23 research outputs found

    ๊ณ ๋†๋„ ์ˆ˜๊ณ„ ์ „ํ•ด์งˆ์„ ํ™œ์šฉํ•œ ๊ณ ์šฉ๋Ÿ‰ ๊ณ ํšจ์œจ ์ˆ˜๊ณ„ ์ด์ฐจ์ „์ง€ ์„ค๊ณ„์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2021.8. ๊ฐ•๊ธฐ์„.์ž์—ฐ ์นœํ™”์ ์ด๊ณ  ์ง€์†๊ฐ€๋Šฅํ•œ ์—๋„ˆ์ง€ ์ €์žฅ ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์š”๊ตฌ๊ฐ€ ๊ธ‰์ฆํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด์— ๋”ฐ๋ผ ๋ฆฌํŠฌ์ด์˜จ ์ด์ฐจ์ „์ง€์˜ ๋Œ€๋Ÿ‰์ƒ์‚ฐ์ด ํ˜„์žฌ ์—๋„ˆ์ง€ ์‹œ์žฅ์—์„œ ๋งค์šฐ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด ์ƒ์šฉํ™”๋œ ๋ฆฌํŠฌ์ด์˜จ ์ด์ฐจ์ „์ง€์˜ ์œ ๋งํ•œ ์ „๋ง์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๋Œ€์šฉ๋Ÿ‰ ์ €์žฅ ๊ด€๋ จ ์ ์šฉ๋ถ„์•ผ์— ๋Œ€ํ•œ ์‚ฌ์šฉ์— ๋Œ€ํ•˜์—ฌ ์ œํ•œ์ ์ธ ์›์ž์žฌ๋กœ ์ธํ•œ ๋น„์šฉ์ƒ์Šน๋ฌธ์ œ์™€ ๊ฐ€์—ฐ์„ฑ ํŠน์„ฑ์ด ๋†’์€ ์œ ๊ธฐ๊ณ„ ์ „ํ•ด์งˆ์„ ์‚ฌ์šฉํ•จ์— ๋”ฐ๋ฅธ ์•ˆ์ „์„ฑ ๋ฌธ์ œ๋กœ ์ธํ•˜์—ฌ ๊ทน๋ณตํ•ด์•ผํ•˜ ๋งŽ์€ ๋ฌธ์ œ๋“ค์ด ์•„์ง ๋‚จ์•„ ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ ๋”์šฑ ์•ˆ์ „ํ•œ ๋Œ€์ฒด ๋ฐฉ์•ˆ์œผ๋กœ์„œ ๋ฌผ ๊ธฐ๋ฐ˜์˜ ์ˆ˜์„ฑ ์ „ํ•ด์งˆ์„ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฐํ„ฐ๋ฆฌ๊ฐ€ ์—ฐ๊ตฌ๋˜์–ด ์™”์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ „ํ†ต์ ์œผ๋กœ ์‚ฌ์šฉํ•˜๋Š” ๋ฌผ ๊ธฐ๋ฐ˜์˜ ์ˆ˜๊ณ„ ์ „ํ•ด์งˆ์€ 1.23 V์˜ ์ „์••์„ ๋„˜์œผ๋ฉด ๋ฌผ๋ถ„ํ•ด๊ฐ€ ์ผ์–ด๋‚˜๋Š” ์ข์€ ์ „๊ธฐํ™”ํ•™์  ์•ˆ์ •์„ฑ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋ฌผ์˜ ์ข์€ ์ „๊ธฐํ™”ํ•™์  ์•ˆ์ „์„ฑ์€ ํ•„์—ฐ์ ์œผ๋กœ ์ˆ˜๊ณ„ ๋ฐฐํ„ฐ๋ฆฌ ์‹œ์Šคํ…œ์— ์ œํ•œ๋œ ์—๋„ˆ์ง€ ๋ฐ€๋„๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ ์ด์— ๋”ฐ๋ผ ์‹ค์ œ ์‚ฐ์—…์œผ๋กœ์˜ ์ ์šฉ์„ ์–ด๋ ต๊ฒŒ ๋งŒ๋“ค๊ณ  ์žˆ๋‹ค. ์ˆ˜๊ณ„ ๋ฐฐํ„ฐ๋ฆฌ ์‹œ์Šคํ…œ์˜ ์—๋„ˆ์ง€ ๋ฐ€๋„๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•˜์—ฌ, ์ตœ๊ทผ ๊ฐœ๋ฐœ๋œ ๊ณ ๋†๋„ ์ˆ˜๊ณ„ ์ „ํ•ด์งˆ ์‹œ์Šคํ…œ์€ ๋…น์•„ ์žˆ๋Š” ์—ผ์˜ ๋ถ„ํ•ด๋ฅผ ํ†ตํ•ด ์•ˆ์ „ํ•œ ๊ณ ์ฒด-์ „ํ•ด์งˆ ๊ณ„๋ฉด ์ธต (SEI)์„ ํ˜•์„ฑํ•˜์—ฌ ๋ณด๋‹ค ๋„’์€ ์ „๊ธฐํ™”ํ•™์  ์•ˆ์ „์„ฑ์„ ํ™•๋ณดํ•˜์˜€๊ณ  ๋ฌผ์˜ ๋ถ„ํ•ด๋ฅผ ์–ต์ œํ•จ์œผ๋กœ์จ, ๊ณ ์ „์•• ์ˆ˜๊ณ„ ๋ฐฐํ„ฐ๋ฆฌ ์‹œ์Šคํ…œ์œผ๋กœ์˜ ์ƒˆ๋กœ์šด ๊ธธ์„ ์—ด์–ด์ฃผ์—ˆ๋‹ค. ๋น„๋ก ๊ณ ๋†๋„ ์ „ํ•ด์งˆ์ด ๋†’์€ ์—๋„ˆ์ง€ ๋ฐ€๋„๋ฅผ ๊ฐ–๋Š” ์ˆ˜๊ณ„ ๋ฐฐํ„ฐ๋ฆฌ ์‹œ์Šคํ…œ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์˜€์ง€๋งŒ, ์ด ์‹œ์Šคํ…œ ์—ญ์‹œ ๋งค์šฐ ๊ฐ’๋น„์‹ผ ์œ ๊ธฐ๊ณ„ ์—ผ์„ ๋งค์šฐ ๋งŽ์€ ์–‘ ๋…น์—ฌ์„œ ์‚ฌ์šฉํ•ด์•ผ ํ•œ๋‹ค๋Š” ์ ์—์„œ ์•„์ง ๋งŽ์€ ๋ฌธ์ œ๊ฐ€ ์กด์žฌํ•˜์˜€๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์ €๋ ดํ•˜๋ฉด์„œ ๋†’์€ ์—๋„ˆ์ง€ ๋ฐ€๋„๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ์ˆ˜๊ณ„ ์‹œ์Šคํ…œ์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•œ ๋””์ž์ธ ์ „๋žต์„ ์†Œ๊ฐœํ•˜์˜€๋‹ค. ํŠนํžˆ, ๊ณ ๋†๋„ NaClO4 ์ˆ˜๊ณ„ ์ „ํ•ด์งˆ ๊ธฐ๋ฐ˜์˜ ๋ฐฐํ„ฐ๋ฆฌ ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜์—ฌ ๋ฌผ ๋ถ„ํ•ด๋ฅผ ์–ต์ œํ•˜๋ฉฐ ๋ณด๋‹ค ๋„“์€ ๋ฒ”์œ„์˜ ์ „๊ธฐํ™”ํ•™์  ์•ˆ์ •์„ฑ์„ ๊ฐ€์ง„ ์‹œ์Šคํ…œ์„ ์†Œ๊ฐœํ•˜์˜€๊ณ , ์ด ์ „ํ•ด์งˆ ์‹œ์Šคํ…œ์„ ํ™œ์šฉํ•œ ๋ณด๋‹ค ์ง€์†๊ฐ€๋Šฅํ•˜๊ณ  ์นœํ™˜๊ฒฝ์ ์ธ ์œ ๊ธฐ๋ฌผ ๊ธฐ๋ฐ˜์˜ ์ˆ˜๊ณ„ ๋ฐฐํ„ฐ๋ฆฌ ์‹œ์Šคํ…œ์„ ์†Œ๊ฐœํ•œ๋‹ค. ์ œ2์žฅ์—์„œ๋Š” ๊ณ ๋†๋„ ์ˆ˜์„ฑ ์ „ํ•ด์งˆ๋กœ ์ ์šฉ๊ฐ€๋Šฅํ•œ ์ €๊ฐ€์˜ ์šฉ์งˆ์„ ์ฐพ๊ธฐ ์œ„ํ•ด ๊ธฐ์กด์— ์•Œ๋ ค์ง„ ๋ชจ๋“  ์ผ๋ฐ˜์ ์ธ ์ €๊ฐ€์˜ ์šฉ์งˆ์„ ๋‹ค์‹œ ๊ฒ€ํ† ํ•˜์˜€๋‹ค. ์ƒˆ๋กœ์šด ์ „ํ•ด์งˆ์„ ์ฐพ๋Š” ์ „๋žต์œผ๋กœ ๋งŽ์ด ๋…น์œผ๋ฉฐ ์šฉ์งˆ์ด ์šฉ๋งคํ™” ๊ตฌ์กฐ๋ฅผ ๋ณ€ํ™”์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋Š” ์ €๊ฐ€์˜ ๋ฌด๊ธฐ์งˆ ์šฉ์งˆ์„ ์ฐพ์•˜๊ณ , ๊ฒฐ๊ตญ NaClO4 ๊ณ ๋†๋„ ์šฉ์•ก์ด ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜๊ณ„ ์ „ํ•ด์งˆ์˜ ์ „๊ธฐ์•ˆ์ •์  ์ฐฝ์„ ๋„“ํžˆ๋ฉฐ ๋ฌผ๋ถ„ํ•ด๋ฅผ ์–ต์ œํ•˜๊ณ  ClO4 ์šฉ์งˆ์˜ ๋ถ„ํ•ด ์—†์ด๋„ ์•ˆ์ „ํ•œ SEI ์ธต์„ ํ˜•์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ฐํ˜”๋‹ค. ์šฉ์งˆ์˜ ๋ถ„ํ•ด ์—†์ด ํ˜•์„ฑ๋œ SEI ์ธต์˜ ๊ฒฝ์šฐ Na2CO3์™€ Na-O ๋ฐ NaOH๊ฐ€ ํ•ฉ์ณ์ง„ ํ˜•ํƒœ์˜ ํ˜ผํ•ฉ๋ฌผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ฐํ˜”๊ณ  ์ด ์•ˆ์ „ํ•œ ์ธต์€ ์ˆ˜๊ณ„ Na ์…€์—์„œ Na4Fe3(PO4)2(P2O7) ์–‘๊ทน๊ณผ NaTi2(PO4)3 ์Œ๊ทน์œผ๋กœ ์ด๋ฃจ์–ด์ง„ ๋ฐฐํ„ฐ๋ฆฌ ์‹œ์Šคํ…œ์—์„œ ์•ˆ์ „ํ•œ ์‚ฌ์ดํด ์„ฑ๋Šฅ๊ณผ ์ „๊ธฐํ™”ํ•™์  ์—๋„ˆ์ง€ ์ €์žฅ ์„ฑ๋Šฅ์„ ๋†’์ด๋Š”๋ฐ ํฐ ๊ธฐ์—ฌ๋ฅผ ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ์ƒˆ๋กœ์šด ์ „๋žต์œผ๋กœ ์ฐพ์•„๋‚ธ ์ด ์ €๊ฐ€์˜ ์ˆ˜๊ณ„ ์ „ํ•ด์งˆ ์‹œ์Šคํ…œ์€ ํ›Œ๋ฅญํ•œ ์‚ฌ์ดํด ์•ˆ์ •์„ฑ๊ณผ ์ฟจ๋กฑ ํšจ์œจ (coulombic efficiency)๋ฅผ ์ œ๊ณตํ•˜์˜€๊ณ  ์ด๋Š” ๊ธฐ์กด์— ๋ณด๊ณ ๋œ ์ „ํ•ด์งˆ์˜ ์„ฑ๋Šฅ์„ ์›”๋“ฑํžˆ ์ดˆ๊ณผํ•˜๋Š” ๊ฒƒ์„ ๋ณด์˜€๋‹ค. ์ œ2์žฅ์—์„œ ์ œ์•ˆ๋œ ์ „๋žต์€ ์ €๊ฐ€์˜ ๊ณ ์ „์•• ์ˆ˜๊ณ„ ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๋Š”๋ฐ ์ค‘์š”ํ•œ ๊ฐ€์ด๋“œ๋ผ์ธ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ œ3์žฅ์—์„œ๋Š” ๊ณ ๋†๋„ NaClO4์˜ ์ˆ˜๊ณ„ ์ „ํ•ด์งˆ์„ ์ ์šฉ ๋ฒ”์œ„๋ฅผ ๋„“ํžˆ๊ณ  ๋”์šฑ ์นœํ™˜๊ฒฝ์ ์ด๊ณ  ์ง€์†๊ฐ€๋Šฅํ•œ ์ˆ˜๊ณ„ ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜๊ณ  ์ž, ์œ ๊ธฐ๊ณ„ ์ „๊ทน์„ ํ™œ์šฉํ•œ ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์œ ๊ธฐ๊ณ„ ์–‘๊ทน ๋ฌผ์งˆ๋กœ์„œ ๋งค์šฐ ์œ ๋งํ•œ p-type ํŠน์„ฑ์„ ๊ฐ–๋Š” ๋‹ค์ค‘ ์ „์ž ์‚ฐํ™” ํ™˜์›์ด ๊ฐ€๋Šฅํ•œ ํŽ˜๋‚˜์ง„๊ธฐ๋ฐ˜์˜ ๋ถ„์ž๋ฅผ (DMPZ) ๊ณ ๋†๋„ ์ˆ˜๊ณ„ ์‹œ์Šคํ…œ์— ์ ์šฉํ•˜์˜€๋‹ค. DMPZ ๋ฌผ์งˆ์˜ ์šฉ๋งค๋„๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์ˆ˜๊ณ„ ์‹œ์Šคํ…œ์ด DMPZ ๋ฌผ์งˆ์˜ ์šฉ๋งค๋„๋ฅผ ๋‚ฎ์ถ”์–ด ๊ฐ€์žฅ ์ตœ์ ์˜ ์ „ํ•ด์งˆ๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ deep learning ๊ธฐ๋ฒ•๊ณผ ์‹คํ—˜์„ ํ†ตํ•ด ๋ฐํ˜”๊ณ , DMPZ์˜ ๋ชจ๋“  ์šฉ๋Ÿ‰์„ ๋ฐœํ˜„์‹œํ‚ค๋ฉฐ ์‚ฌ์ดํด ์•ˆ์ •์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ์ œ2์žฅ์—์„œ ๊ฐœ๋ฐœํ•œ ์ €๊ฐ€์˜ ๊ณ ๋†๋„ NaClO4 ์ „ํ•ด์งˆ ์‹œ์Šคํ…œ์„ ์ ์šฉํ•˜์˜€๋‹ค. ๊ณ ๋†๋„ ์ „ํ•ด์งˆ์€ DMPZ์˜ ์šฉํ•ด๋ฅผ ๋”์šฑ ์–ต์ œํ•˜๋ฉฐ ์ถ”๊ฐ€๋กœ ๋ฌผ๋ถ„ํ•ด๋„ ์–ต์ œํ•˜์—ฌ DMPZ์˜ ์„ฑ๋Šฅ์„ ์ตœ๋Œ€๋กœ ์ด๋Œ์–ด๋‚ด๋Š”๋ฐ ๋„์›€์„ ์ฃผ์—ˆ๊ณ , ์ตœ์ข…์ ์œผ๋กœ ๋งค์šฐ ์•ˆ์ •ํ•˜๊ณ  ์šฐ์ˆ˜ํ•œ ์‚ฌ์ดํด ์•ˆ์ •์„ฑ์„ ์ œ๊ณตํ•ด ์ฃผ์—ˆ๋‹ค. ์ œ3์žฅ์—์„œ๋Š” ์œ ๊ธฐ๊ณ„ ์ „๊ทน ๋ฌผ์งˆ๊ณผ ์ „ํ•ด์งˆ ์‚ฌ์ด์˜ ์šฉํ•ด๋„์™€ ์ „๊ธฐํ™”ํ•™์  ์„ฑ๋Šฅ์— ๋Œ€ํ•œ ์‹ฌ๋„ ๊นŠ์€ ์ดํ•ด๋ฅผ ์ œ๊ณตํ•ด์ฃผ์—ˆ๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋ณด๋‹ค ๊ณ ์„ฑ๋Šฅ์— ์ง€์†๊ฐ€๋Šฅํ•˜๊ณ  ์นœํ™˜๊ฒฝ์ ์ธ ์ˆ˜๊ณ„ ์œ ๊ธฐ ๋ฐฐํ„ฐ๋ฆฌ๋ฅผ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•œ ์ „๋žต์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ด ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ์ €๊ฐ€์˜ ๊ณ ์—๋„ˆ์ง€๋ฐ€๋„๋ฅผ ๊ฐ–๋Š” ์ˆ˜๊ณ„ ์ „ํ•ด์งˆ ๊ธฐ๋ฐ˜ ์ด์ฐจ์ „์ง€๋ฅผ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•œ ์ „๋žต์œผ๋กœ 2๊ฐ€์ง€ ์ค‘์š”ํ•œ ํฌ์ธํŠธ๋ฅผ ์ œ๊ณตํ•ด ์ฃผ์—ˆ๋‹ค: 1) ์ €๊ฐ€์˜ ๊ณ ๋†๋„ ์ „ํ•ด์งˆ์„ ๊ฐœ๋ฐœํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•ด ๋ฌผ๋ถ„ํ•ด๋ฅผ ์–ต์ œํ•˜๊ณ  ๋ณด๋‹ค ๋„“์€ ๋ฒ”์œ„์˜ ์ „๊ธฐํ™”ํ•™์  ์•ˆ์ •์„ฑ์„ ๊ฐ–๋Š” ์ „ํ•ด์งˆ์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•œ ์ „๋žต ์ œ์‹œ, 2) ๋ณด๋‹ค ์ง€์†๊ฐ€๋Šฅํ•œ ์‹œ์Šคํ…œ์„ ๋งŒ๋“ค์–ด ์ค„ ์ˆ˜ ์žˆ๋Š” ์œ ๊ธฐ๊ณ„ ๊ธฐ๋ฐ˜์˜ ์ „๊ทน ๋ฌผ์งˆ์˜ ์„ฑ๋Šฅ์„ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์ „๋žต์œผ๋กœ ์ „ํ•ด์งˆ๊ณผ ์ „๊ทน๋ฌผ์งˆ์˜ ์šฉ๋งค๋„์— ๋Œ€ํ•œ ๊นŠ์€ ์ดํ•ด๋ฅผ ์ œ๊ณตํ•˜๊ณ  ์ด์™€ ์ „๊ธฐํ™”ํ•™์  ์„ฑ๋Šฅ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ์ œ์‹œํ•จ์œผ๋กœ์จ ๊ฐ ์œ ๊ธฐ๊ณ„ ์ „๊ทน ๋ฌผ์งˆ์˜ ๊ฐ€์žฅ ์ ํ•ฉํ•œ ์ „ํ•ด์งˆ์„ ์ฐพ๋Š” ์ „๋žต์„ ์ œ์‹œํ•จ. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์€ ํ†ตํ•ด ์ €๊ฐ€์˜ ๊ณ ์—๋„ˆ์ง€ ๋ฐ€๋„๋ฅผ ๊ฐ–๋Š” ์ง€์†๊ฐ€๋Šฅํ•œ ์ˆ˜๊ณ„ ๊ณ ๋†๋„ ์‹œ์Šคํ…œ์„ ์‹คํ˜„ํ•˜๊ธฐ์œ„ํ•œ ์ค‘์š”ํ•œ ๊ฐ€์ด๋“œ๋ผ์ธ์„ ์ œ์‹œํ•ด์ค„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.The surging requirements for eco-friendly and sustainable energy storage systems have significantly boosted and advanced the mass production of rechargeable lithium-ion batteries (LIBs) in the current energy market. Despite the promising outlook for conventional LIBs, many obstacles to their use for such large-scale applications have yet to be overcome, including rising costs stemming from the limited abundance of raw materials and safety concerns arising from the use of highly flammable organic electrolytes. As an alternative safer chemistry, the batteries that employ aqueous electrolytes have been investigated. However, traditional aqueous electrolytes provide a narrow electrochemical stability window of ~ 1.23 V due to occurring the thermodynamic water decomposition outside this window. This narrow stability window inevitably yields a limited energy density for aqueous systems, which make them unfit for practical application. To improving the energy density of aqueous battery system, recent invention of highly concentrated aqueous electrolyte systems has paved a way toward the high-voltage aqueous batteries, which have wide electrochemical stability window by forming the stable solid-electrolyte interphase (SEI) layer with salt decomposition and preventing the water splitting. Although, super-concentrated electrolyte systems enable high-energy density of aqueous batteries, it still has major obstacle for their commercialization due to the need for generally high-cost organic solutes in the high-concentration electrolyte. In this thesis, I present a design strategy for developing a low-cost and high-energy density aqueous battery system, particularly using on high-concentration NaClO4 aqueous electrolyte-based battery and the organic aqueous battery systems. In Chapter 2, all the commonly used low-cost solutes for high-concentration aqueous electrolyte system are revisited. Finally, it is discovered that the use of NaClO4 solute effectively results in a wide electrochemical stability window by suppressing water decomposition and induces stable solid-electrolyte interphase (SEI) layer formation without involving the reduction of salt anions. The SEI layer, composed of Na2CO3 and Naโ€“O compounds including NaOH, guarantees the excellent electrochemical storage stability of the full-cell composed of Na4Fe3(PO4)2(P2O7) cathode and NaTi2(PO4)3 anode for the extended period of time. This new-class of electrolyte systems provides remarkable cycle stability and a coulombic efficiency, which outperforms the state-of-the-art super-concentrated systems based on NaCF3SO3. This chapter will provide an important guidance for the realization of low-cost high-voltage aqueous batteries. In Chapter 3, the facility of low-cost high-concentration NaClO4 electrolyte is broadened by employing the multi-electron-redox phenazine molecule (i.e., 5,10-dihydro-5,10-dimethyl phenazine, DMPZ), one of the most promising p-type organic cathode materials. It is presented that novel approaches to facilitate the complete utilization of the capacity and drastically improve the cycle durability by employing an electrolyte that is the most compatible with a DMPZ electrode. With the aid of deep learning and experimental validation, an aqueous solution is adopted as the most suitable electrolyte owing to the low solubility of the DMPZ molecule, resulting in enhanced capacity retention, which contrasts with the poor cycling performance in non-aqueous electrolytes. In addition, to further suppress the dissolution and water decomposition, a high-concentration electrolyte strategy is applied. Thereby, the DMPZ with high-concentration aqueous electrolyte successfully provide significantly improved capacity retention with outstanding long-life durability. This chapter will provide a deep understanding about the compatibility between organic electrode materials and electrolytes, which is a key factor toward the successful implementation of rechargeable organic batteries with high-energy density and long cycle life. I believe that the deep study in this thesis on low-cost high-concentration aqueous system offer two major key aspects: 1) designing strategy for exploration of a new salts for high-concentration aqueous electrolytes, which could be widened the electrochemical stability window by suppressing water decomposition and robust surface layer formation without salt decomposition, and 2) deep understanding and facilitating the full utilization of a organic molecule electrode by employing the most appropriate electrolyte that provides low solubility of DMPZ. It will provide important guidance for the realization of low-cost high-energy density aqueous batteries.Chapter 1. Introduction 1 1.1 Research motivation and objectives 1 1.2 Introduction to aqueous batteries 3 1.3 Emerging the super-concentrated aqueous electrolyte for high-energy denstiy aqueous battery system 7 1.4 Purpos of this research 9 1.5 References 11 Chapter 2. Toward a low-cost high-voltage sodium aqueous rechargeable battery 26 2.1 Research background 26 2.2 Experimental method 31 2.2.1 Preparation of aqueous electrolyte and electrode materials 31 2.2.2 Electrochemical measurements 32 2.2.3 Materials characterization 33 2.3 Result and discussion 34 2.3.1 Seclction guideline for the low-cost high-concentration aqueous electrolyte and their chemistry for electrochemical stability in rechargeable aqueous batteries 34 2.3.2 Electrochemical performance of rechargeable aqueous sodium battery in highly concentrated NaClO4 aqueous electrolyte system 44 2.3.3 Analysis of the surface protective layer formed in high-concentration aqueous electrolyte 53 2.3.4 Mechanism of surface layer forming in high-concentration NaClO4 aqueous electrolytes 61 2.4 Concluding remarks 66 2.5 References 67 Chapter 3. Unveiling the superior durability of multi-redox molecules emplying high-concentration electrolyte for high-energy and sustainable aqueous batery 79 3.1 Research background 79 3.2 Experimental method 83 3.2.1 Preparation of aqueous electrolyte and electrode 83 3.2.2 Computational details 84 3.2.3 Electrochemistry of DMPZ aqueous battery 85 3.2.4 Dissolution behaviors of the DMPZ experiments 86 3.2.5 Materials characterization 87 3.3 Result and discussion 88 3.3.1 Solubility feature of DMPZ in various electrolyte solutions and electrochemical property of DMPZ in aqueous electrolyte 88 3.3.2 Prediction of the solubility of the DMPZ in generic battery electrolyte solutions via deep learning 96 3.3.3 Strategy for perfectly utilizing the performance of DMPZ 100 3.3.4 Kinetic hindrance of the DMPZ initial charge process in 17 m NaClO4 aqueous electrolyte 108 3.3.5 Durable electrochemical performance of the DMPZ cell employing the high-concentration aqueous electrolyte 115 3.3.6 Structural and morphological analysis of the DMPZ cycled in the high-concentration aqueous electrolyte with long-term cycles 121 3.3.7 Comparison of the performance of the DMPZ with previously reported works 128 3.4 Concluding remarks 136 3.5 References 138 Chapter 4. Conclusion 152 Chapter 5. Abstract in Korean 158๋ฐ•
    corecore