์„ ์ง€๋…€, ํ™•์žฅ ๊ฐ€๋Šฅํ•œ ๋Œ€๊ทœ๋ชจ ์ด์˜จํŠธ๋žฉ ์–ด๋ ˆ์ด ๊ตฌํ˜„์— ๊ฐ€์ž‘ ์ ํ•ฉํ•œ ์ œ์ž‘ ๋ฐฉ์‹์œผ๋กœ ์—ฌ๊ฒจ์ง„๋‹ค. ๋Œ€๊ทœ๋ชจ ์ด์˜จํŠธ๋žฉ ์–ด๋ ˆ์ด์˜ ์šด์šฉ์„ ์œ„ํ•ด์„œ๋Š” ๋ถ„๋ฆฌ๋œ ๊ฐ ๊ตฌ์—ญ๊ฐ„ ์ด์˜จ์„ ์ด๋™์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๊ธฐ์ˆ ์„ ๊ฐœ๋ฐœํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด์˜จํŠธ๋žฉ ๊ฐ„ ๊ตฌ์—ญ์„ ๋‚˜๋ˆ„๋Š” ๊ต์ฐจ๋กœ ๊ตฌ์กฐ ์ตœ์ ํ™” ์„ค๊ณ„๊ธฐ์ˆ ๊ณผ ์ด์˜จ์„ ์ด๋™์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ „์•• ์„ธํŠธ์˜ ์„ค๊ณ„๊ธฐ์ˆ , ๊ทธ๋ฆฌ๊ณ  ๋ชฉํ‘œ ์ „์•• ์„ธํŠธ๋ฅผ ์ž…๋ ฅํ•˜๊ธฐ ์œ„ํ•œ DAC ์‹œ์Šคํ…œ ์ œ์ž‘์— ๋Œ€ํ•˜์—ฌ ์„ค๋ช…ํ•œ๋‹ค. ์œ„์—์„œ ํ™•๋ณดํ•œ ๊ธฐ์ˆ ๋“ค์„ ํ†ตํ•ด ์ด์˜จ ์…”ํ‹€๋ง์„ ์œ„ํ•œ ์‹คํ—˜ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•ด ์ด์˜จ์˜ 1920 ยตm ๊ฑฐ๋ฆฌ์˜ ์™•๋ณต ์…”ํ‹€๋ง ์‹คํ—˜์ด ๊ฐ€๋Šฅํ•จ์„ ๋ณด์ธ๋‹ค. (๋ณธ ์—ฐ๊ตฌ๋Š” ๊ณผํ•™๊ธฐ์ˆ ์ •๋ณดํ†ต์‹ ๋ถ€ ๋ฐ ์ •๋ณดํ†ต์‹ ๊ธฐํšํ‰๊ฐ€์›์˜ ๋Œ€ํ•™ICT์—ฐ๊ตฌ์„ผํ„ฐ์ง€์›์‚ฌ์—… (IITP-2020-2015-0-00385) ๋ฐ ์‚ผ์„ฑ์ „์ž ๋ฏธ๋ž˜๊ธฐ์ˆ ์œก์„ฑ์„ผํ„ฐ (SRFC-IT1901-09)์˜ ์ง€์›์„ ํ†ตํ•ด ์ง„ํ–‰๋˜์—ˆ์Œ)์ œ 1 ์žฅ ์„œ ๋ก  1 ์ œ 1 ์ ˆ ์–‘์ž ์ •๋ณด ๊ธฐ์ˆ ๊ณผ ํ๋น„ํŠธ 1 ์ œ 2 ์ ˆ ๋‹จ์ผ ์ด์˜จ์„ ์ด์šฉํ•œ ํ๋น„ํŠธ์™€ ์ด์˜จํŠธ๋žฉ 4 ์ œ 3 ์ ˆ Paul trap์˜ ๋ฐœ์ „๊ณผ MEMS ํ‰๋ฉด ์ด์˜จํŠธ๋žฉ์˜ ๋„์ž… 7 ์ œ 4 ์ ˆ ๋Œ€๊ทœ๋ชจ ์ด์˜จํŠธ๋žฉ ์–ด๋ ˆ์ด ๊ตฌํ˜„์˜ ํ•„์š”์„ฑ ๋ฐ ๊ณผ์ œ 12 ์ œ 5 ์ ˆ ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ 14 ์ œ 2 ์žฅ ์‹คํ—˜์˜ ์„ค๊ณ„ 16 ์ œ 1 ์ ˆ ํ‰๋ฉด ์ด์˜จํŠธ๋žฉ์˜ ๊ตฌ์กฐ 16 ์ œ 2 ์ ˆ Junction ์ด์˜จํŠธ๋žฉ์˜ ํŠน์„ฑ 22 ์ œ 3 ์ ˆ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ธฐ๋ฐ˜ ์„ค๊ณ„ ๊ธฐ์ˆ  24 ์ œ 4 ์ ˆ ์ด์˜จ ํฌํš ์‹œ์˜ electrical potential ํŠน์„ฑ 28 ์ œ 5 ์ ˆ ์ด์˜จํŠธ๋žฉ ์‹คํ—˜ ํ™˜๊ฒฝ ํŠน์„ฑ 34 ์ œ 6 ์ ˆ ์ด์˜จํŠธ๋žฉ ์‹คํ—˜ ํ™˜๊ฒฝ ํŠน์„ฑ 36 ์ œ 7 ์ ˆ DAC ์„ค๊ณ„์˜ ํ•„์š”์„ฑ 43 ์ œ 3 ์žฅ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์‹คํ—˜ ์ค€๋น„ 45 ์ œ 1 ์ ˆ ์ตœ์ ํ™”๋œ Junction ๊ตฌ์กฐ ๋„์ถœ ๊ตฌํ˜„ 45 ์ œ 2 ์ ˆ Junction ion trap ์ œ์ž‘ 52 ์ œ 3 ์ ˆ ์žฅ๊ฑฐ๋ฆฌ ์…”ํ‹€๋ง์„ ์œ„ํ•œ ์ „์•• ์„ธํŠธ ๊ตฌํ˜„ 56 ์ œ 4 ์ ˆ 32์ฑ„๋„ DAC ์ž…๋ ฅ ์‹œ์Šคํ…œ ๊ตฌํ˜„ 65 ์ œ 4 ์žฅ ์ด์˜จ ์…”ํ‹€๋ง ์‹คํ—˜ 70 ์ œ 1 ์ ˆ DAC ์‹œ์Šคํ…œ ์„ฑ๋Šฅ ํ™•์ธ 70 ์ œ 2 ์ ˆ ์ด์˜จ ์…”ํ‹€๋ง ํ™•์ธ 74 ์ œ 3 ์ ˆ ์ด์˜จ ์…”ํ‹€๋ง ์‹œ ์ „๊ธฐ์žฅ ํŠน์„ฑ ์‹คํ—˜ 77 ์ œ 5 ์žฅ ๊ฒฐ๋ก  ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ 79 ์ œ 1 ์ ˆ ๊ฒฐ๋ก  79 ์ œ 2 ์ ˆ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ 81 ์ฐธ๊ณ ๋ฌธํ—Œ 83 Abstract 90Docto

    ๊ด‘์ด‰๋งค ๋ฌผ์‚ฐํ™” ๋ฐ˜์‘์— ์‚ฌ์šฉ๋˜๋Š” ์งˆ์†Œ๋„ํ•‘ ์ด์‚ฐํ™”ํ‹ฐํƒ„์˜ ์ œ์กฐ ๋ฐ ํŠน์„ฑ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€(์—๋„ˆ์ง€ํ™˜๊ฒฝ ํ™”ํ•™์œตํ•ฉ๊ธฐ์ˆ ์ „๊ณต), 2012. 2. ์ด์ข…ํ˜‘.It is well known that green plant can harvest the solar light most efficiently among all of organic and inorganic materials in the earth. The green plant can evolve oxygen from water under the irradiation of solar light and it can also produce hydrocarbons from carbon dioxide with protons received by water oxidation under the dark condition, which are called photosynthesis. To mimic the natural photosynthesis that occurs in green plants, many researchers have been trying to develop an artificial photosynthesis system as an alternative energy producing system for converting solar energy into other energy sources. Developments that enable this conversion are a subject of great interest for the future. The most important part for developing an artificial photosynthesis system is the oxygen evolution reaction. The performance of the artificial photosynthesis system is strongly dependent on the amount of evolved oxygen and protons. Thus, fabrication of photocatalyst having high photocatalytic activity on water oxidation under the irradiation by solar light is a requisite to enhance the whole performance of this system. TiO2 nanomaterials have attracted considerable interest due to their outstanding photocatalytic properties on water oxidation theoretically. Many researches to improve its photocatalytic activity on water oxidation have been proceeding actively. Especially, an intense research activity has been recently devoted to the preparation and characterization of titanium dioxide (TiO2) materials doped with nonmetal impurities. The goal is to produce an active photocatalyst which can work under visible light, rather than UV irradiation, so that sunlight can be more efficiently used in photocatalysis. One of the most promising and widely investigated systems in this respect is nitrogen-doped titanium dioxide, N-TiO2, which shows a significant catalytic activity in water oxidation performed under visible light irradiation. The studies referred to herein, containing characterization of N-TiO2 photocatalytic materials for the effective utilization of solar light, with a focus on finding the optimum band structure and the effect of shape of N-TiO2 nanoparticle corresponding to the water oxidation reaction. The findings show that nitrogen atom is clearly incorporated into the TiO2 framework. The photocatalytic activity of the N-TiO2 is increased compared to pure TiO2 (anatase) under the irradiation of the visible light. The concentration of nitrogen dopant could be readily adjusted by controlling the temperature of ammonia treatment. The value of Eg tends to become narrower with increasing amount of nitrogen dopant in N-TiO2 nanoparticle due to the increase in excess electrons in the design of a strong n-type semiconductor. A N-TiO2 having 2.8 atomic % of nitrogen dopant showed outstanding performance on the oxygen evolution reaction from water under the irradiation of visible light, compared to other photocatalysts, including pure anatase TiO2. Finally, 2.8 atomic % of N-TiO2 nanoparticles with controlled particle shapes, such as sphere and long ellipsoidal rods with a high aspect ratio (high AR), were compared to examine the effect of the shape of N-TiO2 particles. It is well known that the properties of anatase TiO2 crystals are largely determined by exposed external surfaces such as {001} and {101}. A high percentage of reactive facets in photocatalysts by crystal facet engineering have been actively pursued due to the competitive advantages in optimizing photocatalytic reactivity and selectivity. It was observed that the surface of N-TiO2 nanorod has much larger amount of {101} and {001} facets than those of sphere-shape nanoparticles. Furthermore, time-resolved photoluminescence was carried out to directly evaluate the life time of the photo-induced holes from N-TiO2 nanoparticles. The result showed that time decay of the N-TiO2 nanorod is slower than that of nanosphere, meaning that more chances to convert water molecules to oxygen are given to nanorod than nanosphere. Thus, we concluded that the synergic effect of exposed specific facets having high reactivity and longer lifetime of photo-generated holes from extended space charge region of N-TiO2 nanorod resulted in the outstanding conversion efficiency in oxygen evolution compared with nanosphere. The findings reported herein describe an innovative route to harvesting energy by mimicking natural photosynthesis, and is independent of fossil fuels.๋…น์ƒ‰์‹๋ฌผ์€ ์ง€๊ตฌ์ƒ์— ์กด์žฌํ•˜๋Š” ๋ชจ๋“  ์œ ๊ธฐ๋ฌผ๋“ค๊ณผ ๋ฌด๊ธฐ๋ฌผ๋“ค ์ค‘์—์„œ ๊ฐ€์žฅ ํƒœ์–‘๋น›์„ ํšจ์œจ์ ์œผ๋กœ ์‚ฌ์šฉํ•œ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋…น์ƒ‰์‹๋ฌผ์€ ๊ด‘ํ•ฉ์„ฑ์ž‘์šฉ์„ ํ†ตํ•ด์„œ ์—๋„ˆ์ง€๋ฅผ ์–ป๊ฒŒ ๋˜๋Š”๋ฐ, ๋ช…๋ฐ˜์‘์—์„œ๋Š” ๋ฌผ์ด ์‚ฐํ™”๋˜์–ด ์‚ฐ์†Œ๋ฅผ ๋ฐœ์ƒ์‹œํ‚ค๊ณ  ์•”๋ฐ˜์‘์—์„œ๋Š” ๋ช…๋ฐ˜์‘์œผ๋กœ๋ถ€ํ„ฐ ๋ฐœ์ƒ๋œ ์ˆ˜์†Œ์ด์˜จ๊ณผ ์ „์ž๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด์‚ฐํ™”ํƒ„์†Œ๋ฅผ ์—ฐ๋ฃŒ์˜ ์ผ์ข…์ธ ํƒ„ํ™”์ˆ˜์†Œ๋กœ ์ „ํ™˜์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ๋งŽ์€ ๊ณผํ•™์ž๋“ค์€ ์ด๋Ÿฌํ•œ ๋…น์ƒ‰์‹๋ฌผ์˜ ๊ด‘ํ•ฉ์„ฑ์ž‘์šฉ์„ ๋ชจ๋ฐฉํ•˜์—ฌ ํƒœ์–‘์—๋„ˆ์ง€๋ฅผ ๋‹ค๋ฅธ ์—๋„ˆ์ง€์›์œผ๋กœ ์ „ํ™˜์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ์ธ๊ณต๊ด‘ํ•ฉ์„ฑ ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜๊ณ ์ž ๋…ธ๋ ฅํ•ด์™”๋‹ค. ์ด๋Ÿฌํ•œ ํƒœ์–‘์—๋„ˆ์ง€ ์ „ํ™˜์ž‘์šฉ ๊ฐ€๋Šฅ์„ฑ์€ ๊ฐ€๊นŒ์šด ๋ฏธ๋ž˜์— ๋…น์ƒ‰์„ฑ์žฅ์„ ๋™๋ฐ˜ํ•œ ๋Œ€์ฒด์—๋„ˆ์ง€ ์‹œ์žฅ์„ ๋ณ€ํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ํฐ ์—ญํ• ์„ ํ•  ๊ฒƒ์ด๋ผ๊ณ  ๊ธฐ๋Œ€๋œ๋‹ค. ์ธ๊ณต๊ด‘ํ•ฉ์„ฑ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๋ฐ์— ์žˆ์–ด์„œ ์‹œ์Šคํ…œ์˜ ํšจ์œจ์— ๊ฐ€์žฅ ํฐ ์˜ํ–ฅ์„ ์ค„ ์ˆ˜ ์žˆ๋Š” ๋ถ€๋ถ„์€ ๋ฌผ๋กœ๋ถ€ํ„ฐ ์‚ฐ์†Œ๋ฅผ ๋ฐœ์ƒ์‹œํ‚ค๋Š” ๋ฐ˜์‘์ด๋‹ค. ์ธ๊ณต๊ด‘ํ•ฉ์„ฑ ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ์€ ์ „์ฒด ์‹œ์Šคํ…œ์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์ค‘ ์ฒซ ๋ฒˆ์งธ ๋ฐ˜์‘๋‹จ๊ณ„์ธ ๋ช…๋ฐ˜์‘ (๋ฌผ โ†’ ์‚ฐ์†Œ + ์ˆ˜์†Œ์ด์˜จ) ์˜ ํšจ์œจ์— ํฌ๊ฒŒ ์˜์กดํ•œ๋‹ค. ๋”ฐ๋ผ์„œ, ์ „๋ฐ˜์ ์ธ ์‹œ์Šคํ…œ์˜ ํšจ์œจ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด์„œ๋Š” ํƒœ์–‘์—๋„ˆ์ง€ ๋น›์„ ๋ฐ›์•„์„œ ๋†’์€ ํšจ์œจ๋กœ ๋ฌผ์„ ์‚ฐํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๊ด‘์ด‰๋งค์˜ ๊ฐœ๋ฐœ์ด ๊ต‰์žฅํžˆ ์ค‘์š”ํ•œ ์š”์†Œ๋กœ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ์ด์‚ฐํ™”ํ‹ฐํƒ„ (TiO2) ๊ธฐ๋ฐ˜์˜ ๋‚˜๋…ธ ๋ฌผ์งˆ์€ ๊ฐ€์žฅ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ๊ด‘์ด‰๋งค ๋ฌผ์งˆ๋กœ์„œ ์ด๋ก ์ ์œผ๋กœ ๋ฌผ์„ ์‚ฐํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ด์‚ฐํ™”ํ‹ฐํƒ„์˜ ๋ฌผ์‚ฐํ™”๋ฐ˜์‘์— ๋Œ€ํ•œ ๊ด‘์ด‰๋งค์  ํ™œ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์—ฌ๋Ÿฌ ์‹œ๋„๋“ค์ด ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜์–ด ์™”๋‹ค. ๊ทธ ์ค‘์—์„œ๋„ ๋น„๊ธˆ์† ์ด๋ฌผ์งˆ์„ ๋„ํ•‘์‹œํ‚จ ์ด์‚ฐํ™”ํ‹ฐํƒ„์˜ ์ œ์กฐ์™€ ํŠน์„ฑ๋ถ„์„์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ง‘์ค‘์ ์œผ๋กœ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๋น„๊ธˆ์† ๋„ํ•‘์„ ํ•˜๋Š” ๋ชฉ์ ์€ ๋ณด๋‹ค ํšจ์œจ์ ์œผ๋กœ ํƒœ์–‘๋น›์„ ๊ด‘์ด‰๋งค์— ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ ์ž์™ธ์„ ๋ณด๋‹ค๋Š” ๊ฐ€์‹œ๊ด‘์„ ์˜์—ญ์„ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•จ์ด๋‹ค. ์ด๋Ÿฐ ์ธก๋ฉด์—์„œ ๊ฐ€์žฅ ํ˜์‹ ์ ์ด๊ณ  ๋„๋ฆฌ ์•Œ๋ ค์ ธ ์žˆ๋Š” ๋ฌผ์งˆ์€ ์งˆ์†Œ๊ฐ€ ๋„ํ•‘๋œ ์ด์‚ฐํ™”ํ‹ฐํƒ„ (N-TiO2)์ด๋‹ค. ์ด ๋ฌผ์งˆ์€ ๊ฐ€์‹œ๊ด‘์„  ์กฐ์‚ฌ์กฐ๊ฑด์—์„œ ๋ฌผ์„ ํšจ์œจ์ ์œผ๋กœ ๋ถ„ํ•ด์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํšจ๊ณผ์ ์ธ ํƒœ์–‘๋น› ํ™œ์šฉ์„ ์œ„ํ•œ N-TiO2์— ๋Œ€ํ•œ ํŠน์„ฑ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•œ ๋‚ด์šฉ์„ ์ˆ˜๋กํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ๋ฌผ๋กœ๋ถ€ํ„ฐ ์‚ฐ์†Œ๋ฅผ ๋ฐœ์ƒ์‹œํ‚ค๋Š” ์‚ฐํ™”๋ฐ˜์‘์— ์ ํ•ฉํ•œ ๋ฐด๋“œ๊ฐญ ์—๋„ˆ์ง€๋ฅผ ์ œ์‹œํ•˜์˜€๊ณ  N-TiO2 ๋‚˜๋…ธ์ž…์ž์˜ ํ˜•ํƒœ์— ๋”ฐ๋ผ์„œ ๋ฐ˜์‘์„ฑ์ด ์–ด๋–ป๊ฒŒ ๋‹ฌ๋ผ์ง€๋Š”์ง€์— ๋Œ€ํ•ด ์ง‘์ค‘ ๋ถ„์„ํ•˜์˜€๋‹ค. ํ•ฉ์„ฑ๋œ N-TiO2์—์„œ ์งˆ์†Œ์›์ž๊ฐ€ TiO2 ๊ฒฉ์ž๋‚ด์— ์ž˜ ๋„ํ•‘ ๋œ ๊ฒƒ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ๊ฐ€์‹œ๊ด‘์„  ์กฐ๊ฑดํ•˜์—์„œ N-TiO2๊ฐ€ ์ˆœ์ˆ˜ํ•œ TiO2 ๋ณด๋‹ค ๊ด‘์ด‰๋งค ํ™œ์„ฑ์ด ์›”๋“ฑํžˆ ์ข‹๋‹ค๋Š” ๊ฒฐ๊ณผ๋ฅผ ์–ป์—ˆ๋‹ค. ์ด ๋•Œ, ์•”๋ชจ๋‹ˆ์•„ ์—ด์ฒ˜๋ฆฌ ์˜จ๋„์— ๋”ฐ๋ผ์„œ ์งˆ์†Œ ํ”ผ์น˜ํ™˜๋„ํ•‘์›์ž๋“ค์˜ ๋†๋„๊ฐ€ ์กฐ์ ˆ๋˜์—ˆ๋‹ค. ๊ฐ•๋ ฅํ•œ n-ํƒ€์ž… ๋ฐ˜๋„์ฒด์˜ ์„ค๊ณ„๋กœ ์ธํ•ด ๋ฐœ์ƒ๋œ ๊ณผ์ž‰ ์ „์ž ๋•Œ๋ฌธ์— N-TiO2์˜ ์งˆ์†Œํ•จ๋Ÿ‰์ด ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ๋ฐด๋“œ๊ฐญ์—๋„ˆ์ง€๊ฐ€ ์ค„์–ด๋“œ๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, 2.8 atomic %์˜ ์งˆ์†Œ ํ”ผ์น˜ํ™˜๋„ํ•‘์›์ž๋ฅผ ์ง€๋…”์„ ๋•Œ์˜ N-TiO2๊ฐ€ ์‚ฐ์†Œ๋ฐœ์ƒ ๋ฐ˜์‘์—์„œ ๊ฐ€์žฅ ๋›ฐ์–ด๋‚œ ํ™œ์„ฑ์„ ๋ณด์ž„์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, 2.8 atomic %์˜ N-TiO2 ๋‚˜๋…ธ์ž…์ž์˜ ๋ชจ์–‘์„ ๊ตฌ์™€ ๋ง‰๋Œ€ํ˜•ํƒœ๋กœ ์ œ์กฐํ•˜์˜€๊ณ , ๊ทธ ๋ชจ์–‘์ด ๊ด‘์ด‰๋งค์˜ ํ™œ์„ฑ์— ์–ด๋– ํ•œ ์˜ํ–ฅ์„ ์ค„ ์ˆ˜ ์žˆ๋Š”์ง€์— ๋Œ€ํ•ด์„œ ์•Œ์•„๋ณด๊ณ ์ž ํ•˜์˜€๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ anatase ์ƒ์˜ TiO2 ํ‘œ๋ฉด๊ฒฐ์ •์ƒ์€ (001) ๊ณผ (101)๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ๋‹ค. ์ตœ๊ทผ ๋“ค์–ด ํ‘œ๋ฉด๊ฒฐ์ •๊ณตํ•™์˜ ์ผ๋ถ€๋ถ„์œผ๋กœ์„œ ๊ด‘์ด‰๋งค์—์„œ ๋ฐ˜์‘์„ฑ์ด ์ข‹์€ ํ‘œ๋ฉด๊ฒฐ์ •์ƒ์„ ๋งŽ์ด ๋“œ๋Ÿฌ๋‚˜๋Š” TiO2 ์ž…์ž๋ฅผ ์ œ์กฐํ•˜๋Š” ๊ฒƒ์ด ๊ด‘์ด‰๋งค์  ํ™œ์„ฑ๊ณผ ์„ ํƒ๋„๋ฅผ ์ตœ์ ํ™”์‹œํ‚ค๋Š” ๋ฐ์— ์žˆ์–ด์„œ ๊ฒฝ์Ÿ๋ ฅ ์žˆ๋‹ค๋Š” ๋ณด๊ณ ๊ฐ€ ๊ณ„์†๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์˜ ์—ฐ๊ตฌ๋‚ด์šฉ์—์„œ๋Š” N-TiO2 ๋‚˜๋…ธ๋ง‰๋Œ€๋Š” ๋‚˜๋…ธ๊ตฌ๋ณด๋‹ค (101) ๊ณผ (001) ํ‘œ๋ฉด๊ฒฐ์ •์ƒ์ด ํ‘œ๋ฉด์— ํ›จ์”ฌ ๋งŽ์ด ๋…ธ์ถœ๋˜์–ด ์žˆ์Œ์„ ๋ฐํ˜”๋‹ค. ๋˜ํ•œ ๊ด‘์—ฌ๊ธฐ๋œ ์ „์ž์˜ ์ˆ˜๋ช…์‹œ๊ฐ„์„ ์ธก์ •ํ•ด ๋ณธ ๊ฒฐ๊ณผ ๋‚˜๋…ธ๋ง‰๋Œ€๊ฐ€ ๋‚˜๋…ธ๊ตฌ๋ณด๋‹ค ๊ทธ ์ˆ˜๋ช…์ด ๋” ๊ธด ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์‚ฐ์†Œ๋ฅผ ๋ฐœ์ƒ์‹œํ‚ค๋Š” ๋ฌผ์‚ฐํ™”๋ฐ˜์‘์— ๋” ์œ ๋ฆฌํ•˜๋‹ค๋Š” ๊ฒฐ๋ก ์„ ์–ป๊ฒŒ ๋˜์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ด ๋‘ ๊ฐ€์ง€ ์žฅ์ ์„ ๊ฐ€์ง„ ์งˆ์†Œ๋„ํ•‘ ๋‚˜๋…ธ๋ง‰๋Œ€๊ฐ€ ๊ฐ€์‹œ๊ด‘์„  ์‘๋‹ตํ˜• ๊ด‘์ด‰๋งค๋กœ์„œ ๊ตฌํ˜•ํƒœ๋ณด๋‹ค ๋ฌผ์‚ฐํ™”๋ฐ˜์‘์— ํ›จ์”ฌ ์œ ๋ฆฌํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค.Maste

    Koreas Growth Strategy through Building an Innovative Cluster Ecosystem

    No full text
    Porter(1990)์˜ ๊ตญ๊ฐ€ ๊ฒฝ์Ÿ์šฐ์œ„(Competitive Advantage of Nations) ์ดํ›„, ๊ตญ๊ฐ€์‚ฐ์—… ๋ฐœ์ „์˜ ์ค‘์š”ํ•œ ๋„๊ตฌ๋กœ์„œ ํด๋Ÿฌ์Šคํ„ฐ ์ •์ฑ…์ด ๋„๋ฆฌ ํ™œ์šฉ๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ทธ ๊ฐœ๋…์€ ๊ตญ์ œํ™”๊ฐ€ ์ง„์ „๋จ์— ๋”ฐ๋ผ, ๋‹จ์ˆœํ•œ ์ผ์ • ์ง€์—ญ์˜ ํด๋Ÿฌ์Šคํ„ฐ์—์„œ ์ง€์—ญ์—ฐ๊ณ„ ํด๋Ÿฌ์Šคํ„ฐ๋กœ, ์ธ์ ‘ ๊ตญ๊ฒฝ์ง€์—ญ์„ ์•„์šฐ๋ฅด๋Š” ๊ตญ์ œ์—ฐ๊ณ„ ํด๋Ÿฌ์Šคํ„ฐ๋กœ, ๊ทธ๋ฆฌ๊ณ  ๊ตญ๊ฒฝ์— ๊ด€๊ณ„์—†์ด ์–ด๋””๋“  ์—ฐ๊ณ„ํ•˜๋Š” ๊ธ€๋กœ๋ฒŒ์—ฐ๊ณ„ ํด๋Ÿฌ์Šคํ„ฐ๋กœ ์ง„ํ™”ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ตœ๊ทผ์—๋Š” 4์ฐจ ์‚ฐ์—…ํ˜๋ช…, ์ƒํƒœ์‹œ์Šคํ…œ ๋“ฑ์œผ๋กœ ์ธํ•ด ํŒจ๋Ÿฌ๋‹ค์ž„ ์ „ํ™˜(paradigm shift)์ด ํ•„์š”ํ•ด์กŒ๊ณ , ๋“œ๋””์–ด ์ƒˆ๋กœ์šด ์‚ฌ์ด๋ฒ„์—ฐ๊ณ„ ํด๋Ÿฌ์Šคํ„ฐ(Cyber-connected cluster)์˜ ๊ฐœ๋…์ด ํ•„์š”ํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ์ด๋Š” ๊ฐ€์ƒ๊ณต๊ฐ„์˜ ํ”Œ๋žซํผ์„ ํ™œ์šฉํ•˜์—ฌ IT, ๋ฐ”์ด์˜ค, ํ•ญ๊ณต์šฐ์ฃผ ๋“ฑ ๊ฐ๊ธฐ ๋‹ค๋ฅธ ํŠน์„ฑ์˜ ์‚ฐ์—…๋ถ„์•ผ ํด๋Ÿฌ์Šคํ„ฐ๊ฐ€ ์„œ๋กœ ์œตํ•ฉํ•˜์—ฌ ๊ฒฝ์Ÿ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ์ƒˆ๋กœ์šด ๋ถ€๊ฐ€๊ฐ€์น˜๋ฅผ ์ฐฝ์ถœํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋˜ํ•œ, ์ƒํƒœ์‹œ์Šคํ…œ์˜ ๊ฐœ๋…์ด ๋„์ž…๋˜์–ด ์ง€์†์„ฑ์žฅ๊ณผ ํ˜์‹ ์ด ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์ฐฝ์ถœ๋  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์‚ฌ์ด๋ฒ„์—ฐ๊ณ„ ํด๋Ÿฌ์Šคํ„ฐ์˜ ๊ตฌ์ถ• ์ „๋žต์„, ABCD ์ „๋žต๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ์ œ์‹œํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•œ ์ผ์ž๋ฆฌ ์ฐฝ์ถœ ๋“ฑ ์ƒˆ๋กœ์šด ์„ฑ์žฅ์ „๋žต์„ ์ œ์‹œํ•˜๊ณ ์ž ํ•œ๋‹ค.Since Porter (1990)s The Competitive Advantages of Nations, cluster policy was widely used as an important tool for national industrial development. And as the globalization progresses, the concept evolves from a simple cluster to a regionallinking cluster, to an international-linking cluster that spans the border region, and to a global-linking cluster that connects anywhere, regardless of borders. In recent, however, paradigm shift has become necessary due to emergence of the fourth industrial revolution and ecological system, and finally the concept of a new cyber-connected cluster becomes necessary. This is to utilize the virtual space platform to integrate different industrial clusters, such as IT, bio, and aerospace, to enhance competitiveness and create new added value. In addition, the concept of ecological systems should be introduced to enable sustainable growth and innovation to be created naturally. In this study, we propose a new growth strategy of economic growth and job creation by presenting the strategy of cyber-connected cluster using ABCD strategy model

    Adaptive Row Major Order: a Performance Optimization Method of the Transform-space View Join

    No full text
    ์ƒ‰์ธ์ด๋ž€ ์›๊ณต๊ฐ„ ์ƒ์˜ ๊ณต๊ฐ„ ๊ฐ์ฒด๋“ค์„ ๋ณ€ํ™˜๊ณต๊ฐ„ ์ƒ์˜ ํฌ๊ธฐ๊ฐ€ ์—†๋Š” ์ ๋“ค๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์ƒ‰์ธํ•œ ํ›„์— ์ด๋“ค์„ ๋‹ค๋ฃจ๋Š” ๊ตฌ์กฐ๋กœ, ์ด๋ฅผ ํ™œ์šฉํ•˜๋Š” ์กฐ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํฌ๊ธฐ๊ฐ€ ์—†๋Š” ์ ๋“ค์„ ๋‹ค๋ฃจ๊ธฐ ๋•Œ๋ฌธ์— ์ตœ์ ํ™”๊ฐ€ ์ƒ๋Œ€์ ์œผ๋กœ ๋‹จ์ˆœํ•˜๋‹ค๋Š” ์žฅ์ ์„ ๊ฐ€์ง„๋‹ค. ํ•˜์ง€๋งŒ, R ํŠธ๋ฆฌ์™€ ๊ฐ™์€ ์›๊ณต๊ฐ„ ์ƒ‰์ธ์—๋Š” ์ ์šฉ๋  ์ˆ˜ ์—†๋Š” ๋‹จ์ ์„ ๊ฐ€์ง„๋‹ค. ์ด๋Ÿฌํ•œ ๋‹จ์ ์„ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ์ €์ž๋“ค ์€ ๋ณ€ํ™˜๊ณต๊ฐ„ ๋ทฐ๋ผ๋Š” ๊ฐœ๋…์„ ์‚ฌ์šฉํ•˜์—ฌ ๋‘ ์›๊ณต๊ฐ„ ์ƒ‰์ธ๋“ค์„ ๋ณ€ํ™˜๊ณต๊ฐ„์—์„œ ์กฐ์ธํ•˜๋Š” ๋ณ€ํ™˜๊ณต๊ฐ„ ๋ทฐ ์กฐ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜(transform-space view join algorithm)์„ ์ œ์•ˆํ•œ ๋ฐ” ์žˆ๋‹ค. ์—ฌ๊ธฐ์„œ ๋ณ€ํ™˜๊ณต๊ฐ„ ๋ทฐ(transform-space view)๋ž€ ์›๊ณต๊ฐ„ ์ƒ‰์ธ์— ๋Œ€ํ•œ ๊ฐ€์ƒ์˜ ๋ณ€ํ™˜๊ณต๊ฐ„ ์ƒ‰์ธ์œผ๋กœ์„œ ์ด๋ฏธ ๊ตฌ์ถ•๋œ ์›๊ณต๊ฐ„ ์ƒ‰์ธ์„ ๊ตฌ์กฐ์ ์œผ๋กœ ๋ณ€๊ฒฝํ•˜์ง€ ์•Š๊ณ ์„œ๋„ ๊ฐ€์ƒ์˜ ๋ณ€ํ™˜๊ณต๊ฐ„ ์ƒ‰์ธ์œผ๋กœ ํ•ด์„ํ•˜์—ฌ ์›๊ณต๊ฐ„ ์ƒ‰์ธ์ด ๋ณ€ํ™˜๊ณต๊ฐ„์—์„œ ์กฐ์ธ๋  ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค. ๋ณ€ํ™˜๊ณต๊ฐ„ ๋ทฐ ์กฐ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ ๋””์Šคํฌ ํŽ˜์ด์ง€ ์•ก์„ธ์Šค ์ˆœ์„œ๋Š” ๊ณต๊ฐ„ ์ฑ„์›€ ๊ณก์„ ์— ์˜ํ•ด ๊ฒฐ์ •๋˜๋Š”๋ฐ, ์ด๋Š” ์กฐ์ธ ์„ฑ๋Šฅ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ณ€ํ™˜๊ณต๊ฐ„ ๋ทฐ ์กฐ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ตœ์ ํ™” ํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ ์ƒˆ๋กœ์šด ๊ณต๊ฐ„ ์ฑ„์›€ ๊ณก์„ ์ธ ์ ์‘ํ˜• ํ–‰ ๊ธฐ์ค€ ์ˆœ์„œ(adaptive row major order: ARM order)๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ ์‘ํ˜• ํ–‰ ๊ธฐ์ค€ ์ˆœ์„œ๋Š” ์ฃผ์–ด์ง„ ๋ฒ„ํผ ํฌ๊ธฐ์— ๋”ฐ๋ผ ๋””์Šคํฌ ํŽ˜์ด์ง€ ์•ก์„ธ์Šค ์ˆœ์„œ๋ฅผ ์ ์‘์ ์œผ๋กœ ์กฐ์ •ํ•˜์—ฌ ์›ํŒจ์Šค ๋ฒ„ํผ ํฌ๊ธฐ(ํ•œ ํŽ˜์ด์ง€ ๋‹น ํ•œ๋ฒˆ์˜ ๋””์Šคํฌ ์•ก์„ธ์Šค๋ฅผ ๋ณด์žฅํ•˜๋Š” ์ตœ์†Œ ๋ฒ„ํผ ํฌ๊ธฐ)์™€ ๋””์Šคํฌ ์•ก์„ธ์Šค ํšŸ์ˆ˜๋ฅผ ํฌ๊ฒŒ ์ค„์ธ๋‹ค. ์ •ํ˜•์ ์ธ ๋ถ„์„๊ณผ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ์ ์‘ํ˜• ํ–‰ ๊ธฐ์ค€ ์ˆœ์„œ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋ณ€ํ™˜๊ณต๊ฐ„ ๋ทฐ ์กฐ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์šฐ์ˆ˜์„ฑ์„ ๋ณด์ธ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, ๋‹ค๋ฅธ ๊ณต๊ฐ„ ์ฑ„์›€ ๊ณก์„ ์„ ์‚ฌ์šฉํ•˜๋Š” ๋ณ€ํ™˜๊ณต๊ฐ„ ๋ทฐ ์กฐ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๋น„๊ตํ•˜์—ฌ ์ ์‘ํ˜• ํ–‰ ๊ธฐ์ค€ ์ˆœ์„œ๋Š” ์›ํŒจ์Šค ๋ฒ„ํผ ํฌ๊ธฐ๋ฅผ ์ตœ๋Œ€ 21.3๋ฐฐ ์ค„์ด๊ณ , ๋””์Šคํฌ ์•ก์„ธ์Šค ํšŸ์ˆ˜๋ฅผ ์ตœ๋Œ€ 74.6% ์ค„์ธ๋‹ค. ๋˜ํ•œ, R ํŠธ๋ฆฌ๋ฅผ ์›๊ณต๊ฐ„์—์„œ ์กฐ์ธํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ์›ํŒจ์Šค ๋ฒ„ํผ ํฌ๊ธฐ๋ฅผ ์ตœ๋Œ€ 15.7๋ฐฐ ์ค„์ด๊ณ , ๋””์Šคํฌ ์•ก์„ธ์Šค ํšŸ์ˆ˜๋ฅผ ์ตœ๋Œ€ 65.3% ์ค„์ธ๋‹ค.22kc

    Transformation-based Spatial Partition Join

    No full text
    ๊ณต๊ฐ„ ์กฐ์ธ์ด๋ž€ ์ฃผ์–ด์ง„ ๊ณต๊ฐ„ ๊ด€๊ณ„๋ฅผ ๋งŒ์กฑํ•˜๋Š” ๊ณต๊ฐ„ ๊ฐ์ฒด์˜ ์Œ๋“ค์„ ์ฐพ๋Š” ์งˆ์˜์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์›๊ณต๊ฐ„์ƒ์˜ ๋ฐ์ดํƒ€๋ฅผ ์ด์šฉํ•˜์—ฌ ์ƒ‰์ธ์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ๋ณ€ํ™˜ ๊ณต๊ฐ„(transform space) ์ƒ์—์„œ ๊ณต๊ฐ„ ์กฐ์ธ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ์ƒˆ๋กœ์šด ์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ ๋ณ€ํ™˜๊ธฐ๋ฐ˜ ๊ณต๊ฐ„ ํŒŒํ‹ฐ์…˜ ์กฐ์ธ(transformation-based spatial partition join)์„ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์กด ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์€ ์›๊ณต๊ฐ„(original space) ์ƒ์—์„œ ํฌ๊ธฐ๋ฅผ ๊ฐ€์ง€๋Š” ๊ณต๊ฐ„ ๊ฐ์ฒด๋ฅผ ๋‹ค๋ฃจ๊ธฐ ๋•Œ๋ฌธ์— ๊ณต๊ฐ„ ๊ฐ์ฒด๋“ค์˜ ๋ณต์ œ๋ฅผ ํ•„์š”๋กœ ํ•˜๊ฑฐ๋‚˜ ์ƒ๋Œ€์ ์œผ๋กœ ๊ณต๊ฐ„ ํŒŒํ‹ฐ์…˜์ด ๋ณต์žกํ•˜์—ฌ ์„ฑ๋Šฅ์ด ์ €ํ•˜๋˜๋Š” ๋ฌธ์ œ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ด์— ๋ฐ˜ํ•ด ์ œ์•ˆํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์›๊ณต๊ฐ„ ์ƒ์˜ ํฌ๊ธฐ๋ฅผ ๊ฐ€์ง€๋Š” ๊ณต๊ฐ„ ๊ฐ์ฒด๋ฅผ ๋ณ€ํ™˜๊ณต๊ฐ„ ์ƒ์˜ ํฌ๊ธฐ๋ฅผ ๊ฐ€์ง€์ง€ ์•Š๋Š” ์  ๊ฐ์ฒด๋กœ ๋ณ„๋„์˜ ์ถ”๊ฐ€๋น„์šฉ ์—†์ด ๋ณ€ํ™˜ ํ•ด์„ํ•œ ํ›„์— ๊ณต๊ฐ„ ์กฐ์ธ์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ณต๊ฐ„ ๊ฐ์ฒด๋“ค์˜ ๋ณต์ œ๊ฐ€ ํ•„์š” ์—†๊ณ , ๊ณต๊ฐ„ ํŒŒํ‹ฐ์…˜์ด ๋‹จ์ˆœํ•˜์—ฌ ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋˜๋Š” ์žฅ์ ์„ ๊ฐ€์ง„๋‹ค. ๋‹ค์–‘ํ•œ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•œ ๊ฒฐ๊ณผ, ์ œ์•ˆํ•˜๋Š” ๋ณ€ํ™˜๊ธฐ๋ฐ˜ ํŒŒํ‹ฐ์…˜ ์กฐ์ธ์€ ๊ธฐ์กด ์กฐ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ์ˆ˜ํ–‰ ์‹œ๊ฐ„ ์ธก๋ฉด์—์„œ 20.5โˆผ38.0% ๋” ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค.22kc

    Spatial Join based on the Transform-Space View

    No full text
    ๊ณต๊ฐ„ ์กฐ์ธ์ด๋ž€ ์„œ๋กœ ๊ฒน์น˜๋Š” ๊ด€๊ณ„๋ฅผ ๊ฐ€์ง€๋Š” ๊ณต๊ฐ„ ๊ฐ์ฒด์˜ ์Œ๋“ค์„ ์ฐพ๋Š” ์งˆ์˜์ด๋‹ค. ์ƒ‰์ธ ๊ธฐ๋ฐ˜ ๊ณต๊ฐ„ ์กฐ์ธ์—๋Š” ์›๊ณต๊ฐ„ ์ƒ‰์ธ์ธ R ํŠธ๋ฆฌ๊ฐ€ ๋„๋ฆฌ ์‚ฌ์šฉ๋œ๋‹ค. ์›๊ณต๊ฐ„ ์ƒ‰์ธ์ด๋ž€ ์›๊ณต๊ฐ„์ƒ์—์„œ ํ‘œํ˜„๋œ ๊ณต๊ฐ„ ๊ฐ์ฒด๋ฅผ ์ƒ‰์ธํ•˜๋Š” ๊ตฌ์กฐ๋กœ, ์ด๋ฅผ ํ™œ์šฉํ•œ ์กฐ์ธ์€ ํฌ๊ธฐ๋ฅผ ๊ฐ€์ง€๋Š” ๊ณต๊ฐ„ ๊ฐ์ฒด๋ฅผ ๋‹ค๋ฃจ๊ธฐ ๋•Œ๋ฌธ์— ์ •ํ˜•์ ์ธ ๋ฐฉ๋ฒ•์ด ์•„๋‹Œ ํœด๋ฆฌ์Šคํ‹ฑ์— ์˜์กดํ•˜๋Š” ๋‹จ์ ์„ ๊ฐ€์ง„๋‹ค. ๋ฐ˜๋ฉด, ๋ณ€ํ™˜๊ณต๊ฐ„ ์ƒ‰์ธ์€ ์›๊ณต๊ฐ„ ์ƒ์˜ ๊ณต๊ฐ„ ๊ฐ์ฒด๋ฅผ ๋ณ€ํ™˜๊ณต๊ฐ„ ์ƒ์˜ ํฌ๊ธฐ๊ฐ€ ์—†๋Š” ์  ๊ฐ์ฒด๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์ƒ‰์ธํ•œ ํ›„์— ์ด๋“ค์„ ๋‹ค๋ฃจ๊ธฐ ๋•Œ๋ฌธ์—, ์ด๋ฅผ ํ™œ์šฉํ•œ ๊ณต๊ฐ„ ์กฐ์ธ์€ ์ƒ๋Œ€์ ์œผ๋กœ ๋‹จ์ˆœํ•˜๊ณ  ์ •ํ˜•์ ์ธ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋Š” ์žฅ์ ์„ ๊ฐ€์ง„๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ด ๋ฐฉ๋ฒ•์€ R ํŠธ๋ฆฌ์™€ ๊ฐ™์ด ์›๊ณต๊ฐ„ ๊ฐ์ฒด๋ฅผ ์ƒ‰์ธํ•˜๋Š” ์›๊ณต๊ฐ„ ์ƒ‰์ธ์—๋Š” ์ ์šฉ๋  ์ˆ˜ ์—†๋Š” ๋ฌธ์ œ์ ์„ ๊ฐ€์ง„๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด ๋‘ ๋ฐฉ๋ฒ•์˜ ์žฅ์ ๋งŒ์„ ์ทจํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ฆ‰, ๋ณ€ํ™˜๊ณต๊ฐ„ ๋ทฐ(transform-space view)๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ฐœ๋…๊ณผ ์ด๋ฅผ ์‚ฌ์šฉํ•œ ๊ณต๊ฐ„ ์กฐ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ ๋ณ€ํ™˜๊ณต๊ฐ„ ๋ทฐ ์กฐ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜(transform-space view join algorithm)์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณ€ํ™˜๊ณต๊ฐ„ ๋ทฐ๋ž€ ์›๊ณต๊ฐ„ ์ƒ‰์ธ์— ๋Œ€ํ•œ ๊ฐ€์ƒ์˜ ๋ณ€ํ™˜๊ณต๊ฐ„ ์ƒ‰์ธ์œผ๋กœ์„œ, ์ด๋ฏธ ๊ตฌ์ถ•๋œ ์›๊ณต๊ฐ„ ์ƒ‰์ธ์„ ๊ตฌ์กฐ์ ์œผ๋กœ ๋ณ€๊ฒฝํ•˜์ง€ ์•Š๊ณ ์„œ ๋ณ„๋„์˜ ์ถ”๊ฐ€๋น„์šฉ ์—†์ด ๊ฐ€์ƒ์˜ ๋ณ€ํ™˜๊ณต๊ฐ„ ์ƒ‰์ธ์œผ๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, ๋ณ€ํ™˜๊ณต๊ฐ„ ๋ทฐ ์กฐ์ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ R ํŠธ๋ฆฌ๋ฅผ ์›๊ณต๊ฐ„์—์„œ ์กฐ์ธํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ๋””์Šคํฌ ์•ก์„ธ์Šค ํšŸ์ˆ˜ ์ธก๋ฉด์—์„œ ์ตœ๋Œ€ 43.1%๊นŒ์ง€ ๋” ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์˜ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๊ณตํ—Œ์€ R ํŠธ๋ฆฌ์™€ ๊ฐ™์ด ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ์›๊ณต๊ฐ„ ์ƒ‰์ธ์„ ๋ณ€ํ™˜๊ณต๊ฐ„ ๋ทฐ๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ฐœ๋…์„ ํ†ตํ•˜์—ฌ ๋ณ€ํ™˜๊ณต๊ฐ„์—์„œ ํ•ด์„ํ•˜์—ฌ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ธ ๊ฒƒ์ด๋‹ค. ์šฐ๋ฆฌ๋Š” ์ด ์ƒˆ๋กœ์šด ๊ฐœ๋…์ด ๋‹ค์–‘ํ•œ ๊ณต๊ฐ„ ์งˆ์˜ ์ฒ˜๋ฆฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์ด ๋ณ€ํ™˜๊ณต๊ฐ„์—์„œ ์ƒˆ๋กญ๊ฒŒ ๊ฐœ๋ฐœ๋  ์ˆ˜ ์žˆ๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๋งˆ๋ จํ–ˆ๋‹ค๊ณ  ๋ฏฟ๋Š”๋‹ค.22kc
    corecore