5 research outputs found

    A Valuation of Options to Extend the Time Charter Period: The Application of Artificial Neural Networks

    Get PDF
    Options in the shipping market consist of paper freight options and physicaloptions attached to charterparties or newbuilding contracts. The options most frequently associated with the physical shipping market are options to extend the charter period on time charters and additional shipment options attached to contracts of affreightment. In both the paper market and the physical market, the value of freight options, in practice, is estimated mostly by referring to the forward curves of freight derivatives. The option on freight has different properties from its financial counterparts, and the straightforward adoption of theoretical models like the Black-Sholes option pricing model (BSM) has not produced promising results. So far, academic research in this field has also hardly made a meaningful contribution to practice and is in need of further elaboration. This research focuses on the period extension options attached to time charter contracts. In this paper, extension options, which have the property of options on futures, were conceptually transformed into regular European call options before the BSM was applied. The efficient market hypothesis (EMH), which justifies the parity of the performance of a long-term charter to that of repetitive short-term charters for the same period, worked as the basis of the conversion. The option values determined by the BSM were compared with the actual realized values to verify the applicability of the model. Additionally, a robust relationship mapping model, artificial neural networks (ANN), was employed to derive the option values, and then the results were compared with those of the BSM. The ANN is recently expanding its application to business, finance, and management, and is drawing attention in the areas of discrimination, pattern recognition, and forecasting. This study is meaningful as the first-time application of both the closed-form solution and the ANN to the valuation of physical freight options. In particular, the application of the ANN is expected to lead the active adoption of machine learning tools in the analysis of shipping market behavior. The result of this research can contribute to enhancing the quality of chartering decisions by providing criteria to determine option values. The decision rationality to be achieved by the model can be contrasted with the fact that, so far, decisions have been made with a โ€˜rule-ofthumbโ€™ valuation of options. The extension option, in reality, tends to be granted to charterers with better credit, even free of charge when the market is at its trough. Hence, the results could also be used as a tool to quantify counterparty risk. This analysis is limited to the Panamax bulk market, which has long-term data consistency. The extension of the study to other segments of bulk shipping such as Cape, Supramax and even to wet bulk markets will help generalize the modelโ€™s performance. The result also implies the โ€˜forecastingโ€™ performance of the ANN because the value of the extension options contains the information required to make freight market forecasts. Therefore, the study can be extended to the area of forecasting. In that case, the performances can be tested with additional input variables, such as forward market features, to the BSM input variables.List of Tables .................................................................................................................................. vi List of Figures ............................................................................................................................... vii ์š” ์•ฝ ............................................................................................................................................. viii Abstract .............................................................................................................................................. x Chapter 1 Introductionโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆ.1 1.1 Background .............................................................................................................................. 1 1.2 Research Purposes ................................................................................................................ 2 1.3 Research Scope ...................................................................................................................... 3 1.4 Research Procedures ............................................................................................................ 4 1.5 Contribution ............................................................................................................................. 6 1.6 Structure of the Paper ......................................................................................................... 7 Chapter 2 Bulk Shipping and Freight Optionsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..โ€ฆโ€ฆโ€ฆ.8 2.1 Bulk Shipping as Freight Trading ................................................................................... 8 2.1.1 Freight trading ........................................................................................................ 8 2.1.2 Risk management ................................................................................................ 14 iv 2.2 Freight Options .................................................................................................................... 15 2.2.1 Paper freight options ......................................................................................... 16 2.2.2 Physical freight options .................................................................................... 18 Chapter 3 Literature Reviewโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..23 3.1 Asian Option Approximation .................................................................................... 23 3.2 Option on Futures ......................................................................................................... 25 3.3 European Options .......................................................................................................... 25 3.3.1 Binomial option pricing model ................................................................... 26 3.3.2 Black-Scholes option pricing model ....................................................... 26 3.4 Efficient Market Hypothesis and Expectations Theory ................................. 27 3.5 Artificial Neural Networks .......................................................................................... 30 Chapter 4 Data and Basic Assumptionsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..35 4.1 Data ...................................................................................................................................... 35 4.2 Basic Assumptions ......................................................................................................... 37 Chapter 5 Black-Scholes Option Pricing Modelโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..40 5.1 The BSM ............................................................................................................................. 40 5.2 Input Variables ................................................................................................................. 43 v Chapter 6 Artificial Neural Networksโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ44 6.1 Network Structure .......................................................................................................... 46 6.2 Normalization .................................................................................................................. 51 Chapter 7 Resultsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.53 7.1 Measurements ................................................................................................................. 53 7.2 Black-Scholes Option Pricing Model ..................................................................... 54 7.3 Artificial Neural Networks .......................................................................................... 55 7.4 Comparison ....................................................................................................................... 58 Chapter 8 Conclusionโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ..60 References ...................................................................................................................................... 63 Appendix I ...................................................................................................................................... 68 Appendix II .................................................................................................................................... 74Docto

    ๋Œ€์šฉ๋Ÿ‰ GPS ํ†ตํ–‰์ž๋ฃŒ๋ฅผ ์ด์šฉํ•œ ๊ณ ์†๋„๋กœ ์—ฐ๊ฒฐ๋„๋กœ AADT ์ถ”์ •

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ํ™˜๊ฒฝ๋Œ€ํ•™์› : ํ™˜๊ฒฝ๋Œ€ํ•™์› ํ™˜๊ฒฝ๊ณ„ํšํ•™๊ณผ ๊ตํ†ตํ•™ ์ „๊ณต, 2016. 2. ์ด์˜์ธ.์šฐ๋ฆฌ๋‚˜๋ผ์˜ ์ธ๊ฐ„ยทํ™”๋ฌผ ์ˆ˜์†ก์˜ ๋งŽ์€ ๋ถ€๋ถ„์€ ๋„๋กœ๋ฅผ ํ†ตํ•ด ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ๋„๋กœ๋ฅผ ํ†ตํ•œ ์ˆ˜์†ก์ด ๋งŽ์€ ๋งŒํผ ์ ์ ˆํ•œ ๊ตํ†ต์ •์ฑ… ๋ฐ ๋„๋กœ์šด์˜๊ด€๋ฆฌ๋ฅผ ํ†ตํ•ด ๊ตํ†ต์— ์ง€์žฅ์ด ์—†๋„๋ก ํ•  ํ•„์š”๊ฐ€ ์žˆ์œผ๋ฉฐ, ๋”ฐ๋ผ์„œ ๊ทธ์— ๊ธฐ์ดˆ๊ฐ€ ๋˜๋Š” ๊ตํ†ต๋Ÿ‰ ์ž๋ฃŒ์˜ ๊ตฌ์ถ•์ด ํ•„์š”ํ•˜๋‹ค. ๊ตํ†ต๋Ÿ‰์€ ๋„๋กœ๊ณ„ํš ๋ฐ ์„ค๊ณ„, ๋„๋กœ์šด์˜ ๋“ฑ์— ํ™œ์šฉ๋˜๋ฉฐ, ์—ฐํ‰๊ท  ์ผ๊ตํ†ต๋Ÿ‰(AADT)๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๋…ธ์„ ๊ณ„ํš ๋ฐ ์„ค๊ณ„, ๋„๋กœ์˜ ํ™•์žฅ์ด ์ด๋ฃจ์–ด์ง„๋‹ค. ํ˜„์žฌ ๊ณ ์†๋„๋กœ์—์„œ๋Š” ๊ตํ†ต๋Ÿ‰ ์ž๋ฃŒ์˜ ๊ตฌ์ถ•์„ ์œ„ํ•ด ๋ณธ์„  ๊ตฌ๊ฐ„์— ๋Œ€ํ•œ ์กฐ์‚ฌ๊ฐ€ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ํ•œํŽธ ๊ณ ์†๋„๋กœ ์—ฐ๊ฒฐ๋„๋กœ ๊ตฌ๊ฐ„์€ ๊ตํ†ต๋ฅ˜ ํ๋ฆ„์ด ํ•ฉ/๋ถ„๋ฅ˜ํ•˜๋Š” ์ƒ์ถฉ๊ตฌ๊ฐ„์œผ๋กœ ์‚ฌ๊ณ ๋ฐœ์ƒ์˜ ์œ„ํ—˜์ด ๋†’์•„ ๊ตํ†ต๋Ÿ‰ ์ž๋ฃŒ์— ๊ธฐ์ดˆํ•œ ์ ์ ˆํ•œ ๊ณ„ํš ๋ฐ ์„ค๊ณ„, ์šด์˜๊ด€๋ฆฌ ๋“ฑ์ด ํ•„์š”ํ•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜„์žฌ ๊ณ ์†๋„๋กœ ์—ฐ๊ฒฐ๋„๋กœ ๊ตฌ๊ฐ„์˜ ๊ตํ†ต๋Ÿ‰ ์กฐ์‚ฌ๋Š” ์ด๋ฃจ์–ด์ง€์ง€ ์•Š๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋Œ€์šฉ๋Ÿ‰ GPS ํ†ตํ–‰์ž๋ฃŒ ์ค‘ ํ•˜๋‚˜์ธ ์ฐจ๋Ÿ‰์šฉ ๋‚ด๋น„๊ฒŒ์ด์…˜ ์ž๋ฃŒ์™€ ํ•œ๊ตญ๋„๋กœ๊ณต์‚ฌ TCS ์ž๋ฃŒ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ณ ์†๋„๋กœ ์—ฐ๊ฒฐ๋„๋กœ ๊ตฌ๊ฐ„์˜ ๊ตํ†ต๋Ÿ‰(AADT)๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ฐจ๋Ÿ‰์šฉ ๋‚ด๋น„๊ฒŒ์ด์…˜ ์ž๋ฃŒ๋Š” ํ•ด๋‹น ๋„๋กœ์˜ ์‹ค์ œ ์‹œ๊ฐ„๋Œ€๋ณ„ ๊ตํ†ต๋Ÿ‰ ๋ถ„ํฌ์™€ ์œ ์‚ฌํ•œ ํŠน์„ฑ์„ ๋ณด์ด๊ธฐ ๋•Œ๋ฌธ์— AADT๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋ฐ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ์ ์šฉํ•˜์—ฌ ์ผ๋ถ€ ๊ณ ์†๋„๋กœ ์—ฐ๊ฒฐ๋„๋กœ ๊ตฌ๊ฐ„์˜ AADT๋ฅผ ์ถ”์ •ํ•œ ๊ฒฐ๊ณผ, ๊ด€์ธก AADT์™€ ํฐ ์˜ค์ฐจ ์—†์ด ์ถ”์ •์ด ์ด๋ฃจ์–ด์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ๊ตํ†ต๋Ÿ‰์˜ ๊ทœ๋ชจ๊ฐ€ ํฐ ๊ตฌ๊ฐ„์ผ์ˆ˜๋ก ์˜ค์ฐจ์œจ์ด ๋‚ฎ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ–ฅํ›„ ๋ณ„๋„์˜ ์ธ๋ ฅ์‹ ์กฐ์‚ฌ๋ฅผ ๊ฑฐ์น˜์ง€ ์•Š๊ณ  ๊ณ ์†๋„๋กœ ์—ฐ๊ฒฐ๋„๋กœ ๊ตฌ๊ฐ„์˜ AADT๋ฅผ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•˜์˜€๋‹ค.I. ์„œ๋ก  1 1. ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 2. ์—ฐ๊ตฌ์˜ ๋ฒ”์œ„ 2 3. ์—ฐ๊ตฌ์˜ ๋ฐฉ๋ฒ• ๋ฐ ์ ˆ์ฐจ 3 II. ๊ตํ†ต๋Ÿ‰ ์กฐ์‚ฌ ํ˜„ํ™ฉ ๋ฐ ์„ ํ–‰์—ฐ๊ตฌ ๊ณ ์ฐฐ 6 1. ๊ตํ†ต๋Ÿ‰ ์กฐ์‚ฌ ํ˜„ํ™ฉ 6 2. ์„ ํ–‰์—ฐ๊ตฌ ๊ณ ์ฐฐ 8 1) AADT ์ถ”์ • ๊ด€๋ จ ์—ฐ๊ตฌ 8 2) GPS ํ†ตํ–‰์ž๋ฃŒ ๊ด€๋ จ ์—ฐ๊ตฌ 10 3) OD balancing ๊ด€๋ จ ์ด๋ก  11 3. ์‹œ์‚ฌ์  ๋ฐ ์—ฐ๊ตฌ์˜ ์ฐจ๋ณ„์„ฑ 11 III. ๊ณ ์†๋„๋กœ ์—ฐ๊ฒฐ๋„๋กœ AADT ์ถ”์ • ๋ฐฉ๋ฒ•๋ก  ๊ฐœ๋ฐœ 14 1. ํšŒ์ „๊ตํ†ต๋Ÿ‰์˜ ์ •์˜ 14 2. ๋Œ€์šฉ๋Ÿ‰ GPS ํ†ตํ–‰์ž๋ฃŒ์˜ ์ •์˜ 15 3. ๋Œ€์šฉ๋Ÿ‰ GPS ํ†ตํ–‰์ž๋ฃŒ์˜ ์‹ ๋ขฐ๋„ ๊ฒ€ํ†  16 4. ๊ณ ์†๋„๋กœ ์—ฐ๊ฒฐ๋„๋กœ AADT ์ถ”์ • ๋ฐฉ๋ฒ•๋ก  ๊ฐœ๋ฐœ 19 1) ๋„คํŠธ์›Œํฌ ์„ค์ • 20 2) ๋ถ„์„์ง€์  ์ง„/์ถœ์ž… ๋งํฌ AADT ๋ฐ์ดํ„ฐ ๊ตฌ์ถ• 21 3) ์ง„/์ถœ์ž… ๋งํฌ ํšŒ์ „๋ฐฉํ–ฅ๋ณ„ Probe ๊ตํ†ต๋น„์œจ ๋ฐ์ดํ„ฐ ๊ตฌ์ถ• 22 4) ๊ตฌ์ถ• ๋ฐ์ดํ„ฐ ๊ฒ€์ˆ˜ ๋ฐ ๋ณด์ • 23 5) ํšŒ์ „๊ตํ†ต๋น„์œจ ์ถ”์ • ๋ฐ 1์ฐจ OD balancing 25 6) ์ž…๋ ฅ์ž๋ฃŒ ๋ณด์ • ๋ฐ OD balancing ์žฌ์ˆ˜ํ–‰ 27 IV. ๋ถ„์„์ž๋ฃŒ์˜ ๊ตฌ์ถ• 32 1. ๋ถ„์„๊ตฌ๊ฐ„ ๋ฐ ๋ถ„์„๊ธฐ๊ฐ„ ์„ค์ • 32 2. Probe ํšŒ์ „๋น„์œจ ์ž๋ฃŒ์˜ ๊ตฌ์ถ• 37 3. ๊ฒ€์ฆ ์ž๋ฃŒ์˜ ๊ตฌ์ถ• 38 V. ๋ฐฉ๋ฒ•๋ก ์˜ ์ ์šฉ ๋ฐ ํ‰๊ฐ€ 40 1. ํ‰๊ฐ€์ง€ํ‘œ ์„ค์ • 40 2. ํ‰๊ฐ€ ๊ฒฐ๊ณผ 41 VI. ๊ฒฐ๋ก  50 1. ์—ฐ๊ตฌ์˜ ์š”์•ฝ ๋ฐ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ 50 2. ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„ ๋ฐ ํ–ฅํ›„๊ณผ์ œ 53 ์ฐธ๊ณ ๋ฌธํ—Œ 55 Abstract 59Maste

    ๋ถˆํฌํ™”๋Œ€์—์„œ์˜ ์šฉ์งˆ ์ด๋™ ์˜ˆ์ธก์— ๋Œ€ํ•œ ์ธ๊ณต ์‹ ๊ฒฝ๋ง ๊ธฐ๋ฒ•์˜ ์ ์šฉ

    No full text
    Thesis(master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€,2005.Maste

    ๋น„์„ ํ˜• ์‹œ๊ณ„์—ด ๋ชจ๋ธ์„ ์ด์šฉํ•œ ์ง€ํ•˜์ˆ˜์œ„ ๋ณ€๋™ ์˜ˆ์ธก

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€, 2011.2. ์ด๊ฐ•๊ทผ.Docto
    corecore