25 research outputs found

    ๊น€์น˜์—์„œ ๋ถ„๋ฆฌํ•œ EPS ์ƒ์„ฑ Leuconostoc garlicum์„ ์ด์šฉํ•œ ์š”๊ตฌ๋ฅดํŠธ ์ œ์กฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ตญ์ œ๋†์—…๊ธฐ์ˆ ๋Œ€ํ•™์› ๊ตญ์ œ๋†์—…๊ธฐ์ˆ ํ•™๊ณผ, 2021. 2. ์ •๋™ํ™”.Exopolysaccharides (EPS) produced by lactic acid bacteria (LAB) are used to modify the rheological, physical, and sensory properties of fermented milk. Leuconostoc garlicum KCCM 43211 isolated from Kimchi is known as highly viscous EPS producing LAB. However, the effects of EPS produced by L. garlicum KCCM 43211 in fermented milk and its structural characteristics have not been studied. The overall objective of this study was to determine the influence of EPS produced L. garlicum KCCM 43211 on rheological properties of fermented milk and investigate the physicochemical characteristics of EPS (Chapter 2). After that, we studied the effects of pre-fermentation with L. garlicum KCCM 43211 on yogurt properties during the storage at 4 ยฐC for 28 days due to the potential application of L. garlicum KCCM 43211 for yogurt production (Chapter 3). L. garlicum KCCM 43211 were grown in raw milk and homogenized milk for 48 h at 25 ยฐC with 100 rpm shaking in the presence or absence of sucrose. Cell growth, pH variations, EPS production and rheological properties were measured during 48 h fermentation. The results showed that viable cell count reached to 108 - 109 CFU/mL and a decrease in pH followed by an increase in bacteria was observed during fermentation for all four fermented milks. EPS production was not observed in fermented milks without sucrose. With 10% sucrose, L. garlicum KCCM 43211 produced 22.91 to 27.29 g/kg medium of EPS. Viscosity was also no changes without sucrose, meanwhile, increased 1.08 to 3.22 cP and 1.29 to 2.93 cP in raw-milk fermented milk and homogenized-milk fermented milk, respectively. EPS production and the rheological analysis showed that EPS increases the viscosity in fermented milk. To investigate the physicochemical properties of EPS, EPS was isolated from fermented milk made with raw milk 10% sucrose and purified. EPS produced by L. garlicum KCCM 43211 was identified as linear ฮฑ-(1โ†’6) dextran with 2.9 ร— 106 Da of molecular weight. In the chapter 3, The effect of EPS on the storage stability of yogurt was investigated at raw-milk yogurt and homogenized-milk yogurt. For pre-fermentation, L. garlicum KCCM 43211 was inoculated on raw milk and homogenized milk containing 10% sucrose and incubated for 12 h at 25 ยฐC with shaking. After 12 h, yogurt samples were prepared by yogurt starter culture. Viable cell changes, pH variations, total solids, color differences, water holding capacity (WHC), EPS concentration, and rheological properties are studied during 28 days of refrigerated storage for all four yogurt samples. Viable cell counts decreased and pH also decreased from 4.59 โ€“ 4.60 to 4.20 โ€“ 4.30. Total solids content showed no significant difference for all samples during storage. In addition, the presence of EPS did not affect the color. The WHC results showed that homogenization treatment could be an effective factor to develop the water-holding ability of the gel network, which prevents syneresis during storage. There was slight decrease (0.4 - 0.5 g/kg medium) of EPS concentration in both yogurts (pre+main), which indicated no degradation of EPS during long cold storage. Results from flow curve showed pseudoplastic (shear thinning) behavior for four yogurt samples. There was no significant difference of apparent viscosity by storage time. However, yogurts containing EPS showed an upward trend and smaller hysteresis loop after 14 days storage in temperature sweep measurement. The results show that the present EPS improve the viscosity of fermented milk in the preliminary stages of gelation (> pH 4.6), however, EPS effect could be screened in the strong gel network (< pH 4.6, homogenized-milk yogurt). Based on results obtained, EPS produced by L. garlicum KCCM 43211 could modulate physical and rheological properties of fermented milk with weak gel network.์œ ์‚ฐ๊ท ์ด ์ƒ์„ฑํ•˜๋Š” ์„ธํฌ์™ธ๋‹ค๋‹น๋ฅ˜(EPS)๋Š” ๋ฐœํšจ์œ ์˜ ์œ ๋ณ€ํ•™์ , ๋ฌผ๋ฆฌ์ , ๊ด€๋Šฅ์  ํŠน์„ฑ์„ ์กฐ์ ˆํ•˜๋Š”๋ฐ ์‚ฌ์šฉ๋œ๋‹ค. ๊น€์น˜์—์„œ ๋ถ„๋ฆฌํ•œ L. garlicum KCCM 43211์€ ๋†’์€ ์ ๋„๋ฅผ ๊ฐ€์ง€๋Š” EPS๋ฅผ ์ƒ์„ฑํ•œ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ๋ฐœํšจ์œ  ๋‚ด์—์„œ EPS์˜ ํšจ๊ณผ์™€ EPS์˜ ๊ตฌ์กฐ์  ํŠน์ง•์€ ์•„์ง ์—ฐ๊ตฌ๋œ ๋ฐ”๊ฐ€ ์—†๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ L. garlicum 43211์ด ์ƒ์„ฑํ•˜๋Š” EPS๊ฐ€ ๋ฐœํšจ์œ ์˜ ์œ ๋ณ€ํ•™์  ํŠน์ง•์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ฐํžˆ๊ณ , ์ƒ์„ฑ๋œ EPS์˜ ๋ฌผ๋ฆฌํ™”ํ•™์  ํŠน์ง•์„ ์—ฐ๊ตฌํ•˜๋Š” ๊ฒƒ์ด๋‹ค(Chapter 2). ๊ทธ๋‹ค์Œ, ์š”๊ตฌ๋ฅดํŠธ ์ƒ์„ฑ์— ์žˆ์–ด์„œ L. garlicum KCCM 43211์˜ ์ž ์žฌ์  ์ ์šฉ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ๊ท ์ฃผ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ „ ๋ฐœํšจ๋ฅผ ๊ฑฐ์นœ ์š”๊ตฌ๋ฅดํŠธ๋ฅผ 4 ยฐC์˜ ์กฐ๊ฑด์—์„œ 28์ผ ๋™์•ˆ ์ €์žฅํ•˜๋ฉฐ ๊ทธ ํŠน์ง•์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค(Chapter 3). ๋ฐœํšจ์œ ๋ฅผ ์ œ์กฐํ•˜๊ธฐ ์œ„ํ•ด ์ž๋‹น์˜ ์œ ๋ฌด์— ๋”ฐ๋ฅธ ์›์œ ์™€ ๊ท ์งˆ ์šฐ์œ ์— L. garlicum KCCM 43211์„ ์ ‘์ข…ํ•˜์—ฌ 25 ยฐC, 100 rpm ์ง„ํƒ• ์กฐ๊ฑด์—์„œ 48์‹œ๊ฐ„ ๋™์•ˆ ๋ฐœํšจ์‹œ์ผฐ๋‹ค. 48์‹œ๊ฐ„ ๋ฐœํšจ ์ค‘ ๊ท ์˜ ์„ฑ์žฅ, pH์˜ ๋ณ€ํ™”, EPS ์ƒ์„ฑ ๋ฐ ๋ฐœํšจ์œ ์˜ ์œ ๋ณ€ํ•™์  ํŠน์„ฑ์„ ์‹คํ—˜ํ•˜์˜€๋‹ค. ์ƒ๊ท ์ˆ˜ ์ธก์ • ๊ฒฐ๊ณผ ๋ชจ๋“  ๋ฐœํšจ์œ ์—์„œ 108์—์„œ 109 CFU/mL์˜ ์„ฑ์žฅ์„ ๋ณด์˜€๋‹ค. pH๋Š” ๋ชจ๋“  ๋ฐœํšจ์œ ์—์„œ ๋ฐœํšจ ๊ธฐ๊ฐ„ ๋™์•ˆ ๊ท ์ฃผ์˜ ์„ฑ์žฅ๊ณผ ํ•จ๊ป˜ ๊ฐ์†Œํ•œ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ž๋‹น์„ ํ•จ์œ ํ•˜์ง€ ์•Š์€ ๋ฐœํšจ์œ ์—์„œ๋Š” EPS์˜ ์ƒ์„ฑ์„ ๊ด€์ฐฐํ•  ์ˆ˜ ์—†์—ˆ๋‹ค. ํ•˜์ง€๋งŒ, 10% ์ž๋‹น์„ ํ•จ์œ ํ•œ ๋ฐœํšจ์œ ์—์„œ๋Š” 22.91์—์„œ 27.29 g/kg medium์˜ EPS๋ฅผ ์ƒ์„ฑํ•œ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ž๋‹น์„ ํ•จ์œ ํ•˜์ง€ ์•Š์€ ๋ฐœํšจ์œ ์—์„œ๋Š” ์ ๋„์˜ ๋ณ€ํ™” ๋˜ํ•œ ๊ด€์ฐฐ๋˜์ง€ ์•Š์•˜์œผ๋ฉฐ, ์ž๋‹น์„ ํ•จ์œ ํ•œ ์›์œ  ์ƒ์„ฑ ๋ฐœํšจ์œ ๋Š” 1.08 cP์—์„œ 3.22 cP, ๊ท ์งˆ ์šฐ์œ  ์ƒ์„ฑ ๋ฐœํšจ์œ ๋Š” 1.29 cP์—์„œ 2.93 cP๋กœ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. EPS์˜ ์ƒ์„ฑ๊ณผ ์ ๋„ ๋ณ€ํ™”์˜ ๊ฒฐ๊ณผ๋Š” ๋ฐœํšจ์œ  ๋‚ด์—์„œ EPS๊ฐ€ ์ ๋„ ์ฆ๊ฐ€์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ๊ฒƒ์„ ๋ณด์˜€๋‹ค. EPS์˜ ๋ฌผ๋ฆฌํ™”ํ•™์  ํŠน์„ฑ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, 10% ์ž๋‹น์„ ํ•จ์œ ํ•œ ์›์œ ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋งŒ๋“  ๋ฐœํšจ์œ ์—์„œ EPS๋ฅผ ์ถ”์ถœ ๋ฐ ์ •์ œํ•˜์˜€๋‹ค. ๋ถ„์„์„ ํ†ตํ•ด L. garlicum KCCM 43211์ด ์ƒ์„ฑํ•˜๋Š” EPS๋Š” ์„ ํ˜•์˜ ฮฑ-(1โ†’6) ๊ฒฐํ•ฉ์„ ๊ฐ€์ง„ ๋ถ„์ž๋Ÿ‰์ด 2.9 ร— 106 Da์ธ ๋ฑ์ŠคํŠธ๋ž€์ธ ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. Chapter 3์—์„œ๋Š” ์›์œ ์™€ ๊ท ์งˆ ์šฐ์œ ๋กœ ์ƒ์„ฑํ•œ ์š”๊ตฌ๋ฅดํŠธ์˜ ์ €์žฅ์•ˆ์ •์„ฑ์— ๋ฏธ์น˜๋Š” ํšจ๊ณผ๋ฅผ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. 10% ์ž๋‹น์„ ํ•จ์œ ํ•œ ์›์œ  ๋ฐ ๊ท ์งˆ ์šฐ์œ ์— ์š”๊ตฌ๋ฅดํŠธ ๊ท ์ฃผ๋ฅผ ์ ‘์ข…ํ•˜์—ฌ ์ƒ์„ฑ๋œ ์š”๊ตฌ๋ฅดํŠธ๋ฅผ ๋Œ€์กฐ๊ตฐ์œผ๋กœ ์‚ฌ์šฉํ•˜์˜€๋‹ค. EPS๋ฅผ ํ•จ์œ ํ•œ ์š”๊ตฌ๋ฅดํŠธ๋ฅผ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด, L. garlicum KCCM 43211์„ ์ด์šฉํ•˜์—ฌ 12์‹œ๊ฐ„ ๋™์•ˆ 25 ยฐC, 100 rpm ์ง„ํƒ• ์กฐ๊ฑด์—์„œ ๋ฐœํšจํ•˜์˜€์œผ๋ฉฐ, ๊ทธ๋‹ค์Œ ์š”๊ตฌ๋ฅดํŠธ ๊ท ์ฃผ๋ฅผ ์ ‘์ข…ํ•˜์—ฌ ์š”๊ตฌ๋ฅดํŠธ๋ฅผ ์ƒ์„ฑํ•˜์˜€๋‹ค. ๋„ค ์ข…๋ฅ˜์˜ ์š”๊ตฌ๋ฅดํŠธ๋ฅผ 28์ผ ๋™์•ˆ ๋ƒ‰์žฅ ๋ณด๊ด€ํ•˜๋ฉฐ ์ƒ๊ท ์ˆ˜ ๋ณ€ํ™”, pH ๋ณ€ํ™”, ์ด ๊ณ ํ˜•๋ถ„ ํ•จ๋Ÿ‰, ์ƒ‰ ๋ณ€ํ™”, ๋ณด์ˆ˜๋ ฅ, EPS ํ•จ๋Ÿ‰ ๋ฐ ์œ ๋ณ€ํ•™์  ํŠน์„ฑ์„ ๊ด€์ฐฐํ•˜์˜€๋‹ค. 28์ผ ์ €์žฅ ๊ธฐ๊ฐ„ ์ค‘ ๋ชจ๋“  ์š”๊ตฌ๋ฅดํŠธ ์ƒ˜ํ”Œ์—์„œ ์ƒ๊ท ์ˆ˜๋Š” ๊ฐ์†Œํ•˜์˜€์œผ๋ฉฐ, ์ –์‚ฐ์˜ ์ƒ์„ฑ์œผ๋กœ pH๋„ ์ดˆ๊ธฐ 4.59 โ€“ 4.60์—์„œ 4.20 โ€“ 4.30 ์ˆ˜์ค€์œผ๋กœ ๊ฐ์†Œํ•˜์˜€๋‹ค. ์ด ๊ณ ํ˜•๋ถ„ ํ•จ๋Ÿ‰์€ ์ €์žฅ ๊ธฐ๊ฐ„ ๋™์•ˆ ๋ชจ๋“  ์ƒ˜ํ”Œ์—์„œ ์œ ์˜์ ์ธ ์ฐจ์ด๋ฅผ ๋ณด์ด์ง€ ์•Š์•˜๋‹ค. EPS์˜ ์กด์žฌ๋Š” ์ƒ‰์—๋„ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š์•˜๋‹ค. ๋ณด์ˆ˜์œจ์˜ ๊ฒฐ๊ณผ๋Š” ๊ท ์งˆํ™” ๊ณผ์ •์ด ์ ค ๋„คํŠธ์›Œํฌ ๋‚ด์—์„œ ์ €์žฅ ๊ธฐ๊ฐ„ ๋™์•ˆ ์ด์ˆ˜(syneresis)๋ฅผ ๋ฐฉ์ง€ํ•˜๋ฉฐ ๋ณด์ˆ˜ ๋Šฅ๋ ฅ์„ ์ฆ์ง„ํ•˜๋Š”๋ฐ ํšจ๊ณผ์ ์ธ ์š”์ธ์ด ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋˜ํ•œ, ๋‘ ์ข…๋ฅ˜์˜ EPS ํ•จ์œ  ์š”๊ตฌ๋ฅดํŠธ์—์„œ EPS๊ฐ€ ์•ฝ๊ฐ„ ๊ฐ์†Œํ•จ์„ ๋ณด์˜€๊ณ , ์ด๋Š” ๊ธด ์‹œ๊ฐ„ ์ €์˜จ ์ €์žฅ ์ค‘ EPS์˜ ๋ถ„ํ•ด๊ฐ€ ์—†์Œ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ํ๋ฆ„๊ณก์„ ์˜ ๊ฒฐ๊ณผ๋Š” ๋„ค ์ข…๋ฅ˜์˜ ์š”๊ตฌ๋ฅดํŠธ ๋ชจ๋‘ ์œ ์‚ฌ๊ฐ€์†Œ์„ฑ ์œ ์ฒด์ž„์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ €์žฅ ๊ธฐ๊ฐ„ ๋™์•ˆ ๊ฒ‰๋ณด๊ธฐ ์ ๋„์˜ ์œ ์˜๋ฏธํ•œ ๋ณ€ํ™”๋Š” ๋ณด์ด์ง€ ์•Š์•˜์ง€๋งŒ, ์˜จ๋„ ๋ณ€ํ™” ์‹œํ—˜(temperature sweep test)๋ฅผ ํ†ตํ•ด EPS์˜ ์กด์žฌ๋Š” 14์ผ ์ €์žฅ ๊ธฐ๊ฐ„ ์ดํ›„ ๊ฒ‰๋ณด๊ธฐ ์ ๋„ ์ƒ์Šน ๋ฐ ๋” ์ž‘์€ ์ด๋ ฅ ๋ฃจํ”„ (hysteresis loop)๋ฅผ ๋ณด์—ฌ์ฃผ๋ฉฐ ์š”๊ตฌ๋ฅดํŠธ์˜ ์œ ๋ณ€ํ•™์  ํŠน์„ฑ์— ๊ธ์ •์ ์ธ ์˜ํ–ฅ์„ ์ฃผ์—ˆ์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, EPS๋Š” ์ ค ์ƒ์„ฑ์˜ ์ดˆ๊ธฐ ๋‹จ๊ณ„(> pH 4.6)์—์„œ ๋ฐœํšจ์œ ์˜ ์ ๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค์ง€๋งŒ, ๊ฐ•ํ•œ ์ ค ๋„คํŠธ์›Œํฌ(< pH 4.6, ๊ท ์งˆ ์šฐ์œ  ์ƒ์„ฑ ์š”๊ตฌ๋ฅดํŠธ)์—๋Š” ๊ทธ ํšจ๊ณผ๊ฐ€ ๊ฐ€๋ ค์งˆ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ L. garlicum KCCM 43211์ด ์ƒ์„ฑํ•˜๋Š” EPS๋Š” ์•ฝํ•œ ์ ค ๋„คํŠธ์›Œํฌ๋ฅผ ๊ฐ€์ง„ ๋ฐœํšจ์œ  ๋‚ด์—์„œ ๋ฌผ๋ฆฌ์ , ์œ ๋ณ€ํ•™์  ํŠน์ง•์„ ์กฐ์ ˆํ•˜๋Š” ๋ฐ ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ผ ์ƒ๊ฐ๋œ๋‹ค.Contents Abstract i Contents iv List of Tables ix List of Figures x Chapter 1 Research background 1 1. Lactic acid bacteria 1 1.1. Leuconostoc spp. 4 1.2. Leuconostoc garlicum 4 2. Exopolysaccharide (EPS) 6 2.1. Definition 6 2.2. Classification and structure 7 3. Fermented milk 10 3.1. Definition and classification 10 3.2. Yogurt 12 3.3. Classification of yogurt 12 3.4. Yogurt manufacture 15 3.4.1. Ingredient preparation 15 3.4.2. Pre-fermentation treatments 16 3.4.3. Fermentation 19 3.5. Formation of gel network during yogurt fermentation 20 3.6. Factors influencing physical properties of yogurt 24 3.6.1. Total solids 24 3.6.2. Heat treatment 24 3.6.3. Homogenization 25 3.6.4. EPS production 26 4. Interactions between milk protein and EPS 27 4.1. Protein-polysaccharide interactions 27 4.1.1. Attractive interactions 29 4.1.2. Repulsive interactions 29 4.2. Milk protein-EPS interactions 30 5. Overall objectives 32 Chapter 2 Characterization of milk fermentation by exopolysaccharideโ€“producing Leuconostoc garlicum KCCM 43211 isolated from Kimchi 34 1. Introduction 34 2. Materials and methods 36 2.1. Materials 36 2.2. Preparation of fermented milks 36 2.3. Particle size analysis 39 2.4. Color and pH measurements 39 2.5. Determination of viable cell count 39 2.6. Determination of flow behavior and apparent viscosity 40 2.7. Isolation and purification of EPS 40 2.8. Monosaccharide composition of EPS 41 2.9. Molar mass determination 41 2.10. Nuclear magnetic resonance (NMR) spectra 42 2.11. Statistical analysis 42 3. Results and discussion 43 3.1. Effect of homogenization on milk properties 43 3.2. Effects of homogenization and sucrose on fermentation 47 3.3. Effects of homogenization and sucrose on apparent viscosity and EPS production 48 3.4. Characteristics of EPS produced by L. garlicum KCCM 43211 54 3.4.1. Monosaccharide composition 54 3.4.2. Molar mass of EPS 54 3.4.3. Chemical structure of EPS 54 4. Conclusions 62 Chapter 3 Effects of pre-fermentation with exopolysaccharide-producing Leuconostoc garlicum KCCM 43211 on yogurt properties during cold storage 64 1. Introduction 64 2. Materials and methods 66 2.1. Materials 66 2.2. Preparation of yogurt 66 2.3. Determination of viable cell count 69 2.4. Total solid measurement 69 2.5. Color and pH measurements 69 2.6. Determination of water holding capacity (WHC) 70 2.7. Isolation of EPS 70 2.8. Rheological analysis 70 2.8.1. Strain sweep test 71 2.8.2. Determination of flow behavior and apparent viscosity 71 2.8.3. Frequency sweep test 71 2.8.4. Temperature sweep test 71 2.9. Statistical analysis 72 3. Results and discussion 73 3.1. Microbial growth in yogurts during storage 73 3.2. pH of yogurts during storage 73 3.3. Total solids of yogurts during storage 74 3.4. Color of yogurts during storage 74 3.5. Water holding capacity of yogurts during storage 74 3.6. EPS production during storage 75 3.7. Rheological properties of yogurts during storage 79 3.7.1. Flow behavior and apparent viscosity 79 3.7.2. Frequency sweep behavior 79 3.7.3. Temperature sweep behavior 80 4. Conclusions 87 References 88 Abstract in Korean 109Maste

    [Part 1] The DAG-responsive C1 domain as a drug development target [Part 2] Structureโ€“Activity Relationship Studies of a Potent TRPV1 Antagonist

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์•ฝํ•™๋Œ€ํ•™ ์•ฝํ•™๊ณผ, 2016. 2. ์ด์ง€์šฐ.[Part 1] Diacylglycerol (DAG) is a lipid second messenger produced through hydrolysis of phosphatidylinositol 4,5-bisphosphate. Increased levels of DAG are translated into cellular signaling via signaling proteins including protein kinase C (PKC), RasGRPs, chimaerin, and protein kinase D which have a C1 domain, which functions as a DAG recognition motif. Based on the significant biological roles of the proteins, the development of selective agents capable of discriminating between them would have great therapeutic significance. Previously, we have demonstrated that DAG-lactones, which are rigidified structures derived from endogenous DAG, function as DAG analogs to potently bind to the C1 domain. Owing to the different lipid requirements of each C1-domain containing protein, the sets of side chains (R1 and R2) function as chemical zip codes in controlling biological activity and protein selectivity by creating a unique microenvironment surrounding the binding site. The overarching theme of this work is design, synthesis, and biological evaluation of DAG-lactone analogs varying in their side chains that have provided inspiration for selective interaction of specific C1-domain proteins based on their known, potent binding affinities. Firstly, a series of DAG-lactones having linoleic acid derivatives were evaluated their selectivity for PKC epsilon under standard lipid conditions (100% phosphatidylserine) as well as in the presence of a nuclear membrane mimetic lipid mixture. We find that selectivity tended to be enhanced in the presence of the nuclear membrane mimetic lipid mixture and, for our lead compound, report a selectivity of 32-fold. Secondly, DAG lactones having ฮฑ-arylidene (R2) side chain were synthesized and evaluated its selective binding to RasGRP3 as compared to PKC isozymes (PKCฮฑ and PKCฮต). From the preliminary results, the ฮฑ-methylindolidene DAG-lactone scaffold was selected and modified to enhance the discrimination between PKCs and RasGRPs. This study clearly shows that seemingly small structural modifications in the hydrophobic regions of these DAG analogs strongly contributes to their specific membrane interaction. [Part 2] A series of 2-substituted 4-(trifluoromethyl)benzyl C-region analogues of 2-(3-fluoro-4-methylsulfonamidophenyl)propanamides were investigated for hTRPV1 antagonism. The analysis indicated that the phenyl C-region derivatives exhibited better antagonism than those of the corresponding pyridine surrogates for most of the series examined. Among the phenyl C-region derivatives, the two best compounds 43 and 44S antagonized capsaicin selectively relative to their antagonism of other activators and showed excellent potencies with Ki(CAP) = 0.3 nM. These two compounds blocked capsaicin-induced hypothermia, consistent with TRPV1 as their site of action, and they demonstrated promising analgesic activities in a neuropathic pain model. The docking study of 44S in our hTRPV1 homology model indicated that its binding mode was similar with that of its pyridine surrogate in the A- and B-regions but displayed a flipped configuration in the C-region.Part 1. The DAG-responsive C1 domain as a drug target 4 ABSTRACT 5 1. INTRODUCTION 7 1.1 Diacylglycerol Signaling and C1 domain 7 1.2 DAG lactone 9 1.3 DAG-responsive proteins and their potential as drug targets 10 2. AIMS OF THE STUDY 14 3. PROTEIN KINASE C 15 3.1 Improtance of selective activation 15 3.2 Protein Kinase C epsilon 15 3.3 Results and discussion 18 3.4 Conclusion 29 3.5 Experimental 30 4. RAS GUANYL RELEASING PROTEINS 53 4.1 Results and Discussion 54 4.2 Conclusion 61 4.3 Experimental 62 5. REFERENCES 79 6. ABSTRACT IN KOREAN 89 Part 2. Structureโ€“Activity Relationship Studies of a Potent TRPV1 Antagonist 90 ABSTRACT 91 1. INTRODUCTION 92 1.1 Pain 92 1.2 TRPV1 94 2. AIMS OF THE STUDY 96 3. RESULTS AND DISCUSSION 97 3.1 Previous research 97 3.2 Chemistry 99 3.3 In vitro activity 99 3.4 In vitro activity 108 3.5 Molecular Modleing 109 4. CONCLUSION 111 5. EXPERIMENTAL 112 6. REFERENCES 138 7. ABSTRACT IN KOREAN 141Docto

    ํƒ„์‚ฐ์นผ์Š˜ ๋‚˜๋…ธ ๊ตฌ์กฐ์ฒด์˜ ํ˜•ํƒœ ์ œ์–ด์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2011.2. ์ฐจ๊ตญํ—Œ.Maste

    Analysis of Gyร–rgy Ligeti's <Lontano> (1967)

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์Œ์•…๊ณผ, 2011.2. ์ด๋ˆ์‘.Maste

    Design, Synthesis, and SAR of TRPV1 antagonist having indazole A-region

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์•ฝํ•™๊ณผ, 2012. 2. ์ด์ง€์šฐ.Transient receptor potential vanilloid 1 (TRPV1)์€ ๋น„์„ ํƒ์  ์–‘์ด์˜จ ์ฑ„๋„๋กœ, ์ฃผ๋กœ ๋ง์ดˆ์‹ ๊ฒฝ์˜ ์œ ํ•ด ์ˆ˜์šฉ์ฒด์™€ ์ค‘์ถ”์‹ ๊ฒฝ๊ณ„์— ๋ถ„ํฌํ•˜๋ฉฐ ์‹ ๊ฒฝ์†์ƒ์— ์˜ํ•œ ๋งŒ์„ฑํ†ต์ฆ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๊ณ  ์žˆ๋‹ค. TRPV1์€ ์™ธ์ธ์„ฑ ์ธ์ž(vanilloid, capsaicin, resiniferatoxin ๋“ฑ) ์™€ ๋‚ด์ธ์„ฑ ์ธ์ž (arachidonic acid metabolite, anandamide ๋“ฑ) ๊ทธ๋ฆฌ๊ณ  ์—ด๊ณผ pH์™€ ๊ฐ™์€ ๋ฌผ๋ฆฌ, ํ™”ํ•™์  ์ž๊ทน์— ์˜ํ•ด ํ™œ์„ฑํ™” ๋˜๋ฉฐ ํ†ต์ฆ์˜ ์ „๋‹ฌ๊ณผ ์กฐ์ ˆ์— ์ฃผ๋œ ์—ญํ• ์„ ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ์ด ์ˆ˜์šฉ์ฒด์— ๋Œ€ํ•œ ์„ ํƒ์ ์ธ ๊ธธํ•ญ์ œ์˜ ๊ฐœ๋ฐœ์€ ํ˜„์šฉ ์ง„ํ†ต์ œ๋“ค์ด ๊ฐ€์ง€๋Š” ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋Š” ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ํ˜„์žฌ ์—ฌ๋Ÿฌ ์—ฐ๊ตฌ ๊ธฐ๊ด€์—์„œ ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ ๋˜์–ด ์ง€๊ณ  ์žˆ๋‹ค. ๋‹ค๊ตญ์  ์ œ์•ฝํšŒ์‚ฌ์ธ Abbott์‚ฌ์˜ ABT-102 ใ€” 1-(5-tert-Butyl-indan-1 -yl)-3-(1H-indazol-4-yl)-urea ใ€•์˜ ๊ฐœ๋ฐœ๊ณผ์ •์—์„œ indazole๊ตฌ์กฐ์˜ ํ™”ํ•ฉ๋ฌผ์ด ํ™”ํ•™์ , ์•ฝ๋ฆฌํ•™์  ์ธก๋ฉด์—์„œ ๊ธฐ์กด์˜ ํ™”ํ•ฉ๋ฌผ๋ณด๋‹ค ์ข‹์€ ํ™œ์„ฑ์„ ๋ณด์ด๋Š” ๊ฒƒ์ด ๋ณด๊ณ  ๋˜์—ˆ๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ์‹ค์—์„œ๋Š” ABT-102๋ฅผ ์„ ๋„ ๋ฌผ์งˆ๋กœ ํ•˜์—ฌ A-region์œผ๋กœ ๋‹ค์–‘ํ•˜๊ฒŒ ์น˜ํ™˜๋œ indazole ์œ ๋„์ฒด๋ฅผ ๊ฐ€์ง€๊ณ , B-region์œผ๋กœ acetamide, propanamide, ๊ทธ๋ฆฌ๊ณ  urea๋ฅผ ๊ฐ–๋Š” ๋‹ค์ˆ˜์˜ ํ™”ํ•ฉ๋ฌผ์„ ํ•ฉ์„ฑํ•˜์—ฌ, ์„ ๋„ ๋ฌผ์งˆ๋ณด๋‹ค ๊ฐ•๋ ฅํ•œ ๊ธธํ•ญํšจ๊ณผ๋ฅผ ๊ฐ–๋Š” ํ™”ํ•ฉ๋ฌผ์„ ์ฐพ์•„๋‚ด๋Š” ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค.The vanilloid receptor TRPV1 is a homotetrameric, nonselective cation channel expressed on periperal sensory neurons and in the central nervous system abundantly expressed in nociceptors. It is activated by a wide variety of exogenous and endogenous physical such as capsaisin, aicd, and heat. TRPV1 is considered as a highly validated pain taget considering great effects of agonist and antagonist; TRPV1 agonists cause desensitization of TRPV1 channels which relieves pain behaviors in preclinical species, and antagonists relieve pain behaviors in rodent models of inflammation, osteoarthritis, and cancer. Blokade of TRPV1 activation by selective antagonists is under investigation in an attempt to identify novel agents for pain treatment. The design and synthesis of a series of novel TRPV1 antagonists with a variety of different indazole derivatives are described, and the evaluation of the Structure-activity relationships of a number of these compounds is reported.Maste

    ํ†ตํ™”์ •์ฑ… ์ถฉ๊ฒฉ์ด ํ™˜์œจ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ -์‹œ๋ณ€ ๊ตฌ์กฐ์  VAR์„ ํ†ตํ•œ ๋ถ„์„-

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ฒฝ์ œํ•™๋ถ€, 2017. 2. ๊น€์†Œ์˜.๋ณธ๊ณ ์—์„œ๋Š” ๋ฏธ๊ตญ์˜ ๊ธด์ถ•์  ํ†ตํ™”์ •์ฑ… ์ถฉ๊ฒฉ์ด ๋ฏธ/์˜ ํ™˜์œจ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์ด Dornbusch(1976)์˜ ์˜ค๋ฒ„์ŠˆํŒ…(Overshooting)๊ณผ ์ผ์น˜ํ•˜๋Š”์ง€๋ฅผ ๋ถ„์„ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด Primiceri(2005)์˜ ํ™•๋ฅ ์  ๋ณ€๋™์„ฑ์ด ์žˆ๋Š” ์‹œ๋ณ€ ๊ตฌ์กฐ์  VAR(Time-varying structural VAR with stochastic volatility)์„ ํ†ตํ•ด ์ถ”์ •ํ•˜์˜€๋‹ค. ํŠนํžˆ, ํ†ตํ™”์ •์ฑ… ๊ธฐ์กฐ(Monetary policy stance)์˜ ๋ณ€ํ™”๊ฐ€ ์žˆ๋Š” ์‹œ๊ธฐ์™€ ์ด ์™ธ์˜ ์‹œ๊ธฐ์— ํ†ตํ™”์ •์ฑ… ์ถฉ๊ฒฉ์— ๋Œ€ํ•œ ํ™˜์œจ์˜ ๋ฐ˜์‘์ด ๋‹ค๋ฅธ์ง€๋ฅผ ๋ถ„์„ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ œ๋กœ๊ธˆ๋ฆฌ์ œ์•ฝ์„ ์ •ํ™•ํžˆ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•ด Wu and Xia(2016)์˜ ์ž ์žฌ ์ •์ฑ…๊ธˆ๋ฆฌ(Shadow policy rate)๋ฅผ ํ•จ๊ป˜ ๊ณ ๋ คํ•˜์˜€๋‹ค. ์ด์ฒ˜๋Ÿผ ๋ณธ๊ณ ์—์„œ๋Š” Volcker ์‹œ๊ธฐ์™€ ์„ธ๊ณ„๊ธˆ์œต์œ„๊ธฐ ์ดํ›„ ์ œ๋กœ๊ธˆ๋ฆฌ์ œ์•ฝ์˜ ์‹œํ–‰๊ณผ ๊ฐ™์€ ํ†ตํ™”์ •์ฑ… ๊ธฐ์กฐ์˜ ๋ณ€ํ™”๊ฐ€ ์žˆ๋Š” ์‹œ๊ธฐ์— ํ™˜์œจ์˜ ๋ฐ˜์‘์„ ๋ณด๊ณ ์ž ํ•˜์˜€๋‹ค. ๋ณธ๊ณ ์˜ ๋ถ„์„ ๊ฒฐ๊ณผ ํ™•๋ฅ ์  ๋ณ€๋™์„ฑ์ด ์žˆ๋Š” ์‹œ๋ณ€ ๊ตฌ์กฐ์  VAR์˜ ๊ฒฝ์šฐ ํ†ตํ™”์ •์ฑ… ๊ธฐ์กฐ์˜ ๋ณ€ํ™”์™€ ๋ฌด๊ด€ํ•˜๊ฒŒ ์˜ค๋ฒ„์ŠˆํŒ…๊ณผ ์ผ์น˜ํ•˜๋Š” ๋ชจ์Šต์„ ๋ณด์˜€์œผ๋‚˜, ๋ณ€ํ™”๊ฐ€ ์žˆ๋Š” ๊ฒฝ์šฐ์— ์ ˆ์ƒ ํญ์ด ์ด์™ธ์˜ ๊ฒฝ์šฐ๋ณด๋‹ค ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํ†ตํ™”์ •์ฑ… ์ถฉ๊ฒฉ์— ๋Œ€ํ•ด ์™ธํ™˜์‹œ์žฅ์ด ์ƒํ’ˆ์‹œ์žฅ๋ณด๋‹ค ๋น ๋ฅด๊ฒŒ ์กฐ์ •๋˜์–ด ์˜ค๋ฒ„์ŠˆํŒ…์ด ๋‚˜ํƒ€๋‚˜๋ฉฐ, ํ†ตํ™”์ •์ฑ… ๊ธฐ์กฐ์˜ ๋ณ€ํ™”๊ฐ€ ์žˆ๋Š” ๊ฒฝ์šฐ ์˜ˆ๊ธฐ์น˜ ๋ชปํ•œ ํ†ตํ™”์ •์ฑ… ์ถฉ๊ฒฉ์— ๋Œ€ํ•ด ํ™˜์œจ์ด ์žฅ๊ธฐ์  ์ˆ˜์ค€์ด ๋น„ํ•ด ํฌ๊ฒŒ ๋ฐ˜์‘ํ•œ ํ›„ ์ ์ง„์ ์ธ ์‹œ์žฅ์˜ ์กฐ์ • ๊ณผ์ •์„ ๋ฐ˜์˜ํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. ๋‚˜์•„๊ฐ€ ๋ฐฉ๋ฒ•๋ก ์˜ ์ •ํ™•์„ฑ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ํ™•๋ฅ ์  ๋ณ€๋™์„ฑ์ด ์—†๋Š” ์‹œ๋ณ€ ๊ตฌ์กฐ์  VAR๊ณผ ๋ฒ ์ด์ง€์•ˆ ๊ตฌ์กฐ์  VAR(Bayesian structural VAR)์„ ๋น„๊ตํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ณธ๊ณ ์—์„œ ์ ์šฉํ•œ ํ™•๋ฅ ์  ๋ณ€๋™์„ฑ์ด ์žˆ๋Š” ์‹œ๋ณ€ ๊ตฌ์กฐ์  VAR์ด ํ†ตํ™”์ •์ฑ… ๊ธฐ์กฐ์˜ ๊ตฌ์กฐ์  ๋ณ€ํ™”๋ฅผ ๋ฐ˜์˜ํ•˜์—ฌ ํ†ตํ™”์ •์ฑ… ์ถฉ๊ฒฉ์„ ์ •ํ™•ํžˆ ์‹๋ณ„ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ฐํ˜”๋‹ค. ์ด์— ๋”ฐ๋ผ ํ™•๋ฅ ์  ๋ณ€๋™์„ฑ์ด ์žˆ๋Š” ์‹œ๋ณ€ ๊ตฌ์กฐ์  VAR์„ ํ†ตํ•ด ํ™˜์œจ์˜ ๋ฐ˜์‘์— ๋Œ€ํ•œ ์ •๋ฐ€ํ•œ ๋ถ„์„์„ ํ•  ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค.์ œ1์žฅ.์„œ๋ก  1 ์ œ2์žฅ.์„ ํ–‰์—ฐ๊ตฌ 4 1.์˜ค๋ฒ„์ŠˆํŒ… 4 2.์ง€์—ฐ๋œ ์˜ค๋ฒ„์ŠˆํŒ… 7 ์ œ3์žฅ.๋ถ„์„๋ฐฉ๋ฒ• ๋ฐ ๋ถ„์„๊ฒฐ๊ณผ 10 1.๋ถ„์„๋ฐฉ๋ฒ• 10 2.๋ถ„์„์ž๋ฃŒ 16 3.๋ถ„์„๊ฒฐ๊ณผ 19 ์ œ4์žฅ.๊ฒฐ๋ก  27 ๋ถ€๋ก 29 1.์ถ”์ • ์•Œ๊ณ ๋ฆฌ์ฆ˜ 29 2.๋ถ„์„์ž๋ฃŒ ์ถœ์ฒ˜ ๋ฐ ์„ค๋ช… 35 3.๊ฐ•๊ฑด์„ฑ ๊ฒ€์ • 38 ์ฐธ๊ณ ๋ฌธํ—Œ 43Maste
    corecore