59 research outputs found

    A Study on the Insulation Diagnosis of Vacuum Interrupter by the analysis of Partial Discharge

    Get PDF
    Personal injuries and property damages are significantly being increased due to electrical accidents related to vacuum circuit breakers (VCB) in switchgear. Therefore, researches on a diagnostic technique for vacuum interrupters (VI) which is a core part of the VCB and quenching an arc generated during opening and closing has been actively conducted both domestic and abroad. In order to the insulation performance of the VI in the open state, partial discharge (PD) signals of each defect according to the applied voltage were measured using the KS C IEC 60270 method. The main defects that weaken the dielectric strength of the VI were classified into three types: leakage of vacuum, incomplete opening of the contact, and damage to the contact surface. The measurement system consists of a maximum voltage 50 ใŽธ mold transformer, a 10,000: 1 voltage divider, an oscilloscope, and an MPD 600. A VI for the rated voltage 25.8 ใŽธ and an electrode system made of internal contacts from the same VI were used in th experiment. A 50ฮฉ non-inductive resistance (Oscilloscope) and an 1ใŽ‹ coupling capacitor (MPD 600) were used to detect PD signal. The phase-resolved partial discharge (PRPD) method was used to analyze the PD characteristics such as discharge inception voltage (DIV), apparent discharge (), the number of pulses (), phase distribution (), and polarity ratio. Based on the PD characteristics of the open stated normal VI, the changes of the PD characteristics for each defect were analyzed and the effects of each defect on the deterioration of dielectric strength were derived. Through the diagnostic methods and techniques proposed in this paper, it is possible to diagnose insulation of the VI in an open state in operation. Accordingly, it is expected that the safety of the VCB, which is most often used in the switchgear of high-voltage customers, can be secured to improve the reliability of power facilities.์ˆ˜๋ฐฐ์ „๋ฐ˜ ๋‚ด ์ง„๊ณต ์ฐจ๋‹จ๊ธฐ์™€ ๊ด€๋ จ๋œ ์‚ฌ๊ณ  ์ฆ๊ฐ€๋กœ ์ธ๋ช…ํ”ผํ•ด์™€ ์žฌ์‚ฐํ”ผํ•ด๊ฐ€ ๋Š˜์–ด๋‚˜๊ณ  ์žˆ๋‹ค. ์ด์— ์ง„๊ณต ์ฐจ๋‹จ๊ธฐ์˜ ํ•ต์‹ฌ ๋ถ€ํ’ˆ์œผ๋กœ์จ ๊ฐœํ ์‹œ ๋ฐœ์ƒ๋˜๋Š” ์•„ํฌ๋ฅผ ์†Œํ˜ธํ•˜๋Š” ์ง„๊ณต ์ธํ„ฐ๋Ÿฝํ„ฐ์— ๋Œ€ํ•œ ์ง„๋‹จ๊ธฐ์ˆ (Diagnostic technique) ์—ฐ๊ตฌ๊ฐ€ ๊ตญยท๋‚ด์™ธ์—์„œ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ์ง„๊ณต ์ธํ„ฐ๋Ÿฝํ„ฐ์˜ ๊ฐœ๋ฐฉ ์ƒํƒœ์—์„œ ์ ˆ์—ฐ์„ฑ๋Šฅ ๊ฑด์ „์—ฌ๋ถ€๋ฅผ ์ง„๋‹จํ•˜๊ธฐ ์œ„ํ•ด KS C IEC 60270 ๋ถ€๋ถ„๋ฐฉ์ „ ๊ฒ€์ถœ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์ธ๊ฐ€์ „์••์— ๋”ฐ๋ฅธ ๊ฒฐํ•จ ๋ณ„ ๋ถ€๋ถ„๋ฐฉ์ „์„ ์ธก์ •ํ•˜์˜€๋‹ค. ์ง„๊ณต ์ธํ„ฐ๋Ÿฝํ„ฐ์˜ ์ ˆ์—ฐ๋‚ด๋ ฅ์„ ์•ฝํ™”์‹œํ‚ค๋Š” ์ฃผ์š” ๊ฒฐํ•จ์„ ์ง„๊ณต๋ˆ„์„ค ๋ฐ ์ ‘์ ์˜ ๋ถˆ์™„์ „ํ•œ ๊ฐœ๋ฐฉ, ์ ‘์ ํ‘œ๋ฉด์˜ ์†์ƒ์˜ 3๊ฐ€์ง€๋กœ ๋ถ„๋ฅ˜ํ•˜์˜€๋‹ค. ์ธก์ • ์‹œ์Šคํ…œ์€ ์ตœ๋Œ€ ์ถœ๋ ฅ์ „์•• 50ใŽธ ๋ชฐ๋“œ ๋ณ€์••๊ธฐ, 10,000:1 ๋ถ„์••๊ธฐ, ์˜ค์‹ค๋กœ์Šค์ฝ”ํ”„ ๋ฐ MPD 600 ๋“ฑ์œผ๋กœ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ์‹คํ—˜์—๋Š” ์ •๊ฒฉ์ „์•• 25.8ใŽธ ์ง„๊ณต ์ธํ„ฐ๋Ÿฝํ„ฐ์™€ ๋™์ผ ์ œํ’ˆ์˜ ๋‚ด๋ถ€ ์ ‘์ ์œผ๋กœ ์ œ์ž‘ํ•œ ์ „๊ทน๊ณ„๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋ถ€๋ถ„๋ฐฉ์ „ ๊ฒ€์ถœ์—๋Š” 50โ„ฆ ๋น„์œ ๋„์„ฑ์ €ํ•ญ(Oscilloscope)๊ณผ 1ใŽ‹ ์ปคํ”Œ๋ง ์ปคํŒจ์‹œํ„ฐ(MPD 600)๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋ฐฉ์ „๊ฐœ์‹œ์ „์••(DIV), ๋ฐฉ์ „์ „ํ•˜๋Ÿ‰(), ํŽ„์Šค๊ฐœ์ˆ˜(), ์œ„์ƒ๋ถ„ํฌ() ๋ฐ ๊ทน์„ฑ๋น„์™€ ๊ฐ™์€ ๋ถ€๋ถ„๋ฐฉ์ „ ํŠน์„ฑ์„ PRPD(Phase-resolved partial discharge) ๋ฒ•์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ •์ƒ ์ง„๊ณต ์ธํ„ฐ๋Ÿฝํ„ฐ์—์„œ ๊ฒ€์ถœ๋˜๋Š” ์‹ ํ˜ธ๋ฅผ ๊ธฐ์ค€์œผ๋กœ, ๊ฒฐํ•จ ๋ณ„ ๋ถ€๋ถ„๋ฐฉ์ „ ๊ฒ€์ถœํŠน์„ฑ ๋ณ€ํ™”๋ฅผ ๋ถ„์„ํ•˜์—ฌ ๊ฐ ๊ฒฐํ•จ์˜ ์ ˆ์—ฐ์„ฑ๋Šฅ ์˜ํ–ฅ ์ •๋„๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ์ง„๋‹จ ๋ฐฉ๋ฒ• ๋ฐ ๊ธฐ์ˆ ์„ ํ†ตํ•ด ์šด์šฉ ์ค‘์ธ ๊ฐœ๋ฐฉ ์ƒํƒœ์˜ ์ง„๊ณต ์ธํ„ฐ๋Ÿฝํ„ฐ์˜ ์ ˆ์—ฐ ์ง„๋‹จ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ณ ์•• ์ˆ˜์šฉ๊ฐ€์˜ ์ˆ˜๋ฐฐ์ „๋ฐ˜์— ๊ฐ€์žฅ ๋งŽ์ด ์‚ฌ์šฉ๋˜๋Š” ์ง„๊ณต ์ฐจ๋‹จ๊ธฐ์˜ ์•ˆ์ „์„ฑ์„ ํ™•๋ณดํ•˜์—ฌ ์ „๋ ฅ ์„ค๋น„์˜ ์‹ ๋ขฐ๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.์ œ 1 ์žฅ ์„œ ๋ก  1 ์ œ 2 ์žฅ ์ด ๋ก  4 2.1 ์ˆ˜๋ฐฐ์ „๋ฐ˜ 4 2.2 ๋ถ€๋ถ„๋ฐฉ์ „ 11 ์ œ 3 ์žฅ ์‹คํ—˜ ๋ฐ ๋ฐฉ๋ฒ• 18 3.1 ์‹คํ—˜๊ณ„ 18 3.2 ๋ถ€๋ถ„๋ฐฉ์ „ ์ธก์ • 23 ์ œ 4 ์žฅ ๊ฒฐ๊ณผ ๋ฐ ๋ถ„์„ 25 4.1 ์ •์ƒ ์ƒํƒœ 25 4.2 ๊ฒฐํ•จ๋ณ„ ํŠน์„ฑ 29 4.3 ๊ฒฐ๊ณผ ๊ณ ์ฐฐ 50 ์ œ 5 ์žฅ ๊ฒฐ ๋ก  55 ์ฐธ ๊ณ  ๋ฌธ ํ—Œ 57Maste

    Charge Transport Propeties of Nano-Structured Ceria Based Materials

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2012. 8. ๋ฅ˜ํ•œ์ผ.์„ธ๋ฆฌ์•„๊ณ„ ์žฌ๋ฃŒ๋Š” ํฌํ† ๋ฅ˜ ์‚ฐํ™”๋ฌผ ์ค‘ ๊ฐ€์žฅ ๋งค์žฅ๋Ÿ‰์ด ๋งŽ๊ณ  ์ด‰๋งค์žฌ๋ฃŒ์—์„œ๋ถ€ํ„ฐ ์ „ํ•ด์งˆ, ์ „๊ทน, ์„ผ์„œ๋“ฑ ๋‹ค์–‘ํ•œ ์‘์šฉ๋ถ„์•ผ์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋ฉฐ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ™œ๋ฐœํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ด๋ค„์ง€๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ ๋“ค์–ด ์‘์šฉ ์†Œ์ž ๋ถ„์•ผ์˜ ์†Œํ˜•ํ™”์™€ ์„ฑ๋Šฅ๊ฐœ์„ ์„ ์œ„ํ•ด ๋‚˜๋…ธํฌ๊ธฐ ํ˜น์€ ๋‚˜๋…ธ ๊ตฌ์กฐ ์„ธ๋ฆฌ์•„์˜ ํŠน์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ์ด ์š”๊ตฌ๋˜๊ณ  ์žˆ์œผ๋ฉฐ ์‹ค์ œ๋กœ ๋‚˜๋…ธ ์„ธ๋ฆฌ์•„ ๋ฌผ์งˆ์— ๋Œ€ํ•œ ๋งŽ์€ ์—ฐ๊ตฌ๋“ค์ด ๋งŽ์ด ๋ณด๊ณ ๋˜๊ณ  ์žˆ๊ณ  ๋‚˜๋…ธ ํšจ๊ณผ๋ฅผ ํ†ตํ•˜์—ฌ ๊ธฐ์กด์˜ ์„ธ๋ฆฌ์•„์˜ ํŠน์„ฑ์˜ ํ•œ๊ณ„๋ฅผ ๋„˜๊ณ ์ž ํ•˜๋Š” ๋…ธ๋ ฅ๋„ ์ด๋ค„์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ๋™์•ˆ ์„ธ๋ฆฌ์•„๊ณ„ ์žฌ๋ฃŒ์—์„œ์˜ ๋‚˜๋…ธํšจ๊ณผ๋Š” ๊ณต๊ฐ„์ „ํ•˜์ธต ํšจ๊ณผ์— ์ง‘์ค‘๋˜์–ด ๋ณด๊ณ ๋˜์–ด ์™”์œผ๋ฉฐ ๋‹ค์–‘ํ•œ ์›์ธ์— ๋Œ€ํ•œ ์ฒด๊ณ„์  ์ ‘๊ทผ์ด ๋ถ€์กฑํ•œ ์‹ค์ •์ด์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์„ธ๋ฆฌ์•„๊ณ„์˜ ๋‚˜๋…ธ ํฌ๊ธฐํšจ๊ณผ์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ์ฃผ์š”ํ•œ ์›์ธ์œผ๋กœ ์•Œ๋ ค์ง„ ๊ฒฐ์ •๋ฆฝ๊ณ„, ๊ฒฉ์ž ๋ณ€ํ˜•, ๊ณต๊ฐ„์ „ํ•˜์ธตํšจ๊ณผ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋ถ„๋ฆฌํ•˜์—ฌ ๊ฐ๊ฐ์˜ ์›์ธ๋“ค์ด ๋…๋ฆฝ์ ์œผ๋กœ ๋‚˜๋…ธ๊ตฌ์กฐ ์„ธ๋ฆฌ์•„์— ์–ด๋– ํ•œ ์˜ํ–ฅ์„ ์ฃผ๋Š”์ง€์— ๊ด€ํ•˜์—ฌ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๊ณ ์ˆœ๋„ ๋‚˜๋…ธ๋ถ„๋ง๋กœ๋ถ€ํ„ฐ ๋‚˜๋…ธ๊ฒฐ์ •๋ฆฝ ๋ฐ”๋Œ€ ์‹œํŽธ์„ ์ œ์กฐํ•˜์—ฌ ๊ฒฐ์ •๋ฆฝ๊ณ„์˜ ํšจ๊ณผ๋ฅผ ๊ด€์ฐฐํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ด์˜จ์ „๋„๋„์˜ ๊ฒฝ์šฐ ๊ฒฐ์ •๋ฆฝํฌ๊ธฐ๊ฐ€ 5๋งˆ์ดํฌ๋ก ์—์„œ 50nm๋กœ ๊ฐ์†Œํ•  ๋•Œ ์ด์˜จ์ „๋„๋„๋Š” 500โ„ƒ์—์„œ ์ตœ๋Œ€ log๊ฐ’์œผ๋กœ 0.15๋งŒํผ ๊ฐ์†Œํ•˜์˜€์œผ๋ฉฐ ์‘์šฉ์†Œ์ž๋“ค์˜ ์‚ฌ์šฉ์˜จ๋„์ธ 700โ„ƒ์—์„œ๋Š” 0.07์ฐจ์ด๋ฅผ ๋ณด์ผ ์ˆ˜ ์žˆ์Œ์„ ์ฐพ์•˜์œผ๋ฉฐ ๋˜ํ•œ ์ด์˜จ์ฐจ๋‹จ์ „๊ทน์„ ์‚ฌ์šฉํ•˜์—ฌ ์ธก์ •ํ•œ ๋ถ€๋ถ„ ์ „์ž ์ „๋„๋„ ์—ญ์‹œ ๊ฒฐ์ •๋ฆฝ๊ณ„์˜ ์˜ํ–ฅ์ด ์‹ฌ๊ฐํ•˜์ง€ ์•Š์€ ๊ฒƒ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ๋งŽ์€ ๊ฒฝ์šฐ์˜ ์„ธ๋ผ๋ฏน ์žฌ๋ฃŒ์—์„œ ๊ฒฐ์ •๋ฆฝ๊ณ„๊ฐ€ ์‹ฌ๊ฐํ•œ ์ €ํ•ญ์š”์ธ์œผ๋กœ ์ž‘์šฉํ•˜๋Š” ๊ฒƒ๊ณผ ๋‹ฌ๋ฆฌ Gd ๋“ค์ž„ ์„ธ๋ฆฌ์•„์˜ ๊ฒฝ์šฐ ๊ฒฐ์ •๋ฆฝ ์ฆ๊ฐ€์— ๋”ฐ๋ฅธ ์ „๊ธฐ์  ํŠน์„ฑ ๊ฐ์†Œ๊ฐ€ ๋งค์šฐ ์ž‘์Œ์„ ํ™•์ธํ•œ ๊ฒƒ์ด๋‹ค. ํŠนํžˆ ์„ธ๋ฆฌ์•„์˜ ๋‘๊ฐ€์ง€ ์ „ํ•˜ ๋‚˜๋ฅด๊ฒŒ์— ์˜ํ•œ ์‚ฐ์†Œ ์ด์˜จ ์ „๋„์™€ ์ „์ž ์ „๋„๋„์—์„œ ๊ฐ๊ฐ ๊ฒฐ์ •๋ฆฝ๊ณ„์˜ ํšจ๊ณผ๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ ์žฌ๋ฃŒ๋‚ด์˜ ๊ฒฉ์ž ๋ณ€ํ˜•๊ณผ ์ „๊ธฐ์  ํŠน์„ฑ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ์•Œ๊ณ ์ž ab-initio๋ฒ•์„ ์ด์šฉํ•œ ์ด๋ฐฉ์„ฑ ๊ฒฉ์ž ๋ณ€ํ˜• ์ƒํƒœ์—์„œ ์„ธ๋ฆฌ์•„ ๊ฒฉ์ž๋‚ด์˜ ์‚ฐ์†Œ์ด์˜จ ์ด๋™ ํ™œ์„ฑํ™” ์—๋„ˆ์ง€ ๋ณ€ํ™”๋ฅผ ๊ณ„์‚ฐํ•œ ๊ฒฐ๊ณผ ์„ธ๋ฆฌ์•„ ๋ฐ•๋ง‰์ด ๋‘๊ป˜ ๋ฐฉํ–ฅ์œผ๋กœ ์ธ์žฅ ๋ณ€ํ˜• ์ƒํƒœ์˜ ๊ฒฝ์šฐ ๋ณ€ํ˜•์œจ์ด 5%๋กœ ์ฆ๊ฐ€ํ•  ๋•Œ ํ™œ์„ฑํ™” ์—๋„ˆ์ง€๋Š” 0.4eVโˆผ1.4eV๋กœ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ์‹ค์ œ ์‹คํ—˜์—์„œ (0001) ์•Œ๋ฃจ๋ฏธ๋‚˜ ๋‹จ๊ฒฐ์ • ์œ„์— ์—ํ”ผ์ธต์œผ๋กœ ์ž๋ž€ Gd ๋“ค์ž„ ์„ธ๋ฆฌ์•„ ๋ฐ•๋ง‰์˜ ๋‘๊ป˜๋ฅผ 403nmโˆผ52nm๋กœ ๋ณ€ํ™”ํ•˜์—ฌ ๋ฐ•๋ง‰์˜ ํ‰๊ท  ๊ฒฉ์ž ๋ณ€ํ˜•์œจ์ด ์ฆ๊ฐ€ํ•˜์˜€์„ ๋•Œ ์ „๊ธฐ ์ „๋„๋„ ์ธก์ •์„ ํ†ตํ•ด ๊ณ„์‚ฐํ•œ ํ™œ์„ฑํ™” ์—๋„ˆ์ง€ ๊ฐ€ 0.69eV์—์„œ 1.06eV๋กœ ์ฆ๊ฐ€ํ•œ ๊ฒƒ์— ๋Œ€์‘ํ•˜๋Š” ๊ฒฐ๊ณผ์ด๋ฉฐ ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ธฐ์กด์˜ ๋“ฑ๋ฐฉ์„ฑ ๊ฒฉ์ž ๋ณ€ํ˜•์— ๋Œ€ํ•œ ํ•ด์„๊ณผ ๋‹ฌ๋ฆฌ ์ด๋ฐฉ์„ฑ ๊ฒฉ์ž ๋ณ€ํ˜• ์ƒํƒœ์—์„œ ๊ฒฉ์ž ๋ณ€ํ˜•๊ณผ ํ™œ์„ฑํ™” ์—๋„ˆ์ง€์˜ ์ด๋ฅผ ์„ค๋ช…ํ•˜๋Š” ์„ธ๋ฆฌ์•„ ๊ฒฉ์ž๋‚ด์˜ ์‚ฐ์†Œ์ด์˜จ ์ด๋™ ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋‚˜๋…ธ๊ตฌ์กฐ ์„ธ๋ฆฌ์•„์—์„œ ๊ณต๊ฐ„์ „ํ•˜์ธต ํšจ๊ณผ๋ฅผ ํ™•์ธํ•˜๊ณ  ํ•ด์„ํ•˜๊ธฐ ์œ„ํ•ด ์ƒ์˜จ์—์„œ PLD๋ฒ•์œผ๋กœ ๊ฒฐ์ •๋ฆฝ ํฌ๊ธฐ 7nm์ธ ๋‹ค๊ฒฐ์ • ์„ธ๋ฆฌ์•„ ๋‚˜๋…ธ๊ฒฐ์ •๋ฆฝ ์‹œํŽธ์„ ์ œ์กฐํ•˜๊ณ  ์ „๊ธฐ์ „๋„๋„๋ฅผ ๊ด€์ฐฐํ•  ๊ฒฐ๊ณผ 750โ„ƒ์—์„œ ๋ฐ”๋Œ€ ์‹œํŽธ์˜ ์ „๊ธฐ ์ „๋„๋„์— ๋น„ํ•ด 30๋ฐฐ๊ฐ€๋Ÿ‰ ์ฆ๊ฐ€ํ•˜๊ณ  ํ™œ์„ฑํ™” ์—๋„ˆ์ง€๋Š” ๋ณด๊ณ ๋œ ๋ฐ”๋Œ€ ์‹œํŽธ์˜ ๊ฒฝ์šฐ์— 40% ์ˆ˜์ค€์— ๋ถˆ๊ณผ ํ•˜์˜€๋‹ค. ์ „๊ธฐ ์ „๋„๋„์˜ ์‚ฐ์†Œ๋ถ„์•• ์˜์กด์„ฑ์œผ๋กœ๋ถ€ํ„ฐ ์ฆ๊ฐ€๋œ ์ „๊ธฐ ์ „๋„๋„๋Š” ์ „์ž ์ „๋„๋„์— ์˜ํ•œ ๊ฒƒ์ž„์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ์œผ๋‚˜ ๋‚ฎ์€ ์‚ฐ์†Œ๋ถ„์•• ์˜์—ญ์—์„œ ์ „๊ธฐ ์ „๋„๋„์˜ ์‚ฐ์†Œ ๋ถ„์•• ์˜์กด์„ฑ์€ ๋ฐ”๋Œ€์˜ ๊ฒƒ๊ณผ ๋‹ฌ๋ž๋‹ค. ๊ธฐ์กด์—๋Š” ์ด๋Ÿฌํ•œ ํ˜„์ƒ์— ๊ด€ํ•œ ์ ์ ˆํ•œ ํ•ด์„์„ ํ•˜์ง€ ๋ชปํ•˜์˜€์œผ๋‚˜ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Debye length์˜ ์‚ฐ์†Œ ๋ถ„์•• ์˜์กด์„ฑ์— ๋Œ€ํ•ด ์ฐฉ์•ˆํ•˜๊ณ  ๊ทธ์— ๋”ฐ๋ผ ํ•ด์„ํ•œ ๊ฒฐ๊ณผ ํ™˜์›์— ์˜ํ•œ ์ „ํ•˜ ๋†๋„ ์ฆ๊ฐ€๋กœ ์ธํ•ด Debye length๊ฐ€ ๊ฐ์†Œํ•˜์—ฌ ๊ณต๊ฐ„ ์ „ํ•˜์ธต ํšจ๊ณผ๊ฐ€ ์‚ฌ๋ผ์ ธ๊ฐ€๋Š” ํ˜„์ƒ์ž„์„ ์ตœ์ดˆ๋กœ ์ œ์•ˆํ•˜๊ณ  ๋ฌธํ—Œ์— ๋ณด๊ณ ๋œ ๊ฒฐ์ •๋ฆฝ๊ณ„ ์ •์ „ํผํ…์…œ ๊ฐ’์„ ์ฐธ๊ณ ํ•˜์—ฌ ๊ณ„์‚ฐํ•œ ๊ฒฐ๊ณผ์™€ ์‹ค์ œ ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ๋น„๊ตํ•˜์—ฌ ์ œ์•ˆ๋œ ๋ชจ๋ธ์ด ์‹ค์ œ ์‹คํ—˜์˜ ๊ฑฐ๋™์„ ์ž˜ ์„ค๋ช…ํ•จ์„ ๋ณด์˜€๋‹คCeria is the most abundant material among the rare-earth oxide and shows superior properties in various kinds of applications like catalyst, electrolyte, electrode and sensor. Recently for the miniaturization of device and enhanced properties investigations about nano-structured ceria has been high-lighted. Up to date nano-size effect in ceria has been so space charge layer effect oriented that systematic researches about another origins have been insufficient. Therefore in this study separated effects of grain-boundary, lattice distortion and space charge layer on the electrical properties of nano-structured ceria based materials have been investigated. Bulk nano-crystalline samples with different grain sizes were fabricated from high purity nano-sized powder and we found that while grain size changed form 5 microns to 50nm the electrical conductivity decreased as much as 0.15 in log scale at 500โ„ƒ and 0.07 at 700โ„ƒ which is typical operation temperature in the application field. Also the partial electronic conductivities measured from polarization experiment with ion-blocking electrode were not significantly changed from different grain-sizes. From these experimental results we could conclude that grain-boundary in Gd doped ceria do not exhibit as significantly resistive layer. And this is true to both of electron and ion transports. And to find the correlation between lattice distortion and electrical property in ceria based system we calculated oxygen ion migraion activation energy changes as a function of lattice strain via ab-initio calculation method. While tensile strain to increase from 0% to 5% the oxygen ion migration activation energy also incrase from 0.4eV to 1.4eV. And same tendency has been observed in experiment. We deposited epitaxial GDC film on the (0001) sapphire varying the thickness from 403nm to 52nm. Their average strain was increased as film thickness decreased and also activation energy calculated from temperature dependance of electrical conductivity increased from 0.69eV to 1.06eV. To explain this phenomena we suggested oxygen ion migration model in GDC lattice under anisotropic strain state. At the last to confirm the space charge layer effect and explore the possibility to control space charge layer related nano size effect we successfully deposited poly-crystalline ceria thin film at the room temperature via PLDใ€€with grain size of 7nm. We found that at 750โ„ƒ the electrical conductivity of nano-crystalline ceria thin-film was 20 times higher than that of bulk ceria and the activation energy was only 40% of reported value of bulk ceria, which is in good agreement with reported space charge layer effect. Furthermore, after post-annealing at 1273K grain size of thin-film increased to 400nm, electrical conductivity and activation energy values has been changed to similar values of bulk which reveals that the unique properties of nano-crystalline thin-film has resulted from grain size effect in other words, space charge layer effect. In far reduced atmosphere the electrical conductivity of thin film and bulk became similar due to the unprecedented oxygen partial pressure dependence of nano-crystalline thin-film. Those phenomena can be theoretically predicted from the calculation based on SCL model by the oxygen partial pressure dependence of space charge layer (SCL) thickness. From all these theoretical and experimental results, we can conclude that SCL related nano-size effect in ceria can be reasonably tunable with the alteration of oxygen partial pressure.๋ชฉ ์ฐจ ์ดˆ ๋ก โ…ฐ ๋ชฉ ์ฐจ โ…ฒ List of Figures โ…ต List of Tables โ…นโ…ฒ 1. ์„œ ๋ก  1 1.1. ์—ฐ๊ตฌ์˜ ๋ชฉ์  ๋ฐ ๋ฐฐ๊ฒฝ 1 2. ๋ฌธํ—Œ์—ฐ๊ตฌ 5 2.1. ์„ธ๋ฆฌ์•„์˜ ์ผ๋ฐ˜์  ํŠน์„ฑ 5 2.1.1. ์„ธ๋ฆฌ์•„์˜ ์ „๊ธฐ์  ํŠน์„ฑ 10 2.1.2. ์„ธ๋ฆฌ์•„์˜ ๊ฒฐํ•จ๊ตฌ์กฐ 12 2.2. ๋‹ค์–‘ํ•œ ์„ธ๋ผ๋ฏน์žฌ๋ฃŒ์—์„œ์˜ ๋‚˜๋…ธ ํฌ๊ธฐ ํšจ๊ณผ 15 2.3. ๋‚˜๋…ธ๊ฒฐ์ •๋ฆฝ ๋ฌผ์งˆ์—์„œ์˜ ์ž…๊ณ„์˜ ์—ญํ•  25 2.4. ๊ฒฉ์ž๋ณ€ํ˜•๊ณผ ์žฌ๋ฃŒ์˜ ์ „๊ธฐ์  ๋ฌผ์„ฑ์˜ ์ƒ๊ด€๊ด€๊ณ„ 31 2.5. ์„ธ๋ฆฌ์•„๊ณ„ ๋‚˜๋…ธ๊ตฌ์กฐ ์žฌ๋ฃŒ์—์„œ ๊ณต๊ฐ„์ „ํ•˜์ธต ํšจ๊ณผ 38 3. ์ด๋ก ์  ๋ฐฐ๊ฒฝ 45 3.1. ๊ต๋ฅ˜ ์ž„ํ”ผ๋˜์Šค ๋ถ„๊ด‘๋ฒ• 45 3.2. ์ด์˜จ ์ฐจ๋‹จ์ „๊ทน์„ ์ด์šฉํ•œ Hebb-Wagner ๋ถ„๊ทน๋ฒ• 54 3.3. ๊ฒฉ์ž๋ณ€ํ˜•๊ณผ ์ „๊ธฐ์  ๋ฌผ์„ฑ์— ๊ด€ํ•œ ์—ด์—ญํ•™์  ํ•ด์„ 62 3.4. PLD(Pulsed Laser Depostion)๋ฅผ ์ด์šฉํ•œ ๋ฐ•๋ง‰ ์ฆ์ฐฉ ์›๋ฆฌ 65 3.5. ๊ณต๊ฐ„์ „ํ•˜์ธต์˜ ์ƒ์„ฑ ์›์ธ์— ๊ด€ํ•œ ๊ณ ์ฐฐ 70 3.6. ๊ณต๊ฐ„์ „ํ•˜์ธต์—์„œ ์„ธ๋ฆฌ์•„๊ณ„ ๋ฌผ์งˆ์˜ ์ „๊ธฐ ์ „๋„๋„ 87 4 . ์‹คํ—˜๋ฐฉ๋ฒ• 96 4.1 ๋ฐ”๋Œ€ ๋‚˜๋…ธ ๊ฒฐ์ •๋ฆฝ ์‹œํŽธ์˜ ์ œ์กฐ 96 4.2. ๊ต๋ฅ˜ ์ž„ํ”ผ๋˜์Šค ๋ถ„๊ด‘๋ฒ•์„ ์ด์šฉํ•œ ์ „์ฒด ์ „๊ธฐ์ „๋„๋„ ์ธก์ • 102 4.3 Hebb-Wagner ๋ถ„๊ทน๋ฒ•์„ ์ด์šฉํ•œ ๋ถ€๋ถ„์ „์ž ์ „๋„๋„ ์ธก์ • 106 4.4. PLD๋ฅผ ์ด์šฉํ•œ GDC ๋ฐ•๋ง‰ ์ œ์กฐ 109 4.5. GDC ๋ฐ•๋ง‰์˜ ์ „๊ธฐ์ „๋„๋„ ์ธก์ • 111 4.6. Ab-initio๋ฒ•์„ ์ด์šฉํ•œ ๊ฒฉ์ž๋ณ€ํ˜•๊ณผ ์ „๊ธฐ์  ํŠน์„ฑ ๋ณ€ํ™” ๊ณ„์‚ฐ 113 4.7. ๋‚˜๋…ธ๊ฒฐ์ •๋ฆฝ ์„ธ๋ฆฌ์•„๊ณ„ ๋ฐ•๋ง‰์˜ ์ œ์กฐ 116 4.8 ์„ธ๋ฆฌ์•„๊ณ„ ๋‚˜๋…ธ ๊ตฌ์กฐ ๋ฐ•๋ง‰์˜ ์ „๊ธฐ์  ํŠน์„ฑ๋ถ„์„ 118 4.8.1 ๊ธฐ์ฒด ํ˜ผํ•ฉ์„ ํ†ตํ•œ ์‚ฐ์†Œ ๋ถ„์•• ์กฐ์ ˆ 118 5. ์‹คํ—˜๊ฒฐ๊ณผ 122 5.1. ๋ฐ”๋Œ€ ๋‚˜๋…ธ๊ฒฐ์ •๋ฆฝ GDC์˜ ์ „๊ธฐ์  ํŠน์„ฑ ๋ถ„์„ 122 5.2. Hebb-Wagner ๋ถ„๊ทน๋ฒ•์„ ์ด์šฉํ•œ ๋ถ€๋ถ„์ „์ž ์ „๋„๋„ ์ธก์ • 136 5.2. ๋‚˜๋…ธํฌ๊ธฐ ๋ฐ•๋ง‰์˜ ์ „๊ธฐ์  ๋ฌผ์„ฑ ํ‰๊ฐ€์— ๊ด€ํ•œ ๊ณ ์ฐฐ 143 5.2.1. ๋ฐ•๋ง‰ ์ „๊ธฐ ์ „๋„๋„ ์ธก์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์˜ค๋ฅ˜ 143 5.2.2. ๋ฐ•๋ง‰ ์ „๊ธฐ์ „๋„๋„ ์ธก์ •์—์„œ ์™ธ๋ถ€ํšจ๊ณผ์˜ ์˜ˆ์‹œ 149 5.2.3. ๋ฐ•๋ง‰ ์ „๊ธฐ์ „๋„๋„ ์ธก์ •์—์„œ ์™ธ๋ถ€ํšจ๊ณผ ์˜ํ–ฅ์˜ ํ™•์ธ 165 5.3 ๋‚˜๋…ธํฌ๊ธฐ GDC ๋ฐ•๋ง‰์—์„œ์˜ ๊ฒฉ์ž๋ณ€ํ˜• ํšจ๊ณผ 169 5.3.1. GDC ๋ฐ•๋ง‰์˜ ๋ฏธ์„ธ๊ตฌ์กฐ ๋ถ„์„ 169 5.3.2. GDC ๋ฐ•๋ง‰์˜ ์ „๊ธฐ์ „๋„๋„ 175 5.3.3. Ab-initio ๊ณ„์‚ฐ ๊ฒฐ๊ณผ์™€ ์‚ฐ์†Œ์ด์˜จ ์ด๋™ ๋ชจ๋ธ 185 5.4. ๋‚˜๋…ธ๊ฒฐ์ •๋ฆฝ ์„ธ๋ฆฌ์•„ ๋ฐ•๋ง‰์—์„œ์˜ ๊ณต๊ฐ„์ „ํ•˜์ธต ํšจ๊ณผ 192 5.4.1 ์„ธ๋ฆฌ์•„๊ณ„ ๋‚˜๋…ธ๊ฒฐ์ •๋ฆฝ ๋ฐ•๋ง‰์˜ ๊ตฌ์กฐ ๋ถ„์„ 192 5.4.2 ๋‚˜๋…ธ๊ฒฐ์ •๋ฆฝ ์„ธ๋ฆฌ์•„ ๋ฐ•๋ง‰์˜ ์ „๊ธฐ์  ํŠน์„ฑ 198 5.4.3 ์‚ฐ์†Œ๋ถ„์•• ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๋‚˜๋…ธ๊ตฌ์กฐ ๋ฐ•๋ง‰์˜ ์ „๊ธฐ์ „๋„๋„ ๋ณ€ํ™”์— ๋Œ€ํ•œ ๊ณ ์ฐฐ 203 6. ๊ฒฐ๋ก  ๋ฐ ์š”์•ฝ 209 7. ์ฐธ๊ณ ๋ฌธํ—Œ 212Docto

    ์–‘์žฌ์ฒœ ์ž์—ฐํ˜•ํ•˜์ฒœ ๋ณต์› ๊ณ„ํš

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ํ™˜๊ฒฝ๋Œ€ํ•™์› :ํ™˜๊ฒฝ์กฐ๊ฒฝํ•™๊ณผ,1998.Maste

    รœber die Strafzumessungspraxis beim Ausspruch einer Zusatzstrafe

    No full text
    • โ€ฆ
    corecore