3 research outputs found

    ์ค‘ํ™˜์ž์‹ค ํ™˜์ž์˜ ์ „์‹ค์ŠคํŠธ๋ ˆ์Šค์™€ ๊ทน๋ณต๋ ฅ๊ณผ์˜ ๊ด€๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ฐ„ํ˜ธํ•™๊ณผ, 2014. 2. ๊น€๊ธˆ์ˆœ.์ค‘ํ™˜์ž์‹ค์— ์ž…์‹คํ•˜๋Š” ํ™˜์ž๋Š” ๋งŽ์€ ๊ธฐ๊ณ„์žฅ์น˜, ๋งŽ์€ ์˜๋ฃŒ์ง„์˜ ์ง‘์ค‘๊ฐ์‹œ ๋ฐ ๊ฐ€์กฑ๊ณผ์˜ ๋ถ„๋ฆฌ๋กœ ์ธํ•ด ์ŠคํŠธ๋ ˆ์Šค๋ฅผ ๋ฐ›๊ฒŒ ๋œ๋‹ค. ํ•˜์ง€๋งŒ, ์ผ์ •๊ธฐ๊ฐ„์ด ์ง€๋‚˜ ์ค‘ํ™˜์ž์‹ค ํ™˜๊ฒฝ์— ์ต์ˆ™ํ•ด์กŒ๋‹ค๊ฐ€ ์ƒํƒœํ˜ธ์ „์œผ๋กœ ์ธํ•ด ์ผ๋ฐ˜๋ณ‘์‹ค๋กœ ์ „์‹คํ•  ๋•Œ์—๋„ ์ผ์ข…์˜ ๋ถ„๋ฆฌ๋ถˆ์•ˆ ํ˜•ํƒœ์ธ ์ „์‹ค์ŠคํŠธ๋ ˆ์Šค๋ฅผ ๊ฒฝํ—˜ํ•˜๊ฒŒ ๋œ๋‹ค. ์ „์‹ค์ŠคํŠธ๋ ˆ์Šค์— ๋Œ€ํ•œ ๋ฐ˜์‘๊ฒฐ๊ณผ๋Š” ํ™˜์ž์˜ ๊ทน๋ณต๋ ฅ์— ๋”ฐ๋ผ ๋‹ค๋ฅด๋ฉฐ, ์ด์— ๋”ฐ๋ฅธ ์น˜๋ฃŒ ๊ฒฐ๊ณผ ๋˜ํ•œ ๋‹ค์–‘ํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚œ๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ค‘ํ™˜์ž ์‹ค์—์„œ ์ผ๋ฐ˜๋ณ‘์‹ค๋กœ ์ „์‹คํ•œ ํ™˜์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ „์‹ค์ŠคํŠธ๋ ˆ์Šค ์ •๋„์™€ ๊ทน๋ณต๋ ฅ ์ •๋„ ๋ฐ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ํŒŒ์•…ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ž๋ฃŒ์ˆ˜์ง‘์€ 2013๋…„ 4์›”๋ถ€ํ„ฐ 8์›”๊นŒ์ง€ S๋Œ€ํ•™๊ต๋ณ‘์› ์ค‘ํ™˜์ž์‹ค์—์„œ ์ตœ์†Œ 2์ผ ์ด์ƒ ์žฌ์›ํ•˜์˜€์œผ๋ฉฐ ์ผ๋ฐ˜๋ณ‘์‹ค๋กœ ์ „์‹คํ•œ์ง€ 24 ~ 48์‹œ๊ฐ„ ์ด๋‚ด์˜ ํ™˜์ž 188๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ์„ค๋ฌธ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ๋„๊ตฌ๋Š” ์†์—ฐ์ •(2008)์˜ ์ „์‹ค์ŠคํŠธ๋ ˆ์Šค ์ธก์ •๋„๊ตฌ์™€ Wagnild์™€ Young(1993)์ด ๊ฐœ๋ฐœํ•œ ๊ทน๋ณต๋ ฅ ์ธก์ •๋„๊ตฌ๋ฅผ ์†ก์–‘์ˆ™(2004)์ด ์ˆ˜์ •๋ณด์™„ ํ•œ ๋„๊ตฌ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ˆ˜์ง‘๋œ ์ž๋ฃŒ๋Š” ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์— ๋”ฐ๋ผ ๊ธฐ์ˆ ํ†ต๊ณ„, t-test, one way ANOVA, ์ „์‹ค์ŠคํŠธ๋ ˆ์Šค์™€ ๊ทน๋ณต๋ ฅ์˜ ์ƒ๊ด€๊ด€๊ณ„๋Š” Pearson Correlation Coefficient๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ์ฃผ์š” ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. 1. ๋Œ€์ƒ์ž์˜ ์ „์‹ค์ŠคํŠธ๋ ˆ์Šค ์ •๋„๋Š” ์ด 115์  ๋งŒ์ ์— ํ‰๊ท  69.59ยฑ6.6์ , 100์  ํ™˜์‚ฐ์ ์ˆ˜ 60.5์ ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. 2. ๋Œ€์ƒ์ž์˜ ๊ทน๋ณต๋ ฅ ์ •๋„๋Š” ์ด 175์  ๋งŒ์ ์— ํ‰๊ท  86.47ยฑ10.0์ , 100์  ํ™˜์‚ฐ ์ ์ˆ˜ 69.2์ ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. 3. ๋Œ€์ƒ์ž์˜ ์ „์‹ค์ŠคํŠธ๋ ˆ์Šค์— ์œ ์˜ํ•œ ์ฐจ์ด๋ฅผ ๋ณด์ธ ์ „์‹ค๊ด€๋ จ ํŠน์„ฑ์€ ์ „์‹ค ์˜ˆ๊ณ  ์œ ๋ฌด(t=-2.41, p=0.01)๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. 4. ๋Œ€์ƒ์ž์˜ ๊ทน๋ณต๋ ฅ์— ์œ ์˜ํ•œ ์ฐจ์ด๋ฅผ ๋ณด์ธ ์ „์‹ค๊ด€๋ จ ํŠน์„ฑ์€ ๊ฐ€์กฑ์—๊ฒŒ ์ „์‹ค ๊ด€๋ จ ์ •๋ณด ์ œ๊ณต ์œ ๋ฌด(t=1.97, p=0.05)๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. 5. ์ค‘ํ™˜์ž์‹ค ํ™˜์ž์˜ ์ „์‹ค์ŠคํŠธ๋ ˆ์Šค์™€ ๊ทน๋ณต๋ ฅ์€ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ๋ถ€์  ์ƒ๊ด€๊ด€๊ณ„ ๊ฐ€ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค(r=-.209, p=.004). ์ด์ƒ์˜ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ, ๊ทน๋ณต๋ ฅ๊ณผ ์ „์‹ค์ŠคํŠธ๋ ˆ์Šค์˜ ์ƒ๊ด€๊ด€๊ณ„๋กœ ๋ณผ ๋•Œ ์ค‘ํ™˜์ž์‹ค ํ™˜์ž์˜ ๊ทน๋ณต๋ ฅ์ด ๋†’์œผ๋ฉด ์ „์‹ค์ŠคํŠธ๋ ˆ์Šค๊ฐ€ ๋‚ฎ์„ ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ํ™˜์ž์˜ ์ „์‹ค์ŠคํŠธ๋ ˆ์Šค ๊ฐ์†Œ๋ฅผ ์œ„ํ•ด์„œ๋Š” ์ค‘ํ™˜์ž์‹ค ์ž…์‹ค ๋•Œ๋ถ€ํ„ฐ ์ „์‹ค์— ๋Œ€ํ•ด ๋ฏธ๋ฆฌ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ณ , ๊ทน๋ณต๋ ฅ ์ฆ์ง„์„ ์œ„ํ•ด์„œ๋Š” ๊ฐ€์กฑ์—๊ฒŒ ์ „์‹คํ•  ๋ณ‘๋™ ํ™˜๊ฒฝ์— ๋Œ€ํ•œ ์„ค๋ช…์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ „์‹ค ํ”„๋กœํ† ์ฝœ ๊ฐœ๋ฐœ๊ณผ ํ™˜์ž์˜ ๊ฐ€์กฑ์ด ์ง€์ง€์ž์›์œผ๋กœ์จ ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ฐ€์กฑ ๊ต์œก์ž๋ฃŒ ๊ฐœ๋ฐœ์ด ํ•„์š”ํ•˜๊ฒ ๋‹ค.๊ตญ ๋ฌธ ์ดˆ ๋ก โ…ฐ I. ์„œ ๋ก  1 1. ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ 1 2. ์—ฐ๊ตฌ ๋ชฉ์  3 3. ์šฉ์–ด ์ •์˜ 4 II. ๋ฌธํ—Œ ๊ณ ์ฐฐ 5 1. ์ „์‹ค์ŠคํŠธ๋ ˆ์Šค 5 2. ๊ทน๋ณต๋ ฅ 10 3. ์ŠคํŠธ๋ ˆ์Šค์™€ ๊ทน๋ณต๋ ฅ๊ณผ์˜ ๊ด€๊ณ„ 14 III. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 16 1. ์—ฐ๊ตฌ์„ค๊ณ„ 16 2. ์—ฐ๊ตฌ๋Œ€์ƒ 16 3. ์—ฐ๊ตฌ๋„๊ตฌ 17 4. ์ž๋ฃŒ์ˆ˜์ง‘ ๋ฐฉ๋ฒ• 19 5. ์œค๋ฆฌ์  ๊ณ ๋ ค 20 6. ์ž๋ฃŒ๋ถ„์„ ๋ฐฉ๋ฒ• 20 โ…ฃ. ์—ฐ๊ตฌ๊ฒฐ๊ณผ 22 โ…ค. ๋…ผ์˜ 40 โ…ฅ. ๊ฒฐ๋ก  ๋ฐ ์ œ์–ธ 47 ์ฐธ๊ณ  ๋ฌธํ—Œ 50 ๋ถ€ ๋ก 64 Abstract 74Maste

    PacBio SMRT ์—ผ๊ธฐ์„œ์—ด๋ถ„์„ ๊ธฐ์ˆ  ๊ธฐ๋ฐ˜ Monascus ruber ๋Œ€์ƒ CRISPR/Cas9 ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ตญ์ œ๋†์—…๊ธฐ์ˆ ๋Œ€ํ•™์› ๊ตญ์ œ๋†์—…๊ธฐ์ˆ ํ•™๊ณผ, 2021.8. ์นผ๋ฃจ.The genus Monascus has been used in the production of food components, natural pigments, and food supplements with positive effects on human health. As a result of beneficial effects, secondary metabolites produced by Monascus spp. have received worldwide attention and used industrially in recent years. It has been proved that Monascus spp. can synthesize various secondary metabolites: Monascus pigments, monacolin K, and citrinin. Monascus pigments have been used as natural food colorants and possess a wide range of biological functions. In addition, monacolin K lowers cholesterol by inhibiting HMG-CoA reductase. Even though Monascus spp. produce beneficial secondary metabolites, some strains can secrete citrinin, which has been found to be nephrotoxic, hepatoxic, and carcinogenic. Thus, the Monascus fermented food products have been concerned and controversial. With the advance of fungal metabolic engineering, the formation of secondary metabolites in filamentous fungi could be regulated by genetic engineering. The aim of this study was to establish CRISPR/Cas9 system in Monascus spp. based on PacBio SMRT sequencing. In Chapter 2, the whole genome sequence of Monascus ruber was generated. The total length of 25.9 Mb was obtained using PacBio RSII sequencer with de novo assembly. As a result of genome assemblies with long reads from PacBio SMRT sequencing, the whole genome sequence of M. ruber consisted of 13 contigs with 9,639 predicted genes. Furthermore, citrinin biosynthetic gene clusters were mostly lost, while beneficial secondary metabolites, monacolin K and Monascus pigments, biosynthetic gene clusters were present in M. ruber, indicating this strain serves as a promising industrial strain without citrinin production. To validate M. ruber could be characterized as a citrinin-free strain, HPLC analysis was performed and citrinin was not detected in M. ruber. With the genetic analysis of the function of biosynthetic related gene clusters, comprehensive insight into secondary metabolites of Monascus spp. was discussed in Chapter 2. In Chapter 3, CRISPR/Cas9 system was established in M. ruber to precisely engineer MpigI and MpigIโ€™, putative negative transcriptional regulators. In vitro transcribed sgRNAs were adopted for transformation in the Cas9 expressed transfomrants to target MpigI and MpigIโ€™. Based on Sanger sequencing results, six putative mutants were obtained. The mutants generated from the Cas9-mediated cleavage with dual sgRNAs were able to produce increased Monascus pigment production compared to the wild-type strain since induced-downregulation of MpigI and MpigIโ€™ leads the increase in Monascus pigment production. Further analysis of mutants validated that CRISPR/Cas9 system was successfully established in M. ruber. This study was the first report of CRISPR/Cas9 system in M. ruber.ํ™๊ตญ๊ท ์€ ์ธ๊ฐ„์˜ ๊ฑด๊ฐ•์— ๊ธ์ •์ ์ธ ์˜ํ–ฅ์„ ์ฃผ๋Š” ์‹ํ’ˆ ๋ณด์กฐ์ œ๋กœ ์˜ค๋žœ ๊ธฐ๊ฐ„ ๋™์•ˆ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ํ™๊ตญ๊ท ์ด ์ƒ์‚ฐํ•˜๋Š” ๋Œ€ํ‘œ์ ์ธ 2์ฐจ ๋Œ€์‚ฌ์‚ฐ๋ฌผ์€ ๋ชจ๋‚˜์ฝœ๋ฆฐ ์ผ€์ด, ํ™๊ตญ์ƒ‰์†Œ, ์‹œํŠธ๋ฆฌ๋‹Œ์ด ์žˆ๋‹ค. ๋ชจ๋‚˜์ฝœ๋ฆฐ ์ผ€์ด๋Š” ์Šคํƒ€ํ‹ด์œผ๋กœ์จ HMG-CoA ํ™˜์›ํšจ์†Œ๋กœ ๊ฐ„์—์„œ ํ•ฉ์„ฑ๋˜๋Š” ์ฝœ๋ ˆ์Šคํ…Œ๋กค ํ•ฉ์„ฑ์„ ์–ต์ œํ•˜์—ฌ ๊ณ ์ง€ํ˜ˆ์ฆ ์น˜๋ฃŒ์ œ๋กœ ์‚ฌ์šฉ๋œ๋‹ค. ํ™๊ตญ์ƒ‰์†Œ๋Š” ๋‹จ๋ฐฑ์งˆ๊ณผ์˜ ์ฐฉ์ƒ‰๋ ฅ์ด ์ข‹์•„ ์‹ํ’ˆ์˜ ์ฒœ์—ฐ์ƒ‰์†Œ๋กœ์„œ ๋‹ค์–‘ํ•œ ์‚ฐ์—…์—์„œ ๋„๋ฆฌ ์ด์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, ํ™๊ตญ์ƒ‰์†Œ๋Š” ์ฒœ์—ฐ์ƒ‰์†Œ ๊ธฐ๋Šฅ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ํ•ญ์—ผ ๋ฐ ํ•ญ์‚ฐํ™” ํšจ๊ณผ๊ฐ€ ์žˆ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์™”๊ณ  ๊ฑด๊ฐ•๊ธฐ๋Šฅ์‹ํ’ˆ์œผ๋กœ๋„ ์ฃผ๋ชฉ๋ฐ›์•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” PacBio SMRT ์‹œํ€€์‹ฑ ๊ธฐ์ˆ ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๊ตญ ์ „ํ†ต ์žฅ๋ฅ˜ ์‹ํ’ˆ์—์„œ ๋ถ„๋ฆฌํ•œ M. ruber์˜ ํ™๊ตญ์ƒ‰์†Œ ์ƒ์‚ฐ๋Ÿ‰์„ ๋†’์ด๊ธฐ ์œ„ํ•ด CRISPR/Cas9 ์‹œ์Šคํ…œ์„ ์ ์šฉํ•˜์˜€๋‹ค. Chapter 2์—์„œ๋Š” PacBio RSII ์‹œํ€€์„œ์™€ de novo ์–ด์…ˆ๋ธ”๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด ๊ธธ์ด 25.9 Mb๋กœ ์ด๋ฃจ์–ด์ง„ M. ruber์˜ ์œ ์ „์ฒด๋ฅผ ์–ป์—ˆ๋‹ค. PacBio SMRT ์‹œํ€€์‹ฑ์„ ํ†ตํ•ด์„œ ์–ป์–ด๋‚ธ ์–ด์…ˆ๋ธ”๋ฆฌ ๊ฒฐ๊ณผ, M. ruber๋Š” 9,639๊ฐœ์˜ ์œ ์ „์ž๋ฅผ ํฌํ•จํ•œ 13๊ฐœ์˜ contig๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์—ˆ๋‹ค. 2์ฐจ ๋Œ€์‚ฌ์‚ฐ๋ฌผ์— ๊ด€์—ฌํ•˜๋Š” ์œ ์ „์ž๋ฅผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ์‹œํŠธ๋ฆฌ๋‹Œ ํ•ฉ์„ฑ ์œ ์ „์ž๋Š” ๋Œ€๋ถ€๋ถ„ ์†์‹ค๋˜์—ˆ๊ณ , ์œ ์ตํ•œ 2์ฐจ ๋Œ€์‚ฌ์‚ฐ๋ฌผ์ธ ๋ชจ๋‚˜์ฝœ๋ฆฐ ์ผ€์ด์™€ ํ™๊ตญ์ƒ‰์†Œ ์œ ์ „์ž๊ฐ€ ์กด์žฌํ•˜์˜€๋‹ค, ์ด๋Š” M. ruber๊ฐ€ ์‹œํŠธ๋ฆฌ๋‹Œ ์ƒ์‚ฐ์ด ์—†๋Š” ์œ ๋งํ•œ ์‚ฐ์—… ๊ท ์ฃผ๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. Citrinin ์ƒ์„ฑ ์œ ๋ฌด๋ฅผ ์ •ํ™•ํžˆ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด HPLC ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ์ตœ์ข…์ ์œผ๋กœ M. ruber์—์„œ citrinin์ด ๊ฒ€์ถœ๋˜์ง€ ์•Š์•˜๋‹ค. Chapter 3์—์„œ๋Š” negative regulator๋กœ ์ถ”์ •๋˜๋Š” MpigI์™€ MpigI'โ€™์—CRISPR/Cas9 ์‹œ์Šคํ…œ์„ ์ ์šฉํ•˜์˜€๋‹ค. ํšจ๊ณผ์ ์ธ ์œ ์ „์ž ๊ต์ •์œผ๋กœ mutation์„ ์œ ๋„ํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐœ์˜ sgRNA๋ฅผ ํƒ€๊ฒŸ ์œ ์ „์ž์— ์ƒ๋ณด์ ์ธ ์—ผ๊ธฐ์„œ์—ด๋กœ ์„ค๊ณ„ํ–ˆ๋‹ค. ํ”Œ๋ผ์Šค๋ฏธ๋“œ ๋ฒกํ„ฐ๋กœ ์šด๋ฐ˜๋œ Cas9๊ณผ in vitro๋กœ ํ•ฉ์„ฑ๋œ sgRNAs๋Š” ํ˜•์งˆ์ „ํ™˜์„ ํ†ตํ•ด ํƒ€๊ฒŸ ์œ ์ „์ž๋ฅผ ๊ต์ •ํ–ˆ๋‹ค. Sanger ์‹œํ€€์‹ฑ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ตœ์ข…์ ์œผ๋กœ 6๊ฐœ์˜ mutants๊ฐ€ ์ƒ์„ฑ๋˜์—ˆ๋‹ค. Mutation์ด ์œ ๋„๋œ M. rube๊ฐ€ wild-type์— ๋น„ํ•ด ํ™๊ตญ์ƒ‰์†Œ ์ƒ์‚ฐ์„ฑ์ด ๋†’์•„์ง„ ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. Mutants์— ๋Œ€ํ•œ ์ถ”๊ฐ€ ๋ถ„์„์„ ํ†ตํ•ด CRISPR/Cas9 ์‹œ์Šคํ…œ์ด M. ruber์—์„œ ์„ฑ๊ณต์ ์œผ๋กœ ๊ตฌ์ถ•๋˜์—ˆ์Œ์„ ๊ฒ€์ฆํ–ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” M. ruber์˜ CRISPR/Cas9 ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ์ด๋‹ค.Chapter1 Research background 1 1. Fungi 1 1.1. Filamentous fungi 1 1.2. Monascus spp. 2 1.3. Red yeast rice 2 2. Secondary metabolites 3 2.1. Secondary metabolites in Monascus spp. 3 2.1.1. Monascus pigments 5 2.1.2. Monacolin K 7 2.1.3. Citrinin 9 3. Genome editing 9 3.1. Definition and DNA repair pathway 9 3.1.1. Non-homologous end joining (NHEJ) pathway 10 3.1.2. Homology directed repair (HDR) pathway 10 3.2. CRISPR/Cas9 system 10 3.3. CRISPR/Cas9 system in different species of filamentous fungi 13 4. Overall objectives 15 Chapter 2 Whole genome sequence of Monascus ruber isolated from Korean traditional fermented food 16 1. Introduction 16 2. Materials and methods 18 2.1. Strain and culture conditions 18 2.2. DNA extraction 18 2.3. Genomic sequencing and assembly 19 2.4. Citrinin analysis 19 3. Results and discussion 21 3.1. Genome sequence and assembly 21 3.2. Comparison with other publicly available Monascus genomes 24 3.3. Identification of secondary metabolite gene clusters 26 3.3.1. Monascus pigments biosynthesis 28 3.3.2. Monacolin K biosynthesis 31 3.3.3. Citrinin biosynthesis 33 4. Conclusions 35 Chapter 3 CRISPR/Cas9 system in filamentous fungi Monascus ruber 36 1. Introduction 36 2. Materials and methods 39 2.1. Strains, plasmid, primers, and culture conditions 39 2.2. Preparation of in vitro transcriptional sgRNA 41 2.3. Protoplast preparation and transformation 41 2.4. DNA extraction and PCR analysis of putative M. ruber transformants 42 2.5. Analysis of secondary metabolites 44 2.5.1. Monascus pigment analysis 44 2.5.2. Extraction and analysis of monacolin K 44 2.5.3. Citrinin analysis 45 2.6. RNA extraction and RT-PCR analysis 45 3. Results and discussion 46 3.1. Establishment of Cas9 expressed transformants 46 3.2. Designing dual sgRNA for disrupting MpigI and MpigI' 49 3.3. PCR screening of M. ruber MpigI and MpigI' mutants 49 3.4. Sequencing analysis of MpigI and MpigI' mutants 53 3.5. Comparison of the wild-type M. ruber strain and the mutants of MpigI and MpigI' 61 3.5.1. Fungal growth 61 3.5.2. Colony morphology 61 3.5.3. Monascus pigment production 65 3.5.4. Monacolin K analysis 68 3.5.5. Citrinin analysis with M. purpureus BCRC 31541 68 3.6. RT-PCR analysis of MpigI and MpigI' mutants 71 4. Conclusions 73 References 74 Abstract in Korean 87์„
    corecore