27 research outputs found

    Deformable Offset Gating Network with Variational Auto-encoder for Compression Artifacts Reduction

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(석사) -- μ„œμšΈλŒ€ν•™κ΅λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 전기·정보곡학뢀, 2023. 2. 쑰남읡.JPEG μ••μΆ• μ•Œκ³ λ¦¬μ¦˜μ€ λΉ λ₯Έ 속도와 쒋은 μ••μΆ•λ₯  λ•Œλ¬Έμ— κ°€μž₯ 널리 μ‚¬μš©λ˜λŠ” μ••μΆ• μ•Œκ³ λ¦¬μ¦˜μ΄ λ˜μ—ˆλ‹€. ν•˜μ§€λ§Œ, μ••μΆ•λ₯ μ„ 높이기 μœ„ν•΄ 큰 ν’ˆμ§ˆ κ³„μˆ˜(Quality Factor)λ₯Ό μ΄μš©ν•˜μ—¬ μ••μΆ•ν•  경우, 주파수 μ˜μ—­μ—μ„œ 손싀이 λ°œμƒν•˜κ³ , μ΄λŠ” 이미지 μ˜μ—­μ—μ„œμ˜ μ•„ν‹°νŒ©νŠΈλ‘œ λ‚˜νƒ€λ‚œλ‹€. 이에 따라 JPEG μ••μΆ• κ³Όμ •μ—μ„œ λ°œμƒν•œ μ•„ν‹°νŒ©νŠΈλ₯Ό μ œκ±°ν•˜λŠ” μ—°κ΅¬λŠ” 이미지 볡원 λΆ„μ•Όμ—μ„œ μ€‘μš”ν•œ 과제둜 μΈμ‹λ˜μ—ˆλ‹€. JPEG μ•„ν‹°νŒ©νŠΈλ₯Ό μ œκ±°ν•˜κΈ° μœ„ν•œ 방법듀은 데이터 기반의 인곡신경망 ꡬ쑰가 λ„μž…λ˜λ©΄μ„œ μ»€λ‹€λž€ λ°œμ „μ΄ μžˆμ—ˆλ‹€. 기쑴의 방법듀은 λŒ€λΆ€λΆ„ 메타 λ°μ΄ν„°λ‘œλΆ€ν„° μ΄λ―Έμ§€μ˜ ν’ˆμ§ˆμ— λŒ€ν•œ 정보λ₯Ό μ½μ–΄μ˜€λŠ” 것을 μ „μ œλ‘œ ν•˜κ³  μžˆκ±°λ‚˜ 심지어 ν•˜λ‚˜μ˜ ν’ˆμ§ˆκ³„μˆ˜(Quality Factor)에 ν•˜λ‚˜μ˜ λͺ¨λΈμ„ ν•™μŠ΅μ‹œν‚€λŠ” λ“± μ‹€μ œ JPEG μ•„ν‹°νŒ©νŠΈλ₯Ό μ œκ±°ν•˜λ €λŠ” μƒν™©κ³ΌλŠ” 거리가 μžˆμ—ˆλ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ” ν’ˆμ§ˆ κ³„μˆ˜ κ²Œμ΄νŒ… μ˜€ν”„μ…‹ 블둝(Quality factor Gating Offset Block; QGOB)λ₯Ό μƒˆλ‘­κ²Œ μ œμ•ˆν•˜μ—¬ μ΄λŸ¬ν•œ 문제λ₯Ό ν•΄κ²°ν•˜κ³ μž ν•˜μ˜€λ‹€. μ œμ•ˆν•˜λŠ” κ΅¬μ‘°λŠ” ν’ˆμ§ˆ κ³„μˆ˜μ— 따라 μ μ‘μ μœΌλ‘œ λ³€ν˜• κ°€λŠ₯ν•œ ν•©μ„±κ³±μ˜ μ˜€ν”„μ…‹μ„ μ‘°μ ˆν•œλ‹€. λ˜ν•œ 인코더디코더 κ΅¬μ‘°μ—μ„œ 이전 μŠ€μΌ€μΌμ˜ μ˜€ν”„μ…‹μ„ ν˜„μž¬ μŠ€μΌ€μΌμ˜ μ˜€ν”„μ…‹μ— 전달해 효과적으둜 μ˜€ν”„μ…‹μ„ ν•™μŠ΅ν•œλ‹€. λ‹€μ–‘ν•œ μ‹€ν—˜μ„ 톡해 μ œμ•ˆν•˜λŠ” ꡬ쑰가 흑백 이미지와 μ»¬λŸ¬μ΄λ―Έμ§€, 그리고 두 번 μ••μΆ•ν•œ μ΄λ―Έμ§€μ—μ„œ μš°μˆ˜ν•œ μ„±λŠ₯을 λ³΄μž„μ„ 확인할 수 μžˆμ—ˆλ‹€.JPEG compression has become the most widely used compression algorithm due to its fast speed and reasonable compression rate. However, when compressed with a high quality factor to increase the compression rate, a large loss occurs in the frequency domain, which appears as an artifact in the image domain. Accordingly, research to remove artifacts generated during the JPEG compression process was recognized as an important task in the field of image restoration. Early studies for image compression artifacts reduction have made great progress with the introduction of data-driven convolution neural networks. Most of the existing methods exploit information on image quality factors from metadata, which is sometimes wrong due to double compression. Moreover, some methods trained one network for each quality factor, which hinders practical applications where images are compressed with different quality factors case by case in real situations. To deal with this issue, we propose a Deformable Offset Gating Network (DOGNet), based on a variational autoencoder (VAE) and deformable residual network. The main idea of the proposed method is to use latent features of the VAE to guide the offset of the deformable convolutions in restoring the compressed image flexibly. Extensive experiments on various datasets and quality factors show that the proposed method achieves better or comparable results to the state-of-the-art in JPEG artifact removal.제 1 μž₯ μ„œλ‘  6 1.1 μ—°κ΅¬μ˜ λ°°κ²½ 6 1.2 μ—°κ΅¬μ˜ λ‚΄μš© 7 1.3 λ…Όλ¬Έμ˜ ꡬ성 8 제 2 μž₯ κΈ°μ‘΄ 연ꡬ 9 2.1 ν•™μŠ΅ 기반의 JPEG μ•„ν‹°νŒ©νŠΈ 제거 9 2.2 이산 코사인 λ³€ν™˜(DCT)을 μ΄μš©ν•œ JPEG μ•„ν‹°νŒ©νŠΈ 제거 10 2.3 이쀑 μ••μΆ•λœ μ΄λ―Έμ§€μ˜ 볡원 11 2.4 베이즈 좔둠을 μ΄μš©ν•œ 볡원 12 제 3 μž₯ μ œμ•ˆν•˜λŠ” 방법 14 3.1 λ³€ν˜• κ°€λŠ₯ν•œ ν•©μ„±κ³± ꡬ쑰 14 3.2 ν’ˆμ§ˆ κ³„μˆ˜ κ²Œμ΄νŒ… μ˜€ν”„μ…‹ 블둝 16 3.3 손싀 ν•¨μˆ˜ 17 제 4 μž₯ μ‹€ν—˜ κ²°κ³Ό 및 뢄석 19 4.1 데이터 μ€€λΉ„ 및 κ΅¬ν˜„ μ„ΈλΆ€ 사항 19 4.2 ν•œ 번 μ••μΆ•ν•œ 이미지 19 4.2.1 ν•œ 번 μ••μΆ•λœ 흑백 이미지에 λŒ€ν•œ 볡원 19 4.2.2 ν•œ 번 μ••μΆ•λœ 컬러 이미지에 λŒ€ν•œ 볡원 21 4.3 두 번 μ••μΆ•ν•œ 이미지 22 4.4 μ œμ•ˆ 방법을 κ΅¬μ„±ν•˜λŠ” μš”μ†Œλ“€μ˜ 검증 25 4.4.1 μ œμ•ˆν•˜λŠ” ꡬ쑰에 λŒ€ν•œ 검증 25 4.4.2 μˆ˜μš©μ˜μ—­μ— λŒ€ν•œ μ‹œκ°ν™” 25 제 5 μž₯ κ²°λ‘  29 ABSTRACT 33석

    color image processing and its applications

    No full text
    Maste

    DEVELOPMENT OF A STEREOSCOPIC PIV VELOCITY FIELD MEASUREMENT TECHNIQUE AND ITS APPLICATIONS

    No full text
    Docto

    Mechanisms of the undetectability of HBsAg in patients with chronic liver disease, type B

    No full text
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μ˜ν•™κ³Ό 내과학전곡,1997.Docto
    corecore