27 research outputs found
Deformable Offset Gating Network with Variational Auto-encoder for Compression Artifacts Reduction
νμλ
Όλ¬Έ(μμ¬) -- μμΈλνκ΅λνμ : 곡과λν μ κΈ°Β·μ 보곡νλΆ, 2023. 2. μ‘°λ¨μ΅.JPEG μμΆ μκ³ λ¦¬μ¦μ λΉ λ₯Έ μλμ μ’μ μμΆλ₯ λλ¬Έμ κ°μ₯ λ리 μ¬μ©λλ μμΆ μκ³ λ¦¬μ¦μ΄ λμλ€. νμ§λ§, μμΆλ₯ μ λμ΄κΈ° μν΄ ν° νμ§ κ³μ(Quality Factor)λ₯Ό μ΄μ©νμ¬ μμΆν κ²½μ°, μ£Όνμ μμμμ μμ€μ΄ λ°μνκ³ , μ΄λ μ΄λ―Έμ§ μμμμμ μν°ν©νΈλ‘ λνλλ€. μ΄μ λ°λΌ JPEG μμΆ κ³Όμ μμ λ°μν μν°ν©νΈλ₯Ό μ κ±°νλ μ°κ΅¬λ μ΄λ―Έμ§ 볡μ λΆμΌμμ μ€μν κ³Όμ λ‘ μΈμλμλ€.
JPEG μν°ν©νΈλ₯Ό μ κ±°νκΈ° μν λ°©λ²λ€μ λ°μ΄ν° κΈ°λ°μ μΈκ³΅μ κ²½λ§ κ΅¬μ‘°κ° λμ
λλ©΄μ 컀λ€λ λ°μ μ΄ μμλ€. κΈ°μ‘΄μ λ°©λ²λ€μ λλΆλΆ λ©ν λ°μ΄ν°λ‘λΆν° μ΄λ―Έμ§μ νμ§μ λν μ 보λ₯Ό μ½μ΄μ€λ κ²μ μ μ λ‘ νκ³ μκ±°λ μ¬μ§μ΄ νλμ νμ§κ³μ(Quality Factor)μ νλμ λͺ¨λΈμ νμ΅μν€λ λ± μ€μ JPEG μν°ν©νΈλ₯Ό μ κ±°νλ €λ μν©κ³Όλ κ±°λ¦¬κ° μμλ€.
λ³Έ λ
Όλ¬Έμμλ νμ§ κ³μ κ²μ΄ν
μ€νμ
λΈλ‘(Quality factor Gating Offset Block; QGOB)λ₯Ό μλ‘κ² μ μνμ¬ μ΄λ¬ν λ¬Έμ λ₯Ό ν΄κ²°νκ³ μ νμλ€. μ μνλ ꡬ쑰λ νμ§ κ³μμ λ°λΌ μ μμ μΌλ‘ λ³ν κ°λ₯ν ν©μ±κ³±μ μ€νμ
μ μ‘°μ νλ€. λν μΈμ½λλμ½λ ꡬ쑰μμ μ΄μ μ€μΌμΌμ μ€νμ
μ νμ¬ μ€μΌμΌμ μ€νμ
μ μ λ¬ν΄ ν¨κ³Όμ μΌλ‘ μ€νμ
μ νμ΅νλ€. λ€μν μ€νμ ν΅ν΄ μ μνλ κ΅¬μ‘°κ° νλ°± μ΄λ―Έμ§μ 컬λ¬μ΄λ―Έμ§, κ·Έλ¦¬κ³ λ λ² μμΆν μ΄λ―Έμ§μμ μ°μν μ±λ₯μ 보μμ νμΈν μ μμλ€.JPEG compression has become the most widely used compression algorithm due to its fast speed and reasonable compression rate. However, when compressed with a high quality factor to increase the compression rate, a large loss occurs in the frequency domain, which appears as an artifact in the image domain. Accordingly, research to remove artifacts generated during the JPEG compression process was recognized as an important task in the field of image restoration.
Early studies for image compression artifacts reduction have made great progress with the introduction of data-driven convolution neural networks. Most of the existing methods exploit information on image quality factors from metadata, which is sometimes wrong due to double compression. Moreover, some methods trained one network for each quality factor, which hinders practical applications where images are compressed with different quality factors case by case in real situations.
To deal with this issue, we propose a Deformable Offset Gating Network (DOGNet), based on a variational autoencoder (VAE) and deformable residual network. The main idea of the proposed method is to use latent features of the VAE to guide the offset of the deformable convolutions in restoring the compressed image flexibly. Extensive experiments on various datasets and quality factors show that the proposed method achieves better or comparable results to the state-of-the-art in JPEG artifact removal.μ 1 μ₯ μλ‘ 6
1.1 μ°κ΅¬μ λ°°κ²½ 6
1.2 μ°κ΅¬μ λ΄μ© 7
1.3 λ
Όλ¬Έμ κ΅¬μ± 8
μ 2 μ₯ κΈ°μ‘΄ μ°κ΅¬ 9
2.1 νμ΅ κΈ°λ°μ JPEG μν°ν©νΈ μ κ±° 9
2.2 μ΄μ° μ½μ¬μΈ λ³ν(DCT)μ μ΄μ©ν JPEG μν°ν©νΈ μ κ±° 10
2.3 μ΄μ€ μμΆλ μ΄λ―Έμ§μ 볡μ 11
2.4 λ² μ΄μ¦ μΆλ‘ μ μ΄μ©ν 볡μ 12
μ 3 μ₯ μ μνλ λ°©λ² 14
3.1 λ³ν κ°λ₯ν ν©μ±κ³± ꡬ쑰 14
3.2 νμ§ κ³μ κ²μ΄ν
μ€νμ
λΈλ‘ 16
3.3 μμ€ ν¨μ 17
μ 4 μ₯ μ€ν κ²°κ³Ό λ° λΆμ 19
4.1 λ°μ΄ν° μ€λΉ λ° κ΅¬ν μΈλΆ μ¬ν 19
4.2 ν λ² μμΆν μ΄λ―Έμ§ 19
4.2.1 ν λ² μμΆλ νλ°± μ΄λ―Έμ§μ λν 볡μ 19
4.2.2 ν λ² μμΆλ μ»¬λ¬ μ΄λ―Έμ§μ λν 볡μ 21
4.3 λ λ² μμΆν μ΄λ―Έμ§ 22
4.4 μ μ λ°©λ²μ ꡬμ±νλ μμλ€μ κ²μ¦ 25
4.4.1 μ μνλ ꡬ쑰μ λν κ²μ¦ 25
4.4.2 μμ©μμμ λν μκ°ν 25
μ 5 μ₯ κ²°λ‘ 29
ABSTRACT 33μ
Mechanisms of the undetectability of HBsAg in patients with chronic liver disease, type B
νμλ
Όλ¬Έ(λ°μ¬)--μμΈλνκ΅ λνμ :μνκ³Ό λ΄κ³Όνμ 곡,1997.Docto