8 research outputs found

    κ°„μ§ˆμ— λŒ€ν•œ κ°μ„±ν•˜ λ‡Œμˆ˜μˆ μ˜ νš¨μš©μ„± : μž„μƒ 뢄석 및 수술 성적

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μ˜ν•™κ³Ό 신경외과학전곡,2003.Maste

    ν•˜μ΄λΈŒλ¦¬λ“œ 거더 μ ‘ν•©λΆ€μ˜ 섀계 지침 μ œμ•ˆ

    No full text
    ν•™μœ„λ…Όλ¬Έ (석사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ κ±΄μ„€ν™˜κ²½κ³΅ν•™λΆ€, 2018. 2. μ‘°μž¬μ—΄.ν•˜μ΄λΈŒλ¦¬λ“œ κ±°λ”λŠ” 강거더와 μ½˜ν¬λ¦¬νŠΈκ±°λ”λ₯Ό 길이방ν–₯으둜 μ ‘ν•©ν•˜μ—¬ μ„€κ³„ν•œ 거더이닀. 강거더와 μ½˜ν¬λ¦¬νŠΈκ±°λ”λ₯Ό μ—°κ²°ν•˜λŠ” ν•˜μ΄λΈŒλ¦¬λ“œ 거더 μ ‘ν•©λΆ€λŠ” 일반적으둜 κ°•νŒκ³Ό 속채움 콘크리트, 그리고 μ „λ‹¨μ—°κ²°μž¬λ‘œ κ΅¬μ„±λ˜μ–΄μžˆλ‹€. μ ‘ν•©λΆ€μ—μ„œλŠ” 이쒅 재료 κ°„μ˜ κ°•μ„± 차이둜 응λ ₯μ§‘μ€‘ν˜„μƒμ΄ λ°œμƒν•  수 μžˆμ–΄ 섀계 μ‹œ μ£Όμ˜κ°€ μš”κ΅¬λ˜λŠ” 뢀뢄이닀. ν˜„μž¬ κ΅­λ‚΄μ—λŠ” ν•˜μ΄λΈŒλ¦¬λ“œ κ΅λŸ‰ μ ‘ν•©λΆ€ 섀계λ₯Ό μœ„ν•œ 섀계기쀀이 μ‘΄μž¬ν•˜μ§€ μ•ŠλŠ” 상황이닀. μ „λ‹¨μ—°κ²°μž¬μ™€ κ΄€λ ¨ν•˜μ—¬ κ΅­λ‚΄ λ„λ‘œκ΅ μ„€κ³„κΈ°μ€€μ—λŠ” 강거더와 μ½˜ν¬λ¦¬νŠΈλ°”λ‹₯판으둜 이루어진 합성단면에 λŒ€ν•œ μŠ€ν„°λ“œν˜• μ „λ‹¨μ—°κ²°μž¬μ— λŒ€ν•œ κ·œμ •μ΄ μ‘΄μž¬ν•˜λ‚˜ 이λ₯Ό μ ‘ν•©λΆ€ 섀계에 적용 κ°€λŠ₯ν•œμ§€μ— λŒ€ν•΄μ„œλŠ” 검증 과정이 ν•„μš”ν•˜λ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” ν•΄λ‹Ή κ·œμ •μ˜ 적용 κ°€λŠ₯성을 ν™•μΈν•˜κΈ° μœ„ν•΄μ„œ 해석 및 μ‹€ν—˜μ  연ꡬλ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€. μΆ”κ°€μ μœΌλ‘œ μ ‘ν•©λΆ€λ₯Ό κ΅¬μ„±ν•˜λŠ” κ°•νŒμ˜ 길이, 즉 μ ‘ν•©λΆ€μ˜ 길이가 ν•˜μ΄λΈŒλ¦¬λ“œ 거더에 λ―ΈμΉ˜λŠ” 영ν–₯에 λŒ€ν•΄μ„œ λ§€κ°œλ³€μˆ˜ 연ꡬλ₯Ό μΆ”κ°€μ μœΌλ‘œ μˆ˜ν–‰ν•˜μ˜€λ‹€. ν•˜μ΄λΈŒλ¦¬λ“œ 거더 μ ‘ν•©λΆ€μ—μ„œλŠ” μŠ€ν„°λ“œμ˜ νœ¨λ³€ν˜•μœΌλ‘œ 인해 뢀뢄합성거동이 λ°œμƒν•˜λ―€λ‘œ μ ‘μ„  λ°©ν–₯의 μŠ¬λ¦½λ¬Όμ„±μ„ κ³ λ €ν•œ 해석λͺ¨λΈμ„ μ •λ¦½ν•˜μ˜€λ‹€. 해석적 연ꡬ에 μ‚¬μš©λœ κ±°λ”λŠ” κΈ°μ‘΄ μ—°κ΅¬μžμ˜ 해석적 μ—°κ΅¬μ—μ„œ μ‚¬μš©ν•œ 거더λ₯Ό μ‚¬μš©ν•˜μ˜€λ‹€. κ°„λ‹¨ν•œ 검증을 μˆ˜ν–‰ν•œ κ²°κ³Ό μ •λ¦½ν•œ 해석λͺ¨λΈμ€ μ ‘μ„  λ°©ν–₯의 물성에 λ”°λΌμ„œ λΉ„ν•©μ„± 거동과 λΆ€λΆ„ν•©μ„± 거동, μ™„μ „ν•©μ„± κ±°λ™μœΌλ‘œ κ΅¬λΆ„λ˜λŠ” ν•©μ„±κ±°λ™μ˜ μœ ν˜•μ„ 잘 λͺ¨μ‚¬ν•  수 μžˆμ—ˆλ‹€. λ‹€μŒμœΌλ‘œ 해석 λͺ¨λΈμ˜ 섀계 상세λ₯Ό 기반으둜 μŠ€ν„°λ“œμ˜ 개수λ₯Ό μ‹€ν—˜ λ³€μˆ˜λ‘œ ν•˜μ—¬ 총 3개의 μ‹€ν—˜μ²΄λ₯Ό μ œμž‘ν•˜κ³  ν•˜μ€‘μž¬ν•˜μ‹€ν—˜μ„ μˆ˜ν–‰ν•˜μ—¬ ν•©μ„±κ±°λ™μ˜ μœ ν˜•κ³Όμ˜ 관계λ₯Ό λΆ„μ„ν•˜μ˜€λ‹€. μ‹€ν—˜ κ²°κ³Ό μ ‘ν•©λΆ€ 내뢀에 배치된 μŠ€ν„°λ“œμ˜ κ°œμˆ˜μ— 따라 μ‹€ν—˜μ²΄λŠ” λΉ„ν•©μ„± 거동과 μ™„μ „ν•©μ„± 거동을 λ³΄μ΄λŠ” 것을 확인할 수 μžˆμ—ˆλ‹€. λ˜ν•œ λ„λ‘œκ΅ 섀계기쀀에 μ œμ‹œλœ 합성단면에 μ μš©ν•˜λŠ” μŠ€ν„°λ“œμ— λŒ€ν•œ 섀계기쀀을 ν•˜μ΄λΈŒλ¦¬λ“œ 거더 μ ‘ν•©λΆ€ 섀계에 μ μš©ν•  경우 μ™„μ „ν•©μ„± 거동을 λ³΄μ΄λ―€λ‘œ ν•΄λ‹Ή κ·œμ •μ„ 적용 κ°€λŠ₯ν•˜λ‹€λŠ” 사싀을 확인할 수 μžˆμ—ˆλ‹€. μ ‘ν•©λΆ€μ˜ 길이에 λŒ€ν•œ 영ν–₯을 ν™•μΈν•˜κΈ° μœ„ν•΄ λ§€κ°œλ³€μˆ˜μ—°κ΅¬λ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€. λͺ¨λ“  ν•΄μ„μ—μ„œ 총 길이와 κ°•κ±°λ”μ˜ κΈΈμ΄λŠ” λ™μΌν•˜κ²Œ μ„€μ •ν•˜μ˜€κΈ° λ•Œλ¬Έμ— μ ‘ν•©λΆ€μ˜ 길이가 μ¦κ°€ν• μˆ˜λ‘ PSCκ±°λ”μ˜ 길이가 짧아지고 ꡬ쑰물의 강성이 μ»€μ§€λ―€λ‘œ κ±°λ”μ˜ μ΅œλŒ€ν•˜μ€‘μ€ μ¦κ°€ν•˜κ²Œ λœλ‹€. μ¦κ°€λœ ꡬ쑰물의 강성에 μ˜ν•œ 효과λ₯Ό μ œκ±°ν•œ μˆœμˆ˜ν•œ μ ‘ν•©λΆ€ 길이에 λŒ€ν•œ 효과λ₯Ό μ–»κΈ° μœ„ν•΄ λ™μΌν•œ κΈΈμ΄μ—μ„œ λΉ„ν•©μ„± 거동과 μ™„μ „ν•©μ„± κ±°λ™μ˜ μ΅œλŒ€ν•˜μ€‘ 차이λ₯Ό 길이 효과둜 κ°€μ •ν•˜κ³  μ ‘ν•©λΆ€ 길이 증가에 λ”°λ₯Έ λ³€ν™”λ₯Ό ν™•μΈν•˜μ˜€λ‹€. λ§€κ°œλ³€μˆ˜μ—°κ΅¬ κ²°κ³Ό μ ‘ν•©λΆ€ 길이가 증가함에 따라 λ°œμƒν•˜λŠ” 길이 νš¨κ³ΌλŠ” μ΅œλŒ€ν•˜μ€‘ λŒ€λΉ„ μ•½ 1 % λ‚΄μ™Έλ‘œ λ―ΈλΉ„ν•œ κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€.Hybrid girder consists of steel girder and concrete girder connecting in longitudinal direction. Joint in hybrid girder, connecting steel girder and concrete girder, is composed of the steel plate, filling concrete and shear connector. Joint is critical part because stress concentration can occur the difference of stiffness between two materials. For this reason, it is needed to be careful when design of joint. Currently there is no domestic design standard for design of joint in hybrid girder. The design standard about stud type shear connector for design of composite section combining steel girder and concrete slab is presented in Korean highway bridge design code, but the applicability of this standard for design of joint is not verified. In this thesis, finite element analysis and experimental test were conducted for suggestion of design guideline for joint in hybrid girder. Finite element model was developed using interface element to consider slip behavior in tangential direction at the interface between steel and concrete. Slip behavior should be considered because partial composite behavior was able to occur due to flexural deformation of stud. Target structure was selected which used in previous study conducted by other researcher. As a result of simple verification, the developed model was proper to simulate all types of composite behavior – non composite behavior, partial composite behavior and full composite behavior – just changing material properties of interface element. Total three specimens were fabricated and experimental test was conducted to find the relation between the number of stud and type of composite behavior. As experimental results, the specimen using the number of stud followed Korean highway bridge design code was shown full composite behavior and the other specimens which using less number of stud was shown non composite behavior. As a result, the design standard about stud in Korean highway bridge design code was applicable to design of joint in hybrid girder. Parametric study was conducted to find the effect of joint length. Equal total length and steel girder length were used in all analysis case. If the joint length was increased, PSC girder length was decreased. Therefore, the stiffness of structure was increased and finally the maximum load of hybrid girder was also increased. In order to exclude the effect of stiffness, the effect of joint length was calculated by the difference of maximum load increment between full composite behavior and non composite behavior. The results of parametric study showed that the effect of joint length was insignificant, less than about 1.5 % of maximum load.1. Introduction 1 1.1. Research Background 1 1.2. Research Objectives 3 1.3. Outline 3 2. Literature Review 5 2.1. Design of Joint in Hybrid Girder 5 2.1.1. Korean highway bridge design code (2010) (Korea) 5 2.1.2. Design of joint using prestressing tendon 6 2.1.3. Design of joint using stud type shear connector 7 2.2. Previous Studies 8 2.2.1. Kim, Kwang-Soo et al (2008) 8 2.2.2. Kim, Sang-Hyo et al (2011) 9 2.2.3. Park, Bong-Sik (2016) 10 2.2.4. Limitations of previous studies 10 3. Development of Finite Element Model using Interface Element 12 3.1. Interface Element 12 3.1.1. General 12 3.1.2. Slip properties 13 3.2. Finite Element Model 14 3.2.1. Geometry of target structure 14 3.2.2. Finite element type and mesh 16 3.2.3. Material models and properties 19 3.2.3.1. Concrete 19 3.2.3.2. Steel, reinforcing bar, stud and tendon 21 3.3.2.3. Interface 22 3.2.4. Constraint conditions 23 3.2.5. Boundary conditions 23 3.2.6. Loading conditions 23 3.3. Simple Verification 24 3.3.1. Comparison model for verification 24 3.3.1.1. Park (2016) model 24 3.3.1.2. Merging Nodes model 24 3.3.2. Analysis results 24 3.4. Conclusion 26 4. Experimental Verification 27 4.1. Experimental Program 27 4.1.1 Test specimens 27 4.1.2. Material properties 31 4.1.3. Test set-up 31 4.2 Test Result 33 4.2.1. Failure mode and crack pattern 33 4.2.2. Measurement position-deflection relationship 35 4.2.3. Load-deflection relationship 36 4.3. Finite Element Analysis 36 4.4. Conclusion 39 5. Parametric study 40 5.1 Finite Element Model 40 5.1.1 Geometry of target structure 40 5.1.2. Finite element type and mesh 41 5.1.3. Material models and properties 41 5.1.4. Constraint conditions 44 5.1.5. Boundary conditions 44 5.1.6. Loading conditions 44 5.2 Parametric Study 45 5.2.1. Parameter : joint length 45 5.2.2. Assumption to find the effect of joint length 46 5.2.3. Analysis results 47 5.3 Conclusion 50 6. Conclusions 51 6.1 Summary and Conclusions 51 6.2 Prospects for Further Study 52 Reference 53 ꡭ문초둝 61Maste

    A Pedagogical Reconsideration of Irregular Conjugation of Korean Verbs

    No full text
    corecore