432 research outputs found
๊ณค์ถฉ ๋ ๊ฐฏ์ง ๋นํ์์ ๋ฐ์ํ๋ ๋น์ ์ ์ ๋ ํ์์ ๋ํ ์์น์ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ํ๋๊ณผ์ ๊ณ์ฐ๊ณผํ์ ๊ณต, 2014. 2. ๊น์ข
์.๋ณธ ๋
ผ๋ฌธ์์๋ ๋ ๊ฐฏ์ง ๊ณค์ถฉ์ ์ ์ง ๋นํ ์ ๋ฐ์ํ๋ ๋น์ ์ ์ ๋ ํน์ฑ์ ๊ดํ ์์น์ ์ฐ๊ตฌ๋ฅผ ์ํํ์๋ค. ๋ ๊ฐฏ์ง ๊ณค์ถฉ์ ๋ ๊ฐ ์ด๋์ ํด์ํ๊ธฐ ์ํ์ฌ ๊ฒ์ ๊ธํ๋ฆฌ์ ์ ์ง๋ชจ์ฌ ๋นํ ์คํ์์ ๊ด์ฐฐ๋ ๊ฒฐ๊ณผ๋ฅผ ์ธ์ฉํ์๋ค. ๋ณธ ์ฐ๊ตฌ์ ์ ํ ์ฐ๊ตฌ์์๋ ๊ฒ์ ๊ธํ๋ฆฌ ๋ ๊ฐ ์ด๋์ 2์ฐจ์ ๋ฐ 3์ฐจ์ ์์นํด์์ ํตํด ๊ณค์ถฉ ๋นํ์ ๊ธ๊ฒฉํ ๊ธฐ๋์ฑ์ ์ดํดํ๋๋ฐ ์ค์ํ ๋จ์๊ฐ ๋๋ ๋งค์ฐ ํฅ๋ฏธ๋กญ๊ณ ๋
ํนํ ์ ๋์ฅ ํน์ฑ์ ๊ด์ฐฐํ ์ ์์๋ค. ์ ํ ์ฐ๊ตฌ์ ๋ด์ฉ์ ๋ฐํ์ผ๋ก ๋ณธ ์ฐ๊ตฌ์์๋ ํฌ๊ฒ ๋ ๊ฐ์ง ์ฐ๊ตฌ ์ฃผ์ ์ ๋ํด ์ฐ๊ตฌ๋ฅผ ์ํํ์๋ค.
๊ณค์ถฉ ๋ ๊ฐฏ์ง ๋นํ์์ ๋ ๊ฐ์ ์ฃผ์ ์ ์ฒด ๊ฐ์ ์ํธ์์ฉ์ ๊ณต๋ ฅํน์ฑ์ ๊ฒฐ์ ์ง๋ ๋งค์ฐ ์ค์ํ ์์ ์ค ํ๋์ด๋ค. ๋ ๊ฐ์ ๊ตฌ์กฐ ์ ์ฐ์ฑ์ด ๊ณต๋ ฅ๋ฐ์์ ๋ฏธ์น๋ ์ํฅ ํ์
ํ๊ณ , ๊ณค์ถฉ ๋นํ์์ ๋ฐ์ํ๋ ๋ณด๋ค ์ค์ ์ ์ธ ์ ๋ ํน์ฑ์ ๋ถ์ ํ๊ธฐ ์ํด 2์ฐจ์ ์ ์ฒด-๊ตฌ์กฐ ์ฐ์ฑํด์์ ์ํํ์๋ค. ๋ ๊ฐ์ ๊ตฌ์กฐ๋ณํ์ ๋ชจ์ฌํ๊ธฐ ์ํ์ฌ ์ธ๊ฐ์ง ํํ์ ๋ ๊ฐ ๋จ๋ฉด์ ๊ณ ๋ คํ์๋ค. ๊ทธ ๊ฒฐ๊ณผ, ์ ์ฐ ๊ตฌ์กฐ ๋ ๊ฐ์์๋ ์ ํ ์ฐ๊ตฌ์์ ๊ด์ฐฐ๋ ์ฃผ์ ์ ๋ ๋ฌผ๋ฆฌ ํ์ ๋ฐ ๊ณต๋ ฅ ๋ฐ์ ํจํด์ด ์ ์ฌํ๊ฒ ๋ํ๋จ์ ํ์ธํ ์ ์์๋ค. ๋ฐ๋ฉด, ๊ตฌ์กฐ ๋ณํ์ ๋ฐ๋ฅธ ์ ํจ ๋ฐ์๊ฐ์ ๋ณํ์ ๋ ๊ฐ ํ๋ฉด์ ์์ฉํ๋ ํ ๋ฒกํฐ์ ๋ฐฉํฅ ๋ณํ์ ์ํด ์ ๋์ ์ธ ๊ณต๋ ฅํน์ฑ์ ์ธ๊ฐ์ง ๋ ๊ฐ์์ ์๋ก ๋ค๋ฅด๊ฒ ๋ํ๋ฌ๋ค. ๋ํ ๋ค์ํ ์ ๋์กฐ๊ฑด์ ๋ฐ๋ฅธ ๊ณต๋ ฅํน์ฑ ๋ฐ ๋ฌผ๋ฆฌํ์์ ๋ณํ๋ฅผ ์ดํด๋ณด์๊ณ , ๊ทธ ๊ฒฐ๊ณผ ์์ ์๋ฅ, ์๋ฅ ์ง ํ์, ์๋ฅ ์ ์ฒด ํ์๊ณผ ๊ฐ์ ๋ํ์ ์ธ ๋ฌผ๋ฆฌ ํ์์ด ๋ค์ํ ์ ๋์กฐ๊ฑด ํ์์๋ ์ ์ฌํ๊ฒ ๋ฐ์ํ๋ ๊ฒ์ ํ์ธํ ์ ์์๋ค.
๊ณค์ถฉ ๋ ๊ฐฏ์ง ๋นํ์ ์ ์ฑ์ ์ธ ํน์ฑ์ 2์ฐจ์ ํด์์ ํตํด ์ด๋ ์ ๋ ์์ธก ๊ฐ๋ฅํ๋, ์ ๋์ ์ธ ํน์ฑ์ ๋ถ์ํ๊ธฐ ์ํด์๋ 3์ฐจ์ ํจ๊ณผ๋ฅผ ๋ฐ๋์ ๊ณ ๋ คํด์ผ ํ๋ฉฐ, ์ด๋ฅผ ์ํด 3์ฐจ์ ๋ ๊ฐ-๋ชธํต ์ ์ฒด ํด์์ ์ํํ์๋ค. ๊ณค์ถฉ์ ๋ ๊ฐฏ์ง ๋นํ์์๋ ๋ ๊ฐ-์๋ฅ, ์๋ฅ-์๋ฅ, ๋ ๊ฐ-๋ชธํต ์ํธ์์ฉ์ด ๋ํ๋จ์ ํ์ธํ ์ ์์์ผ๋ฉฐ, ๋ ๊ฐ ๊ธธ์ด ๋ฐฉํฅ ์ ๋์ ์กด์ฌ์ ์ญํ , ๊ทธ๋ฆฌ๊ณ ๋ณต์กํ 3์ฐจ์ ์๋ฅ, ์ฆ ์๋ฅ ํ์ ๊ตฌ์กฐ๋ฅผ ํ์
ํ ์ ์์๊ณ , ๊ฐ๊ฐ์ ์ํธ ์์ฉ์ ํตํด ๋์ฑ ๋ณต์กํ ๋ฌผ๋ฆฌ์ ํ์์ด ๋ํ๋จ์ ํ์ธํ์๋ค. ๊ทธ ์ค์์ ๋ ๊ฐ-๋ชธํต ํด์ ๊ฒฐ๊ณผ๋ ๋ ๊ฐ๋ง ํด์ํ ๊ฒฐ๊ณผ์ ์ ์ฑ์ ์ผ๋ก ์ ์ฌํ๋ ์ ๋์ ์ผ๋ก๋ ์ฐจ์ด๋ฅผ ๋ํ๋์ผ๋ฉฐ, ์ด๋ฅผ ํตํด ๊ณค์ถฉ์ ๋ ๊ฐฏ์ง ๋นํ์์ ๋ ๊ฐ-๋ชธํต ์ํธ์์ฉ ์ญ์ ์ค์ํ ๊ณต๋ ฅ ๋ฐ์ ๋ฉ์ปค๋์ฆ์์ ํ์ธํ ์ ์์๋ค. ๋ํ, ๋ชธํต ๋ฐ์๊ฐ ๋ฐ ๋ ๊ฐ ํ์๊ณผ ๊ฐ์ ๊ธฐํํ์ ์์์ ๋ํ ํ๋ผ๋ฉํธ๋ฆญ ์ฐ๊ตฌ๋ฅผ ์ํํ์์ผ๋ฉฐ, ๊ทธ ๊ฒฐ๊ณผ ์ญ์ ์ ์ฑ์ ์ผ๋ก๋ ์ ์ฌํ๋ ์ ๋์ ์ผ๋ก๋ ์๋ฏธ ์๋ ์ฐจ์ด๋ฅผ ๋ํ๋์ ํ์ธํ ์ ์์๋ค.
๊ณค์ถฉ ๋ ๊ฐฏ์ง ๋นํ์์ ๊ด์ฐฐ๋ ์ ์๋ฆฌ ๋นํ๊ณผ ๊ธ๊ฒฉํ ๊ธฐ๋์ฑ์ ์ด์ํ ๋ ๊ฐฏ์ง ๋นํ์ฒด์ ๋ฐ๋์ ์๊ตฌ๋๋ ๋นํ ํน์ฑ์ด๋ค. ๋ณธ ์ฐ๊ตฌ์์ ๋ถ์ํ ๊ณค์ถฉ ๋ ๊ฐ์ ๊ตฌ์กฐ ์ ์ฐ์ฑ์ ๋ํ ๊ณต๊ธฐ์ญํ์ ํจ๊ณผ๋ ์ด์ํ ๋ ๊ฐฏ์ง ๋นํ์ฒด ๊ฐ๋ฐ๊ณผ์ ์์ ๊ณต๋ ฅ ์ฑ๋ฅ ๊ฐ์ ๋ฐ ๋ฌด๊ฒ ๊ฐ์ ์ธก๋ฉด์์ ์ ์ฉํ ์ ๋ณด๋ฅผ ์ ๊ณตํ ๊ฒ์ผ๋ก ๊ธฐ๋๋๋ค. ๋๋ถ์ด ๋ณธ ์ฐ๊ตฌ์์ ๊ด์ฐฐ๋ 3์ฐจ์ ๋ ๊ฐ-๋ชธํต-์๋ฅ ์ํธ์์ฉ์ ์ํ ๋ณต์กํ ์ ๋ ๊ตฌ์กฐ๋ ๋ ๊ฐฏ์ง ๊ณค์ถฉ์ ๊ธ๊ฒฉํ ๊ธฐ๋์ฑ๊ณผ ์กฐ์ข
์ฑ์ ์ค๋ช
ํ ์ ์๋ ์ค์ํ ๋จ์๊ฐ ๋ ๊ฒ์ผ๋ก ํ๋จ๋๋ค.The present thesis investigates the unsteady flow characteristics in insects flapping motion under forward flight condition. A realistic wing trajectory, called the figure-of-eight motion, is extracted from a blowflys (Phormia regina) tethered flight experiment. In the preliminary research, the two- and three-dimensional blowfly's wing motion were numerically investigated, and the results revealed interesting and distinctive vortical flow fields, which provided a decisive clue in understanding the rapid maneuverability of insects flight. Based on the previous work, two primary topics are discussed: the aerodynamic effect of structural flexibility in two-dimensional flapping wing motion and the three-dimensional unsteady aerodynamic features of wing-body-vortex interactions in insects' flapping flight.
Interaction between a flexible flapping wing and the ambient fluid is of considerable importance in realistic flapping flight. In order to examine realistic flow features of insects flapping motion and to investigate aerodynamic change due to structural flexibility of insect wing, two-dimensional FSI (Fluid-Structure Interaction) simulations are conducted under a forward flight condition. Three types of airfoils are considered to reflect structural deformation. Compared with earlier studies regarding two-dimensional rigid airfoil simulations, the same key physical phenomena and flow patterns could be observed in flexible case. On the other hand, the quantitative aspect of flow fields is somewhat different. Structural deformation does affect aerodynamic force generation pattern, and thus structural flexibility has a significant impact on aerodynamic performance. Aerodynamic force coefficient and propulsive efficiency are enhanced compared to the case of a rigid airfoil. In addition, numerical simulations are performed to inspect effects of aerodynamic parameters such as the Reynolds number and reduced frequency. From extensive numerical comparisons, it is observed that key physical phenomena such as vortex pairing and vortex staying are still observed in other flow conditions.
Three-dimensional unsteady aerodynamic features of wing-body-vortex interactions and the effects of geometric factors, such as wing shape and body angle, in insects' flapping motions are investigated under forward flight condition. From the authors' previous researches on two- and three-dimensional rigid wing simulation, it has been observed that the pattern of vortical flows and the interaction of vortices play a significant role in generating unsteady aerodynamic forces and determining the propulsive efficiency of flapping motion. Detailed numerical simulations of five types of wings are carried out under various body angles to examine unsteady flow characteristics resulting from the complicated wing-body-vortex interactions, and the results are compared with those of the wing only case. From numerical results, there exist three kinds of interactions in three-dimensional full-body simulations: wing-vortex interactions, vortex-vortex interactions and wing-body interactions. Also, it is revealed that realistic geometric considerations have a considerable influence on the aerodynamic force generation in insects flapping flight.
Consequently, the aerodynamic effects of structural flexibility analyzed in this work can be beneficially exploited in the development of flapping micro-aerial-vehicles. Also, complicated wing-body interactions and geometric factors, such as body angle and wing shape, should be considered for investigating the aerodynamic performance of flapping flight and this can be used in the design of small sized aerial-vehicles as well.Chapter I Introduction 1
1.1 Research Background 1
1.2 Research Strategy 5
1.3 Outline of Thesis 7
Chapter II Numerical Approach 8
2.1 Governing Equations 8
2.1.1 Fluid Part 8
2.1.2 Solid Part 9
2.2 Pseudo-Compressibility Method 11
2.3 Spatial Discretization 15
2.3.1 Differencing of Inviscid Flux Terms 17
2.3.2 Upwind Differencing Method 18
2.3.3 Higher order spatial accuracy 23
2.4 Time Integration Method 23
2.4.1 Dual Time Stepping and Pseudo-Time Discretization 24
2.4.2 LU-SGS Scheme 28
2.5 FSI Coupling Methodology 31
2.5.1 Data Transfer on Fluid-Solid Boundary 31
2.5.2 Dynamic Grid Deformation Technique 32
2.6 Grid Motion 34
2.7 Kinematic Modeling 34
2.7.1 Insects Tethered Flight 34
2.7.2 Kinematic Modeling of Blowflys Tethered Wing Motion 35
2.8 Geometric Modeling and Boundary Condition 36
Chapter III Two-dimensional Flexible Insects' Wing 40
3.1 Validation 40
3.1.1 Validation of Baseline Solver 40
3.1.2 Validation of FSI Solver 42
3.2 FSI Simulation of Blowflys Tethered Wing Motion 44
3.2.1 Qualitative Comparison of Aerodynamic Characteristics 46
3.2.2 Quantitative Comparison on Aerodynamic Performance 50
3.2.3 Effects of Aerodynamic Parameters 51
Chapter IV Three-dimensional Insects Wing-body 53
4.1 Validation and Verification 53
4.2 Simulation of Blowflys Tethered Wing Motion 54
4.2.1 Overall Flow Features 55
4.2.2 Definition of Vortex Structure 57
4.2.3 Wing-Vortex and Vortex-Vortex Interactions 58
4.2.4 Wing-Body Interactions according to the Body AOA 59
4.2.4.1 Body Effect on the Wing 59
4.2.4.2 Wing Effect on the Body 60
4.2.4.3 Quantitative Comparisons on Aerodynamic Forces 61
4.2.5 Effects of Wing Shape 63
4.2.5.1 Effect of Wing Sectional Shape 63
4.2.5.2 Effect of Wing Planform 65
4.2.5.3 Quantitative Comparisons on Aerodynamic Forces 65
Chapter V Concluding Remarks 67
5.1 Summary 67
5.2 Future Works 69
References 71
๊ตญ๋ฌธ์ด๋ก 132Docto
Numerical Analysis on the Unsteady Aerodynamic Characteristics of Wing-Body-Vortex Interactions in Three-dimensional Insects Flapping Flight
๋ณธ ๋
ผ๋ฌธ์์๋ ๊ฒ์ ๊ธํ๋ฆฌ์ ์ ์ง๋นํ ์ ๋ํ๋๋ 3์ฐจ์ ๋ ๊ฐ-์๋ฅ-๋ชธํต ์ํธ์์ฉ์ด ๋น์ ์ ๊ณต๋ ฅ ํน์ฑ์ ๋ฏธ์น๋ ์ํฅ์ ๋ํ ์ฐ๊ตฌ๋ฅผ ์ํํ์๋ค. ๊ฒ์ ๊ธํ๋ฆฌ์ ๋ ๊ฐฏ์ง ๋นํ์ ๋ฎ์ ๋ ์ด๋์ฆ์์ ์ ๋ ์์ญ์ ํด๋น๋๋ฏ๋ก, 3์ฐจ์ ๋น์ ์ ๋น์์ถ์ฑ Navier-Stokes ๋ฐฉ์ ์์ ์ ์ฉํ์๋ค. ๋ณธ ์ฐ๊ตฌ์์๋ 3์ฐจ์ ๋ ๊ฐ-๋ชธํต ์ ์ฒด ํด์์ ์ํํ์์ผ๋ฉฐ, ๋ณต์กํ ๋ ๊ฐ-์๋ฅ-๋ชธํต ์ํธ ์์ฉ์ผ๋ก ๋ํ๋๋ ๋น์ ์ ๊ณต๋ ฅ ํน์ฑ์ ๋ถ์ํ๊ธฐ ์ํด ๋ค์ํ ๋ชธํต ๋ฐ์๊ฐ ํ์์ 5๊ฐ์ง ํ์์ ๋ ๊ฐ์ ๋ํ ์์นํด์์ ์ํํ์๊ณ , ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ๋ ๊ฐ๋ง ํด์ํ ๊ฒฝ์ฐ์ ๋น๊ตํ์๋ค. ๋ํ, ์ค์ ๋ ๊ฐ ํ์ ๋ฐ ๋ชธํต ๋ฐ์๊ฐ์ด ๊ณค์ถฉ์ ๋ ๊ฐฏ์ง ๋นํ์ ๊ณต๋ ฅ ๋ฐ์์ ๋ฏธ์น๋ ์ํฅ์ ๋ํด ๊ณ ์ฐฐํ์๋ค.This paper investigates the unsteady aerodynamic features of wing-body-vortex interactions in three-dimensional insects' flapping motions under forward flight conditions. Since the flow field around the blowfly exhibits characteristics of low-Reynolds number flow, three-dimensional unsteady incompressible Navier-Stokes equations are employed as the governing equations. Detailed numerical simulations of five types of wings are carried out under various body angles to examine unsteady flow characteristics resulting from the complicated wing-body-vortex interactions, and the results are compared with those of the wing only case. Also, it is revealed that realistic geometric considerations have a considerable influence on the aerodynamic force generation in insects' flight.๋ณธ ๋
ผ๋ฌธ์ ๊ต์ก๊ณผํ๊ธฐ์ ๋ถ ์ฒจ๋จ์ฌ์ด์ธ์ค ๊ต์กํ
๋ธ๊ฐ๋ฐ์ฌ์
(EDISON)์ ์ง์(2011-0020559)๊ณผ, ๊ตญํ ํด์๋ถ ๊ฑด์ค๊ธฐ์ ํ์ ์ฌ์
์ด์ฅ๋๊ต๋์ฌ์
๋จ(08 ๊ธฐ์ ํ์ E01)์ ์ฐ๊ตฌ๋น ์ง์์ผ๋ก ์ํ๋์์.OAIID:oai:osos.snu.ac.kr:snu2013-01/104/0000004648/6SEQ:6PERF_CD:SNU2013-01EVAL_ITEM_CD:104USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:TB1-2.pdfDEPT_NM:๊ธฐ๊ณํญ๊ณต๊ณตํ๋ถEMAIL:[email protected]:
Development of Distributed Computing Environment and Its Application to Evaluation of Flutter Onset Velocity of Bridge Deck Section
The purpose of this paper is the evaluation of the flutter velocity acting on a moving bridge deck section using so called the Distributed Computing Environment. The Distributed Computing Environment is a virtual organization supporting CFD (Computational Fluid Dynamics) simulations for the users who have a lack of knowledge on CFD. The two-dimensional unsteady incompressible Navier-Stokes equations are used as the governing equations and moving mesh technique is used to model the movement of the bridge deck section to validate the research environment. Also, solution procedures for the flutter condition of structures that includes the computed unsteady aerodynamic forces are presented. The validation is examined by comparing the computed and experimentally evaluated flutter velocity.๋ณธ ๋
ผ๋ฌธ์์๋ ์ง๋์ค์ธ ๊ต๋ ๋จ๋ฉด์ ์์ฉํ๋ ํํ์ค์ ์ฐ์ ํ๊ณ ๊ทธ์ ๋ฐ๋ฅธ ํ๋ฌํฐ ๋ฐ์ํ์์ ์์ธกํ๊ธฐ ์ํ์ฌ ๋ถ์ฐํ ์ ์ฐํ๊ฒฝ์ ํ์ฉํ ์์นํด์ ์ฐ๊ตฌ๋ฅผ ์ํํ์๋ค. ๋ถ์ฐํ ์ ์ฐํ๊ฒฝ์ ์น ํฌํ์ ๊ธฐ๋ฐ์ผ๋ก ์์นํด์ ํ๊ฒฝ์ ์ ๊ณตํ๋ ์ผ์ข
์ ์์นํ๋ ์์คํ
์ผ๋ก์, ์ ์ฐ์ ์ฒด์ญํ (CFD: Computational Fluid Dynamics) ์ ๋ํ ์ ๋ฌธ์ง์์ด ๋ถ์กฑํ ์ฌ์ฉ์๋ค๋ ๊ฒฉ์์์ฑ, ์์นํด์์๋ฅผ ์ด์ฉํ ๊ณ์ฐ, ๊ฐ์ํ ๋ฑ์ ์ ๊ณผ์ ์ ํธ๋ฆฌํ๊ฒ ์ํํ ์ ์๋ ์ฐจ์ธ๋ ํ ๋ชฉ
๋ถ์ผ ๊ณ์ฐ ํ๊ฒฝ์ด๋ค. ๋ณธ ์ฐ๊ตฌ ํ๊ฒฝ์ ๊ฒ์ฆ์ ์ํด ์์นํด์์์ ์ ์ฉ๋ ์ง๋ฐฐ๋ฐฉ์ ์์ 2์ฐจ์ ๋น์ ์ Navier-Stokes ๋ฐฉ์ ์์ผ๋ก์, ๊ต๋์ ์์ง์์ ๋ชจ์ฌํ๊ธฐ ์ํ์ฌ ๋์ ๊ฒฉ์ ๊ธฐ๋ฒ์ ๋์
ํ์๋ค. ๋ํ ๊ณ์ฐ๋ ๋น์ ์๊ณต๊ธฐ๋ ฅ์ ์ ์ฉํ์ฌ ํ๋ฌํฐ ๋ฐ์ํ์์ ์ฐ์ ํ์์ผ๋ฉฐ, ๊ทธ ๊ฒฐ๊ณผ๋ ๊ธฐ์กด์ ์คํ๊ฒฐ๊ณผ์ ์ ์ผ์นํจ์ ํ์ธํ์๋ค.๋ณธ ์ฐ๊ตฌ๋ ๊ตญํ ํด์๋ถ ๊ฑด์ค๊ธฐ์ ํ์ ์ฌ์
์ด์ฅ๋๊ต๋ ์ฌ์
(08๊ธฐ์ ํ์ E01)์ ์ฐ๊ตฌ๋น ์ง์์ผ๋ก ์ํ๋์์ผ๋ฉฐ, ๋ํ ๊ตญํ ํด์๋ถ ๊ฑด์ค๊ธฐ์ ํ์ ์ฌ์
(09๊ธฐ์ ํ์ E02)์ ์ฐ๊ตฌ๋น ์ง์์ผ๋ก ์ํ๋์์.OAIID:oai:osos.snu.ac.kr:snu2011-01/102/0000004648/5SEQ:5PERF_CD:SNU2011-01EVAL_ITEM_CD:102USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:๋ถ์ฐํ_์ ์ฐํ๊ฒฝ_๊ฐ๋ฐ_๋ฐ_์ด๋ฅผ_ํ์ฉํ_๊ต๋๋จ๋ฉด์_ํ๋ฌํฐ_๋ฐ์ํ์_์ฐ์ .pdfDEPT_NM:๊ธฐ๊ณํญ๊ณต๊ณตํ๋ถEMAIL:[email protected]_YN:NCONFIRM:
A Parametric Study in Two-dimensional Insects" Flapping Flight Considering Structural Flexibility
๊ณค์ถฉ ๋ ๊ฐฏ์ง ๋นํ์์ ๋ ๊ฐ์ ์ฃผ์ ์ ์ฒด ๊ฐ์ ์ํธ์์ฉ์ ๊ณต๋ ฅํน์ฑ์ ๊ฒฐ์ ์ง๋ ๋งค์ฐ ์ค์ํ ์์ ์ค ํ๋์ด๋ค. ๋ณธ ๋
ผ๋ฌธ์์๋ ๊ฒ์ ๊ธํ๋ฆฌ์ ์ ์ง๋ชจ์ฌ ๋นํ์ ๋ํ์ฌ 2์ฐจ์ ์ ์ฒด-๊ตฌ์กฐ ์ฐ์ฑ ํด์์ ์ํํ์๋ค. ๋ ๊ฐฏ์ง ๊ณค์ถฉ์ ์ ์ง ๋นํ ์ ๋ ๊ฐ์ ๊ตฌ์กฐ ๋ณํ์ด ๊ณต๋ ฅ์ ๋ฏธ์น๋ ์ํฅ์ ์ดํด๋ณด๊ณ , ๋ค์ํ ์ ๋์กฐ๊ฑด์ ๋ฐ๋ฅธ ํ๋ผ๋ฉํธ๋ฆญ ์ฐ๊ตฌ๋ฅผ ํตํ์ฌ ๊ฐ๊ฐ์ ์ ๋์ฅ ๋ฐ ๊ณต๋ ฅํน์ฑ์ ๋ถ์ํ์๋ค. ์ด๋ฅผ ์ํ์ฌ ์ ์ฒด์ ๊ตฌ์กฐํด์ ๋ชจ๋์ ๊ฐ๊ฐ ๋
๋ฆฝ์ ์ผ๋ก ๊ตฌ์ฑํ์๊ณ , ๊ตฌ์กฐ ๋ณํ์ผ๋ก ์ธํ ์ ์ฒด ๊ฒฉ์์ ๋ณํ์ ๋ชจ์ฌํ๊ธฐ ์ํ์ฌ ๋์ ๊ฒฉ์ ๋ณํ๊ธฐ๋ฒ์ ์ ์ฉํ์๋ค. ๋ํ ์ ์ฒด์ ๊ตฌ์กฐ ๊ฒฉ์ ๊ฒฝ๊ณ๋ฉด์์ ๋ฌผ๋ฆฌ์ ์ ๋ณด ์ ๋ฌ์ ์ํ์ฌ Common refinement ๊ธฐ๋ฒ์ ์ ์ฉํ์๋ค. ๊ทธ ๊ฒฐ๊ณผ, ์ ์ฐํ ๋ ๊ฐ๊ฐ ๋ ๋์ ๊ณต๋ ฅํน์ฑ์ ๋ํ๋์ผ๋ฉฐ, ํ๋ผ๋ฉํธ๋ฆญ ์ฐ๊ตฌ๋ฅผ ํตํด ๋ค์ํ ์ ๋์กฐ๊ฑดํ์์๋ ์ ์ฌํ ๋ฌผ๋ฆฌํ์์ด ๋ํ๋๋ ๊ฒ์ ํ์ธํ ์ ์์๋ค.Interaction between a flexible flapping wing and the ambient fluid is of considerable importance in insects flapping flight. In this paper, two-dimensional FSI (Fluid-Structure Interaction) simulations are conducted to examine aerodynamic change due to structural flexibility of insect wing and to investigate flow features of insects" flapping motion under various flight conditions. The fluid module and solid module are developed separately. A dynamic grid deformation technique based on Delaunay graph mapping is used to deform computational grids. Also, in order to exchange physical information to each module, the common refinement method is employed. Through these simulations, the flexible airfoil generate more aerodynamic forces than the rigid airfoil and it is observed that key physical phenomena are still observed in various flow conditions.๋ณธ ์ฐ๊ตฌ๋ ํ๊ตญ์ฐ๊ตฌ์ฌ๋จ์ ํตํด ๊ต์ก๊ณผํ๊ธฐ์ ๋ถ
์ ์ฐ์ฃผ๊ธฐ์ด์์ฒ๊ธฐ์ ๊ฐ๋ฐ ์ฌ์
(NSL, National Space Lab, ๊ณผ์ ๋ฒํธ 20090091724)์ ์ง์ ๋ฐ ๊ตญํ ํด์๋ถ ๊ฑด์ค๊ธฐ์ ํ์ ์ฐ๊ตฌ๊ฐ๋ฐ ์ด์ฅ๋๊ต๋ ์ฌ
์
์ ์ฐ๊ตฌ๋น์ง์(08๊ธฐ์ ํ์ E01)์ ์ํด ์ํ๋
์์.OAIID:oai:osos.snu.ac.kr:snu2011-01/104/0000004648/11SEQ:11PERF_CD:SNU2011-01EVAL_ITEM_CD:104USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:๊ตฌ์กฐ_์ ์ฐ์ฑ์_๊ณ ๋ คํ_2์ฐจ์_๊ณค์ถฉ_๋ ๊ฐฏ์ง_๋นํ์_ํ๋ผ๋ฉํธ๋ฆญ_์ฐ๊ตฌ.pdfDEPT_NM:๊ธฐ๊ณํญ๊ณต๊ณตํ๋ถEMAIL:[email protected]:
The Unsteady Aerodynamic Characteristics of Wing-Body-Vortex Interactions in Three-dimensional Insects Flapping Flight
This paper investigates the unsteady aerodynamic features of wing-body-vortex interactions in three-dimensional insects' flapping motions under forward flight conditions. Detailed numerical simulations of five types of wings are carried out under various body angles to examine unsteady flow characteristics resulting from the complicated wing-body-vortex interactions, and the results are compared with those of the wing only case. Also, it is revealed that realistic geometric considerations have a considerable influence on the aerodynamic force generation in insects' flight.OAIID:oai:osos.snu.ac.kr:snu2014-01/104/0000004648/13SEQ:13PERF_CD:SNU2014-01EVAL_ITEM_CD:104USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:3์ฐจ์ ๊ณค์ถฉ ๋ ๊ฐฏ์ง.pdfDEPT_NM:๊ธฐ๊ณํญ๊ณต๊ณตํ๋ถCONFIRM:
Development of e-Science-based Fluid Dynamics Software and Contents for Education and Research in Aerospace Engineering on the EDISON_CFD Portal
EDISON_CFD๋ EDucation-research Integration through Simulation On the Net๊ณผ Computational Fluid Dynamics์ ์ฝ์๋ก e-Science ์ธํ๋ผ ๊ธฐ๋ฐ์ ํญ๊ณต์ฐ์ฃผ๋ถ์ผ ์ ์ฒด์ญํ ๊ต์กยท์ฐ๊ตฌ ํ๊ฒฝ์ ์ง์นญํ๋ค. ํญ๊ณต์ฐ์ฃผ๋ถ์ผ ์ ์ฒด์ญํ ๊ด๋ จ ์ฐ๊ตฌ๋ ๋ค์ํ ๊ตญ์ฑ
์ฌ์
๋ค์ ํตํด ๋ง์ ์ฑ๊ณผ๊ฐ ๋์ถ๋์์ผ๋ฉฐ, ๊ตญ๋ด ๋ํ์ ๋น๋กฏํ ์ ๋ถ์ถ์ฐ์ฐ๊ตฌ์ ๋ฐ ์ฐ์
์ฒด์ ๋ง์ ์ฑ๊ณผ๋ค์ด ์ถ์ ๋๊ณ ์๋ค. ๊ทธ๋ฌ๋ ์ฒจ๋จ ๊ธฐ์ ์ ํ์๋ค์๊ฒ ์ ๋ฌํ๊ธฐ ์ํ ๊ต์ก ์ฝํ
์ธ ๋ ๋งค์ฐ ๋ถ์กฑํ๋ค. ๋ณธ ์ฐ๊ตฌ์์๋ ํญ๊ณต์ฐ์ฃผ๋ถ์ผ์ ์ฐ๊ตฌ ์ฑ๊ณผ๋ฅผ ํ์ฉํ๊ณ e-Science ๊ธฐ์ ์ ์ฅ์ ์ ๊ทน๋ํํ์ฌ, ์จ๋ผ์ธ์์์ ํ์ฉ ๊ฐ๋ฅํ ์ ์ฒด์ญํ ๊ด๋ จ ๊ต์กยท์ฐ๊ตฌ์ฉ SW ๋ฐ ์ฝํ
์ธ ๋ฅผ ๊ฐ๋ฐํ๊ณ ์ ํ๋ค. ์ด๋ฅผ ํตํด ์ ์ฒด๊ณตํ ๋ถ์ผ ๋ํ(์)์์ ์ ์ฐ ํด์ ๋ฐ ์ค๊ณ๊ธฐ์ ์ ์๋ ฅ์ ์ ๊ณ ํ๊ณ , ํฅํ ๊ตญ๊ฐ ๊ณผํ๊ธฐ์ ๊ฒฝ์๋ ฅ์ ๋์ด๋ ์ฐ์ํ ์ฐ๊ตฌ ์ธ๋ ฅ์ ์์ฑํ ์ ์์ ๊ฒ์ผ๋ก ๊ธฐ๋ํ๋ค.EDISON_CFD, an abbreviation of "EDucation-research Integration through Simulation On the Net for Computational Fluid Dynamics", is a virtual organization in the e-Science environment to support education & research of fluid dynamics in aerospace engineering and related fields. Through national research projects, many valuable R&D results have been developed and accumulated in universities, industries, and research institutes. However, the educational contents for delivering advanced technologies to students still lack. The present work aims to establish the open platform of simulation software and contents for online education & research using results of the state-of-the-art techniques in aerospace engineering. This will fortify not only the capability of students but also the national strength in the fields of fluid engineering.์ด ๋
ผ๋ฌธ์ 2011๋
๋ ๊ต์ก๊ณผํ๊ธฐ์ ๋ถ์ ์ฌ์์ผ๋ก
ํ๊ตญ์ฐ๊ตฌ์ฌ๋จ ์ฒจ๋จ์ฌ์ด์ธ์ค ๊ต์กํ๋ธ๊ฐ๋ฐ์ฌ์
์
์ง์์ ๋ฐ์ ์ํ๋ ์ฐ๊ตฌ์(2011-0020558,
2011-0020559, 2011-0020560, 2011-0020565).OAIID:oai:osos.snu.ac.kr:snu2011-01/104/0000004648/27SEQ:27PERF_CD:SNU2011-01EVAL_ITEM_CD:104USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:e-Science_๊ธฐ๋ฐ_EDISON_CFD_ํฌํ์_ํญ๊ณต์ฐ์ฃผ๋ถ์ผ_๊ต์กยท์ฐ๊ตฌ์ฉ_์ ์ฒด์ญํ_์ํํธ์จ์ด_๋ฐ_์ฝํ
์ธ _๊ฐ๋ฐ.pdfDEPT_NM:๊ธฐ๊ณํญ๊ณต๊ณตํ๋ถEMAIL:[email protected]:
EDISON_CFD : Development of e-Science-based Simulation Software and Contents for Education and Research in Fluid Engineering
EDISON_CFD, an abbreviation of "EDucation-research Integration through Simulation On the Net for Computational Fluid Dynamics", is a virtual organization designed to support the education research in fluid engineering on the e-Science environment. As the first step, our research group focuses on developing simulation software and contents based on numerical analyses. Through national research projects, many R&D results have been developed and accumulated in universities and research institutes. However, educational contents used for delivering advanced researches to inspire students still lack. Thus, development of software and contents for effective and advanced education & research is necessary. The present work aims to establish the platform of simulation softwares and contents for online education research in fluid engineering using the results of the state-of-art techniques. This will fortify not only the capability of students in fluid engineering but also the national strength in research.์ด ๋
ผ๋ฌธ์ 2011๋
๋ ๊ต์ก๊ณผํ๊ธฐ์ ๋ถ์ ์ฌ์์ผ
๋ก ํ๊ตญ์ฐ๊ตฌ์ฌ๋จ ์ฒจ๋จ์ฌ์ด์ธ์ค ๊ต์กํ๋ธ๊ฐ๋ฐ์ฌ์
์ ์ง์์ ๋ฐ์ ์ํ๋ ์ฐ๊ตฌ์.
(2011-0020559, 2011-0020561, 2011-0020562)OAIID:oai:osos.snu.ac.kr:snu2011-01/104/0000004648/21SEQ:21PERF_CD:SNU2011-01EVAL_ITEM_CD:104USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:EDISON_CFD__์ ์ฒด๊ณตํ_๊ต์กยท์ฐ๊ตฌ์ฉ_e-Science_๊ธฐ๋ฐ_์๋ฎฌ๋ ์ด์
_์ํํธ์จ์ด_๋ฐ_์ฝํ
์ธ _๊ฐ๋ฐ.pdfDEPT_NM:๊ธฐ๊ณํญ๊ณต๊ณตํ๋ถEMAIL:[email protected]:
Development of the Simulation Software and Contents for Education and Research in Fluid Engineering on the EDISON_CFD Portal
๋ณธ ์ฐ๊ตฌ๋ ๊ต์ก๊ณผํ๊ธฐ์ ๋ถ ์ฒจ๋จ ์ฌ์ด์ธ์ค ๊ต์ก ํ๋ธ ๊ฐ๋ฐ ์ฌ์
(2011-0020559, 2011-0020561,2011-0020562)์ ์ง์์ผ๋ก ์ํ๋์์.OAIID:oai:osos.snu.ac.kr:snu2011-01/104/0000004648/33SEQ:33PERF_CD:SNU2011-01EVAL_ITEM_CD:104USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:EDISON_CFD_ํฌํ์_์ ์ฒด๊ณตํ_๊ต์กยท์ฐ๊ตฌ์ฉ_์๋ฎฌ๋ ์ด์
_์ํํธ์จ์ด_๋ฐ_์ฝํ
์ธ _๊ฐ๋ฐ.pdfDEPT_NM:๊ธฐ๊ณํญ๊ณต๊ณตํ๋ถEMAIL:[email protected]:
- โฆ