6 research outputs found
๋งค๋์ฝ์ด ํ๊ฒฝ์์์ ํฅ์๋ ๊ธฐ์์ ๋ ฌ
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ๊ณต๊ณผ๋ํ ์ปดํจํฐ๊ณตํ๋ถ, 2019. 2. ์ ์๊ธธ.3์ฐจ์ ๋ฉ์ฌ ๋ณต์
ํ๋ ์
๋ ฅ์ผ๋ก ๋ค์ด์จ ๋ฉ์ฌ ๋ฐ์ดํฐ๋ฅผ ๋ณต์
๋ฐ์ดํฐ๋ก ๋ณํํ๋ ๊ณผ์ ์ผ๋ก ํ๋ก์ธ์ค์๋ ์ ๋ ฌ ์๊ณ ๋ฆฌ์ฆ์ด ํฌํจ๋๋ค. ์ผ๋ฐ์ ์ธ ์ ๋ ฌ ์๊ณ ๋ฆฌ์ฆ์ GPU ๊ตฌ์กฐ์์ ์ฑ๋ฅ์ด ์ข์ง ์์ ์๊ณ ๋ฆฌ์ฆ์ด๊ธฐ ๋๋ฌธ์ 3์ฐจ์ ๋ฉ์ฌ ๋ณต์
ํ์ ์ํ์๊ฐ์ ๋๋ถ๋ถ์ ์ฐจ์งํ๋ ๋ฌธ์ ์ ์ด ์๋ค.
์ด ๋
ผ๋ฌธ์์๋ GPU ํ๊ฒฝ์์์ ๋ณ๋ ฌํ๊ฐ ํ๋ค์ด 3์ฐจ์ ๋ฉ์ฌ ๋ณต์
ํ ์ํ์๊ฐ ์ค ๋๋ถ๋ถ์ ์ฐจ์งํ๊ณ ์๋ ์ ๋ ฌ ๋ถ๋ถ์ ๋งค๋์ฝ์ด ํ๊ฒฝ์ ์ด์ฉํ์ฌ ์ต์ ํํ๋ค. ์ด๋ฅผ ์ํด ๋ ๋จ๊ณ๋ก ์ด๋ฃจ์ด์ง ๊ฐ์ ๋ ๊ธฐ์ ์ ๋ ฌ ๋ฐฉ๋ฒ์ ์ฌ์ฉํ๋ค.
์ด ๋
ผ๋ฌธ์์ ์ ์ํ ๋ฐฉ๋ฒ์ผ๋ก ๊ธฐ์กด์ ๋ฐฉ๋ฒ๊ณผ ๋น๊ตํ ๊ฒฐ๊ณผ, ๊ธฐ์กด ๋ฐฉ๋ฒ์ผ๋ก ํด๊ฒฐํ ์ ์๋ ๋ฐ์ดํฐ ๋ฒ์๋ฅผ ์ ๋ ฌํ ์ ์์ผ๋ฉฐ ์ ๋ ฌ ๊ฐ๋ฅํ ๋ฐ์ดํฐ์ ๊ฒฝ์ฐ ๋ฐ์ดํฐ ํฌ๊ธฐ์ ๋ฐ๋ผ ์ต๋ 2.25๋ฐฐ์ ์๋ ํฅ์์ ์ป์ ์ ์์๋ค.3D mesh voxelization is the process of converting inputted mesh data into voxel data, which includes sorting algorithm. Since a general sorting algorithm does not have a good performance in the GPU structure, its problem is that it takes up most of the time for 3D mesh voxelization.
Using a many-core environment, this paper seeks to optimize the performing time of sorting time which takes up the most time for 3D mesh voxelization because sorting is difficult in a GPU environment. For this, it uses the improved radix sorting method consisting of two-step.
According to the result of comparing the existing method to a new method proposed in this paper, the data range that cant be solved by the previous method can now be sorted, with up to 2.25 times of speed improvement gained depending on the data size for the sortable data.1. ์๋ก 1
2. ๋ฐฐ๊ฒฝ ์ง์ ๋ฐ ๊ด๋ จ ์ฐ๊ตฌ 4
2.1. GPU ๊ตฌ์กฐ 4
2.2. ๋งค๋์ฝ์ด 5
2.3. ๋ฉ์ฌ 6
2.4. ๋ณต์
8
2.5. 3์ฐจ์ ๋ฉ์ฌ ๋ณต์
ํ 9
2.6. GPU ๊ธฐ๋ฐ ์ ๋ ฌ ์๊ณ ๋ฆฌ์ฆ 13
2.6.1. ์ ๋ ฌ ๋คํธ์ํฌ 13
2.6.2. ๋ฐ์ดํ ๋ ์ ๋ ฌ[8][11] 15
2.6.3. ์ ๋ ฌ ๋คํธ์ํฌ ๊ธฐ๋ฐ ์ ๋ ฌ์ ํ๊ณ์ 17
3. ๋งค๋์ฝ์ด ํ๊ฒฝ์์์ ํฅ์๋ ๊ธฐ์ ์ ๋ ฌ 18
3.1. Morton code[3] 18
3.2. ๋ณ๋ ฌํ๋ ๊ธฐ์ ์ ๋ ฌ 20
3.3. ์ ์ฒด ์๊ณ ๋ฆฌ์ฆ ํ๋ฆ๋ 23
3.4. ์ ์ญ ๊ธฐ์ ์ ๋ ฌ 25
3.5. ์ง์ญ ๊ธฐ์ ์ ๋ ฌ 26
3.6. ๋งค๋์ฝ์ด ํ๊ฒฝ์์์ ์ต์ ํ 28
4. ์คํ ๊ฒฐ๊ณผ 31
4.1. ์ผ๋ฐ์ ์ธ ๊ธฐ์ ์ ๋ ฌ๊ณผ์ ๋น๊ต 31
4.2. ๋ณต์
์กฐ๊ฐ ๋ฐ์ดํฐ ์คํ ๊ฒฐ๊ณผ 33
5. ๊ฒฐ๋ก ๋ฐ ํฅํ ์ฐ๊ตฌ ๊ณผ์ 36
6. ์ฐธ๊ณ ๋ฌธํ 38Maste
Studies on CPEB4-mediated memory consolidation and protein degradation-mediated reconsolidation using Aplysia neuronal cultures
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ๋์ธ์ง๊ณผํ๊ณผ ๋์ธ์ง๊ณผํ์ ๊ณต, 2016. 2. ๊ฐ๋ด๊ท .๋จ๊ธฐ๊ธฐ์ต์ด ์ฅ๊ธฐ๊ธฐ์ต์ผ๋ก ์ ์ฅ๋๊ธฐ ์ํด์๋ ๋จ๋ฐฑ์ง ํฉ์ฑ์ ํ์๋ก ํ๋ ๊ฒฝํ๊ณผ์ ์ด ํ์ํ๋ค. ๊ธฐ์ต ์ฌ๊ฒฝํ ๊ฐ์ค์ ๊ฒฝํ๋ ์ฅ๊ธฐ๊ธฐ์ต์ด ํ์์ ํตํด ๋ ์ฌ๋ ค์ง๋ฉฐ ๊ทธ ํ ์ฌ๊ฒฝํ ๊ณผ์ ์ ๊ฑฐ์ณ์ผ๋ง ๋ค์ ์์ ํ ๋ ์ ์๋ค๊ณ ์ค๋ช
ํ๋ค. ํ์ง๋ง ํ์์ ์ํด ๊ธฐ์ต์ด ์ธ์ถ๋๋ ๊ณผ์ ์ค ์๋
์ค์์ ์ผ์ด๋๋ ๋จ๋ฐฑ์ง ๋ถํด์ ์ฌํฉ์ฑ ๊ณผ์ ์ด ๋์ผํ ์๋
์ค์์ ์ผ์ด๋๋์ง์ ๋ํด์๋ ์์ง ํ์คํ๊ฒ ์๋ ค์ ธ ์์ง ์์๋ค. ์ด๋ฌํ ํ์์ ์์ธํ ๋ฐํ๊ธฐ ์ํด ๋น๊ต์ ๋จ์ํ ์ ๊ฒฝ๊ณ๋ก ๊ตฌ์ฑ๋ ๋ฐ๋ค๋ฌํฝ์ด์ ๋ฏผ๊ฐํ๊ธฐ์ต์ ์ด์ ์ ๋ง์ถ๊ธฐ๋ก ํ์๋ค. ์ด๋ฌํ ๋ฏผ๊ฐํ ๊ธฐ์ต์ ๊ตฐ์ ๋จ์ผ์ ๊ฒฝ์ธํฌ ๋ฐฐ์๋ฒ์ ์ด์ฉํด ์ฅ๊ธฐ๊ธฐ์ต์ด ์ฅ๊ธฐ ์๋
์ค ์ด์ง์ผ๋ก ์ธํฌ์์ค์์ ์ฌํ๋ ์ ์๋ค. ์ด๋ฒ ์ฐ๊ตฌ๋ฅผ ํตํด ๊ธฐ์ต์ ํ์์ ์ํด ์ผ์ด๋๋ ์๋
์ค ๋จ๋ฐฑ์ง์ ๋ถํด์ ์ฌํฉ์ฑ์ด ์ฅ๊ธฐ ์๋
์ค ์ด์ง์ด ์ผ์ด๋๋ ๋์ผํ ์๋
์ค์์ ์ผ์ด๋๋ ๊ฒ์ ํ์ธํ์๋ค.
๊ทธ ์ธ์๋, ๊ตฐ์์ ์๋
์ค ํน์ด์ ์ธ ์ฅ๊ธฐ ์๋
์ค ์ด์ง ๊ณผ์ ์ ํ์ฑ๊ณผ ์ ์ง์ ํ์ํ ๊ตญ์ ๋จ๋ฐฑ์ง ํฉ์ฑ ๊ณผ์ ์ด ๊ฐ๊ฐ ๋ค๋ฅธ ์ ํธ์ ๋ฌ ๊ฒฝ๋ก๋ก ์ผ์ด๋๋ ๊ฒ์๋ ๊ด์ฌ์ ๊ฐ์ก๋ค. ๊ธฐ์กด ์ฐ๊ตฌ๋ค์ ํตํด ApCPEB ์ด๋ผ๋ ๋จ๋ฐฑ์ง์ rapamycin์ ์ํด ์ต์ ๋๋ ๋จ๋ฐฑ์ง ํฉ์ฑ ๊ฒฝ๋ก๋ฅผ ํตํด ํ์ฑ๋๋ฉฐ ์ด๊ฒ์ ๋ฐํ์ด ์ฅ๊ธฐ ์๋
์ค ์ด์ง๊ณผ์ ์ ์ ์ง์ ํ์ํ ๊ฒ์ผ๋ก ์๋ ค์ ธ ์๋ค. ๊ทธ๋ฌ๋ emetine์ ์ํด ์ต์ ๋๋ ๋จ๋ฐฑ์ง ํฉ์ฑ ๊ฒฝ๋ก๋ฅผ ํตํ ์ฅ๊ธฐ ์๋
์ค ์ด์ง์ ํ์ฑ์ ํ์ํ ๊ตญ์ ๋จ๋ฐฑ์ง ํฉ์ฑ ๊ณผ์ ์ ์์ง ์๋ ค์ ธ ์์ง ์์๋ค. ์ด ๋
ผ๋ฌธ์์๋ ๊ธฐ์กด์ ์๋ ค์ ธ ์์ง ์๋ ์๋ก์ด Aplysia CPEB๋ฅผ ํด๋ก๋ ํ์๊ณ , ApCPEB4-like protein ์ด๋ผ ๋ช
๋ช
ํ์๋ค. ์ด ๋จ๋ฐฑ์ง์ 5-HT์ ์ํด ์ฆ๊ฐํ์๊ณ , ํ๋ฆฌ์จ ๋๋ฉ์ธ์ด ์์๋ค. ๋ํ emetine์ ์ํด ํฉ์ฑ์ด ์ต์ ๋์ง๋ง rapamycin์ ์ํด์๋ ํฉ์ฑ์ด ์ต์ ๋์ง ์๋ ๊ฒ์ ํ์ธํ ์ ์์๋ค. ApCPEB4๋ ๊ธฐ์กด์ ์๋ ค์ ธ ์๋ ApCPEB์ ๋ค๋ฅธ target mRNA์ ๋ถ๋ ๊ฒ์ผ๋ก ํ์ธ ๋์๊ณ , ์ด ๋จ๋ฐฑ์ง์ ๋ฐํ์ ์ ํดํ์์ ๋ ์ฅ๊ธฐ ์๋
์ค ์ด์ง์ ํ์ฑ์ด ์ต์ ๋์๋ค. ๋ํ, ๊ณผ๋ฐํ ์์๋ ์ฅ๊ธฐ ์๋
์ค ์ด์ง์ด ํ์ฑ๋๊ธฐ ์ํ ์ญ์น๊ฐ์ด ๊ฐ์ํ ๊ฒ์ ํ์ธํ์๋ค. ์ด๋ฌํ ๊ฒฐ๊ณผ๋ค์ ํตํด ApCPEB์ ์ฅ๊ธฐ์๋
์ค ์ด์ง์ ์ ์ง๋ฅผ ์ํด ํ์ํ ๋ฐ๋ฉด, ํ๋ฆฌ์จ ๋๋ฉ์ธ์ด ์๋ ApCPEB4๋ ์ฅ๊ธฐ ์๋
์ค ์ด์ง์ ํ์ฑ์ ์ค์ํ ๊ฒ์ ์ ์ ์์๋ค.Dynamic process of memory requires consolidation to store memory in long-term. The memory reconsolidation hypothesis suggests that this memory trace becomes labile after retrieval and needs to be reconsolidated before it can be stabilized. However, it is unclear from earlier studies whether the same synapses involved in encoding the memory trace are those that are destabilized and restabilized after the synaptic reactivation that accompanies memory retrieval, or whether new and different synapses are recruited. To address this issue, I focused on simple form of non-associative memory, long-term sensitization of the gill- and siphon-withdrawal reflex in Aplysia. Using its cellular analog, long-term facilitation (LTF) at the sensory-to-motor neuron synapse, I found that on the cellular level, long-term facilitation at the sensory-to-motor neuron synapse that mediates long-term sensitization is also destabilized by protein degradation and is restabilized by protein synthesis after synaptic reactivation, a procedure that parallels memory retrieval or retraining evident on the behavioral level.
In addition, I also focused on the issues that two pharmacologically distinct types of local protein synthesis are required for synapse-specific LTF in Aplysia: one for initiation and the other for maintenance. ApCPEB, a rapamycin sensitive prion-like molecule regulates a form of local protein synthesis that is specifically required for the maintenance of the LTF. However, the molecular component of the local protein synthesis that is required for the initiation of LTF and sensitive to emetine is not known. Here, I identified a homolog of ApCPEB responsible for the initiation of LTF. The ApCPEB homolog which we have named ApCPEB4-like protein is responsive to 5-hydroxytryptamine (5-HT), lacks a prion-like domain, and is translated (but not transcribed) in an emetine-sensitive but rapamycin-insensitive and PKA-dependent manner. The ApCPEB4 binds to different target RNAs than does ApCPEB. Knock-down of ApCPEB4 blocked the induction of LTF, whereas overexpression of ApCPEB4 reduces the threshold of the formation of LTF. Thus, our findings suggest that the two different forms of CPEBs play distinct roles in LTFApCPEB is required for maintenance, whereas the ApCPEB4, which lacks a prion-like domain, is required for initiation.Chapter I. Introduction 1
Background 2
Purpose of this study 10
Chapter II. A cellular model of memory reconsolidation involves reactivation-induced destabilization and restabilization at the sensorimotor synapse in Aplysia 11
Introduction 12
Experimental Procedures 15
Results 18
Discussion 37
Chapter III. ApCPEB4-like protein, a non-prion domain containing homolog of ApCPEB, is involved in the initiation of long-term facilitation 40
Introduction 41
Experimental Procedures 43
Results 49
Discussion 72
Chapter IV. Conclusion 77
References 79
๊ตญ๋ฌธ์ด๋ก 90Docto
๊ธฐ๋ํผ๊ทธ ์ ํํ๊ทผ์ ์์ถ์ ๋ํ capsaicin์ ์์ฉ๊ณผ ๊ทธ ๊ธฐ์ ์ ๊ดํ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :์ํ๊ณผ ์๋ฆฌํ ์ ๊ณต,1999.Maste
LB2-Tree: A Index Structure Specialized for Key-Value SSDs
ํ์๋
ผ๋ฌธ (์์ฌ) -- ์์ธ๋ํ๊ต ๋ํ์ : ๊ณต๊ณผ๋ํ ์ปดํจํฐ๊ณตํ๋ถ, 2021. 2. ๊น์ง์.ํค-๋ฐธ๋ฅ SSD๋ ํค-๋ฐธ๋ฅ ์คํ ์ด I/O ์คํ ๋ฆฌ์ง ์คํ์ ๊ตฌ์ฑํจ์ ์์ด ์๋ก์ด ํจ๋ฌ๋ค์์ ์ ์ํ๋ค. ํค-๋ฐธ๋ฅ SSD๋ ์ฌ์ฉ์์๊ฒ ํค-๋ฐธ๋ฅ ์ธํฐํ์ด์ค๋ฅผ ์ ๊ณตํ์ฌ ํธ์คํธ ์์คํ
์์์ ์ฌ์ฉ๋์ ํฌ๊ฒ ์ค์ด์ง๋ง ์ฌ๋ฌ ํ๊ณ์ ์ผ๋ก ์ธํด ํค-๋ฐธ๋ฅ ์คํ ์ด๋ฅผ ๋์ฒดํ ์๋ ์๋ค. ์ด ๋
ผ๋ฌธ์์๋ ํค-๋ฐธ๋ฅ SSD์ ํน์ง๋ค์ ๋ถ์ํ๊ณ ์ด๋ฅผ ํค-๋ฐธ๋ฅ ์คํ ์ด์ ๋์ฒด์ ๋ก ์ฌ์ฉํ๊ธฐ ์ด๋ ค์ด ์ด์ ๋ฅผ ์ค๋ช
ํ๋ค. ๋ํ, ์ด๋ฌํ ๋ถ์๋ค์ ๋ฐํ์ผ๋ก LB2-Tree๋ผ๋ ์๋ก์ด ์ธ๋ฑ์ค ๊ตฌ์กฐ๋ฅผ ์ ์ํ๋ค. LB2-Tree๋ ๊ธฐ์กด Copy-On-Write B+Tree์์ ๋ํ๋๋ ๋ฌธ์ ์ ์ธ compaction๊ณผ cascading update๋ฅผ ํค-๋ฐธ๋ฅ SSD์ ํน์ฑ๋ค์ ํ์ฉํด ํด๊ฒฐํ๋ค. LB2-Tree๋ ํนํ ์
๋ฐ์ดํธ๊ฐ ์ฆ์ ํ๊ฒฝ์์ CoW B+Tree์ ๋นํด ๋งค์ฐ ๋์ ์ฑ๋ฅ๊ณผ ๋งค์ฐ ๋ฎ์ ์ฐ๊ธฐ๋์ ๋ณด์ธ๋ค.Key-Value SSDs presents a new paradigm in constructing the Key-Value Store I/O storage stack. Key-Value SSDs provide users with a key-value interface, which significantly reduces the use of host system resources, but can not replace Key-Value stores due to multiple limitations. This paper analyzes the characteristics of Key-Value SSDs and explains why they can not be used as an alternative to Key-Value stores. Based on these analyses, this paper propose a new index structure called LB2-Tree. LB2-Tree is based on Copy-on-Write B+Tree and solves problems like compaction, high write amplification, high CPU overhead, and cascading updates by using the characteristics of a Key-Value SSDs. LB2-Tree shows high throughput and low write and read amplification compared to CoW B+tree, especially in update-intensive workloads.์ 1 ์ฅ ์๋ก 1
์ 2์ฅ ํค-๋ฐธ๋ฅ SSD 3
2.1 ์ผ์ฑ ํค-๋ฐธ๋ฅ SSD 4
2.2 ํค-๋ฐธ๋ฅ SSD ์ฑ๋ฅ ๋ถ์ 4
2.2.1 ์คํ ํ๊ฒฝ 5
2.2.2 ์ฐ๊ธฐ ๋ฐ ์ฝ๊ธฐ ์ฑ๋ฅ 5
2.3 ํค-๋ฐธ๋ฅ SSD ํน์ฑ ๋ถ์ 7
2.3.1 ๋ฌธ์์ด ํค๋ฅผ ์ฑ๋ฅ ์์ธก์ ์ด๋ ต๊ฒ ํ๋ค 8
2.3.2 ์ ์ฅ๋ ๋ฐ์ดํฐ๊ฐ ๋ง์์๋ก ์ฝ๊ธฐ ์ฑ๋ฅ์ ์ ํ๋๋ค 9
2.3.3 ๊ธธ์ด๊ฐ ๊ธด ํค๋ ์ฑ๋ฅ์ ์ ํํ๋ค 10
2.4 ํค-๋ฐธ๋ฅ SSD์ ํ๊ณ 10
์ 3์ฅ ํธ๋ฆฌ ๋ฐ์ดํฐ ๊ตฌ์กฐ 12
3.1 Log-Structured Merge-Tree 12
3.2 Log-Structured Merge-Tree์ ๋ฌธ์ ์ 13
3.3 Copy-On-Write B+Tree 15
3.4 Copy-On-Write B+Tree์ ๋ฌธ์ ์ 15
์ 4์ฅ Log-structured Blind write B+Tree 17
4.1 ๊ฐ์ 17
4.2 ์ฐ๊ธฐ ๋์ 18
4.3 ์ฝ๊ธฐ ๋์ 20
4.4 ๋ก๊ทธ ๋ณํฉ ์์
21
4.5 ๊ฐ๋ณ ๊ธธ์ด ๋
ธ๋ ์ฐ๊ธฐ ๊ธฐ๋ฒ 21
4.6 ๊ฒฝ๋ ๊ณต๊ฐ ์ฌํ๋ณด ๊ธฐ๋ฒ 22
4.7 ๋ฉํฐ ์ค๋ ๋ ๋ณต๊ตฌ ๊ธฐ๋ฒ 23
์ 5์ฅ ์คํ ๊ฒฐ๊ณผ ๋ฐ ๋ถ์ 25
5.1 ์คํ ํ๊ฒฝ 25
5.2 ์ฒ๋ฆฌ๋ ๋น๊ต 26
5.3 ์ฐ๊ธฐ๋ ๋ฐ ์ฝ๊ธฐ๋ ๋น๊ต 27
5.4 ๋ณต๊ตฌ ์๋ ๋น๊ต 29
์ 6์ฅ ๊ฒฐ๋ก 31
์ฐธ๊ณ ๋ฌธํ 32
Abstract 34Maste
๊ธฐ๋ํผ๊ทธ ์ ํํ๊ทผ์์ ATP ์์กด์ฑ ํฌํ์ํต๋ก์ ๋ํ ์ฐ๊ตฌ
Thesis (doctoral)--์์ธ๋ํ๊ต ๋ํ์ :์ํ๊ณผ ์๋ฆฌํ์ ๊ณต,2002.Docto