13 research outputs found
3์กฑ ์งํ๋ฌผ ๋ฐ๋์ฒด๋ฅผ ์ํ ์ ์จ ๋ฒํผ์ธต ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ์ฌ๋ฃ๊ณตํ๋ถ, 2016. 2. ์ค์์ค.3์กฑ ์งํ๋ฌผ ๋ฐ๋์ฒด๋ HEMT ์ ๊ฐ์ ์ ์์์์ ์์ฉ๊ฐ๋ฅ์ฑ์ผ๋ก ์ธํด ๋ง์ ์ฐ๊ตฌ๊ฐ ์งํ๋์ด ์ค๊ณ ์๋ค. 3์กฑ ์งํ๋ฌผ ๋ฐ๋์ฒด๋ ๋์ข
๊ธฐํ ์ฌ์ฉ์ ํ๊ณ๋ก ์ธํ์ฌ ์ผ๋ฐ์ ์ผ๋ก ์ค๋ฆฌ์ฝ ๊ธฐํ์ด๋ ์ฌํ์ด์ด ๊ธฐํ๊ณผ ๊ฐ์ ์ด์ข
๊ธฐํ์ ์ฌ์ฉํ์ฌ ์ํผํ
์
์ฑ์ฅ์ด ์ด๋ฃจ์ด ์ง๋ค. ํ์ง๋ง ๊ฐ๋ฅจ (Ga) ์์ ๋ฑ์ 3์กฑ ์์๋ค์ ์ด์ข
๊ธฐํ ์์์ ์์ ์ ์ผ๋ก ๋ถ์ด ์๊ธฐ ์ด๋ ต๊ธฐ ๋๋ฌธ์ ๊ท ์ผํ ๋ฐ๋ง์ ์ป๋๋ฐ ํ๊ณ๊ฐ ์์๋ค. ๋ฒํผ์ธต (buffer layer)์ ๊ฐ๋ฐ์ 3์กฑ ์งํ๋ฌผ ๋ฐ๋์ฒด์ ๊ธฐํ ์ฌ์ด์ ๋ฌผ๋ฆฌ์ ํน์ฑ ์ฐจ์ด๋ก ๋ฐ์ํ๋ ์์ ๊ฐ์ ๋ฌธ์ ์ ๋ค์ ํด๊ฒฐ ํด์ฃผ์๊ณ ์ด๋ก ์ธํด 3์กฑ ์งํ๋ฌผ ๋ฐ๋์ฒด์์ ๊ผญ ํ์ํ ํต์ฌ ๊ธฐ์ ๋ก ๋๋ฆฌ ์ด์ฉ ๋๊ณ ์๋ค. ํ์ง๋ง ์ฌ์ ํ ๋์ค์ ๋ฅ (leakage current), ๊ธฐํ ํจ (wafer bowing) ๊ทธ๋ฆฌ๊ณ ์ฑ์ฅ ํ๊ฒฝ์ ์ํฅ๊ณผ ๊ฐ์ด 3์กฑ ์งํ๋ฌผ ๋ฐ๋์ฒด์ ํน์ฑ์ ์ ํ ์ํค๋ ๋ฌธ์ ์ ๋ค์ด ์กด์ฌ ํ๊ณ ์๋ค. ๋ณธ ์ฐ๊ตฌ์์๋ ๊ฐ ๊ธฐํ ์์ ์งํ๋ฌผ ๋ฐ๋์ฒด๋ฅผ ์ฑ์ฅํจ์ ๋ฐ๋ผ ๋ฐ์ํ๋ ๋ฌธ์ ์ ๋ค์ ํ์ธ ํ๊ณ , ์ด๋ฅผ ๋ฒํผ์ธต์ ์ด์ฉํด ํด๊ฒฐ ํ๊ณ ์ ํ์๋ค.
์ฐ์ ์ค๋ฆฌ์ฝ ๊ธฐํ ์ GaN์ธต ์ฑ์ฅ์์ ์ผ๋ฐ์ ์ผ๋ก ์ฌ์ฉ ๋๋ AlN ๋ฒํผ์ธต์ ๋ฌธ์ ์ ์ ๋ํ ์ฐ๊ตฌ๋ฅผ ์งํํ์๋ค. ๋๊ฐ AlN ๋ฒํผ์ธต๊ณผ GaN ์ธต์ ๊ฐ์ ์ ๊ธฐ๊ธ์ํํ๊ธฐ์์ฆ์ฐฉ (MOCVD) ์ฅ๋น ๋ด์์ ์ฑ์ฅ ๋๊ธฐ ๋๋ฌธ์ ๋จ์ ์๋ ๊ฐ๋ฅจ์ด AlN ๋ฒํผ์ธต์ ์ํฅ์ ๋ฏธ์น๊ฒ ๋๋ค. ๋ณธ ์ฐ๊ตฌ๋ฅผ ํตํด ์ ๊ธฐ๊ธ์ํํ๊ธฐ์์ฆ์ฐฉ ์ฅ๋น ๋ด ์ ๋จ์ ์๋ ๊ทน์๋์ ๊ฐ๋ฅจ์ด AlN ๋ฒํผ์ธต์ ํ๋ฉด์ํ์ ์ํฅ์ ๋ผ์น๊ณ , ์ด๋ก ์ธํด ๊ทธ ์์ ์ฑ์ฅ ๋๋ GaN ์ธต์ ๊ฒฐ์ ์ฑ ๋ฐ ์๋ ฅ์ ๋ถ์ ์ ์ธ ์ํฅ์ ๋ฏธ์น๋ ๊ฒ์ ํ์ธ ํ์๋ค. ์ด๋ Si ๊ธฐํ ์ GaN๋ฅผ ์ฑ์ฅ ํ ๋ ๋ง๋ค ๋ค๋ฅธ ๊ฒฐ๊ณผ๊ฐ ๋์ค๋ ๋ฑ์ ์ ๋ขฐ์ฑ ๋ฌธ์ ๋ฅผ ์ผ๊ธฐ ์ํค๋ฉฐ, ๊ฐ๋ฅจ์ ์ํฅ์ ์ต์ํ ํ๋ ค๋ฉด ์ฅ๋น์ ์ ์ง ๋ณด์ ๋ฑ์ ๋ง์ ๋น์ฉ๊ณผ ์๊ฐ์ด ์๊ตฌ ๋๊ธฐ ๋๋ฌธ์ ํด๊ฒฐ์ฑ
์ด ํ์ ํ๋ค.
์ ๋ฌธ์ ๋ฅผ ํด๊ฒฐํ๊ณ ์ DC ๋ง๊ทธํ
ํธ๋ก ์คํผํฐ๋ง (magnetron sputtering) ์ฅ๋น๋ฅผ ์ด์ฉํ์ฌ ์์จ์์ ์ฆ์ฐฉ ํ AlN ๋ฒํผ์ธต์ ๊ฐ๋ฐ ํ์๋ค. ์ด ์๋ก์ด AlN ๋ฒํผ์ธต์ ์ ๊ธฐ๊ธ์ํํ๊ธฐ์์ฆ์ฐฉ ์ฅ๋น๋ก ์ฑ์ฅ ๋๋ ๊ฒ์ด ์๋๋ฏ๋ก ๊ฐ๋ฅจ ์ ์ํฅ์ด ์์ ๋ฟ๋ง ์๋๋ผ, ์์จ์์ ์ฑ์ฅ๋๊ธฐ ๋๋ฌธ์ ์๋ฃจ๋ฏธ๋ (Al)-์ค๋ฆฌ์ฝ์ ์ํธ ํ์ฐ์ผ๋ก ์ธํ ๋์ค์ ๋ฅ ๋ฌธ์ ๋ฅผ ํด๊ฒฐ ํ ์ ์์ ๊ฒ์ผ๋ก ๊ธฐ๋๋๋ค. DC ๋ง๊ทธ๋คํธ๋ก ์คํผํฐ๋ง์ ์ด์ฉํ ์์จ AlN์ธต์ด ๋ฒํผ์ธต์ผ๋ก์ ์ญํ ํ ์ ์๋๋ก, ์ฐ๋ฆฌ๋ ์ค๋ฆฌ์ฝ ๊ธฐํ๊ณผ AlN ์ธต ์ฌ์ด์ ์๋ฃจ๋ฏธ๋ ์ธต์ ๋ฃ์ด AlN ์ ์ํผํ
์
์ฑ์ฅ์ด ๋๋๋ก ๋ง๋ค์๋ค. ์๋ฃจ๋ฏธ๋ ๊ณผ AlN ์ ๊ฒฉ์์์ ์ฐจ์ด (6~8%)๊ฐ ์ค๋ฆฌ์ฝ ๊ณผ AlN ์ ๊ฒฉ์์์ ์ฐจ์ด (19%) ๋ณด๋ค ์๊ธฐ ๋๋ฌธ์, ์๋ฃจ๋ฏธ๋ ์ธต์ ๋์
์ด AlN ๊ฐ ์ํผํ
์
์ฑ์ฅ์ด ๋๊ธฐ ์ํ ํ์ฑํ ์๋์ง๋ฅผ ๋ฎ์ถ๋ ํจ๊ณผ๋ฅผ ๋ง๋ค์ด๋๋ค. ๋๋ถ์ด ๋์ DC power๋ฅผ ํตํด ์ถฉ๋ถํ ์ด๋์๋์ง๋ฅผ ๊ณต๊ธ ํจ์ผ๋ก์จ ์ค๋ฆฌ์ฝ ๊ธฐํ ์ AlN ์ธต์ ์ํผํ
์
์ฑ์ฅ์ ์์จ์์ ์ฑ๊ณต ํ์๋ค. ์ ๊ธฐ๊ธ์ํํ๊ธฐ์์ฆ์ฐฉ ์ฅ๋น๋ฅผ ์ฌ์ฉํ์ฌ ์ AlN์ธต ์์ GaN ์ธต์ ์ฑ์ฅ ํ ๊ฒฐ๊ณผ, ๋จ๊ฒฐ์ ์ GaN ์ธต์ด ์ฑ์ฅ ํ๋ ๊ฒ์ ํ์ธ ํ์๊ณ , ์ด๋ ๋ณธ ์ฐ๊ตฌ์์ ๊ฐ๋ฐํ DC ๋ง๊ทธ๋คํธ๋ก ์คํผํฐ๋ง์ ์ด์ฉํ AlN ๋ฒํผ์ธต์ด ํ์ฌ ์ฌ๋ฌ ๋ฌธ์ ์ ์ ๊ฐ์ง๊ณ ์๋ ๊ธฐ์กด์ AlN ๋ฒํผ์ธต์ ๋์ฒด ํ ์ ์์์ ๋ณด์ฌ์ค๋ค. ์ถ๊ฐ์ ์ธ ์ฐ๊ตฌ๋ฅผ ํตํด ์ด ๋ฒํผ์ธต์ ํ์ง ํฅ์์ ์ํ ๋ณธ ๊ธฐ์ ์ ๊ฐ๋ฅ์ฑ์ ๋ณด์๋ค.
์ถ๊ฐ์ ์ผ๋ก ์ฌํ์ด์ด ๊ธฐํ ์ GaN ์ธต์ด ๊ฐ๊ณ ์๋ ๋์ค์ ๋ฅ ๋ฌธ์ ๋ฐ ๊ธฐํ ํจ ํ์์ ํด๊ฒฐํ๊ธฐ ์ํ ์๋ก์ด ์ ์จ ๋ฒํผ์ธต์ ๊ฐ๋ฐ ํ์๋ค. ์ผ๋ฐ์ ์ผ๋ก ์ฌํ์ด์ด ๊ธฐํ ์ ์ ์จ GaN ๋ฒํผ์ธต์ ์ ์จ์์ GaN ๋ฒํผ์ธต์ ์ฑ์ฅ ํ ํ ์ฃผ GaN ์ธต์ ์ฑ์ฅ ํ๊ธฐ ์ํด ๊ณ ์จ์ผ๋ก ์ฌ๋ฆฌ๋ ๋์ ์๋ชจ๋์ ๊ฐ์ค๋ง ํ๋ ค์ค๋ค. ๋ฐ๋ฉด ๋ณธ ์ฐ๊ตฌ์์๋ GaN ๋ฒํผ์ธต์ ์ ์จ์์ ์ฑ์ฅ ํ ํ์ ๊ณ ์จ์ผ๋ก ์น์จ ํ๋ ๋์ ์๋ชจ๋์ ๊ฐ์ค์ ํจ๊ป TMGa ์์ค๋ ํจ๊ป ํ๋ ค์ฃผ์๋ค. ์ด์ ๊ฐ์ ๋ฐฉ๋ฒ์ผ๋ก ์ฑ์ฅ๋ GaN ๋ฒํผ์ธต์ ๋๋
ธ ์ปฌ๋ผ๋ (nano-columanr) ๊ตฌ์กฐ๋ฅผ ์ ์งํ๋ฉด์ ๋ง์ ์์ ํ์๋ฅผ ํฌํจ ํ๊ณ ์๋ ๊ฒ์ ํ์ธ ํ์์ผ๋ฉฐ, ๊ทธ์ ๋ํ ์ฑ์ฅ ๋ฉ์ปค๋์ฆ์ ๊ท๋ช
ํ์๋ค. ๊ฒฐ๊ณผ์ ์ผ๋ก ์๋ก์ด GaN ๋ฒํผ์ธต์ ์ ์ฉ ํจ์ผ๋ก์จ ์ฌํ์ด์ด ๊ธฐํ ์ GaN ์ธต์ ๊ธฐํ ํจ ํ์์ด ์ํ ๋์์ผ๋ฉฐ, ๊ณ ์ ํญ ํน์ฑ์ ๋ํ๋ด์๋ค. ์ด ๋ฒํผ์ธต์ ์ ์ฉํ์ฌ HEMT ์์๋ฅผ ์ ์ํ ๊ฒฐ๊ณผ -4 V ์ ๊ฒ์ดํธ ์ ์ ํ์์ 800 V ์ด์์ off-state ํญ๋ณต์ ์ (breakdown voltage) ํน์ฑ์ ๋ณด์์ผ๋ฉฐ ์ด๋ฌํ ๊ฒฐ๊ณผ๋ ๋ณธ ์ฐ๊ตฌ์ ์๋ก์ด ์ ์จ GaN ๋ฒํผ์ธต์ด ์ฌํ์ด์ด ๊ธฐํ ์ GaN ์ ์์์์ ์ ํฉํจ์ ๋ณด์ฌ์ค๋ค.The group III-nitride semiconductors with their wide applications in electronic devices such as high electron mobility transistor (HEMT) have attracted much research interest in the past two decades. A major drawback of III-nitride is that native substrates are not yet available in large quantities, so heteroepitaxy using foreign substrates such as Si and sapphire have been widely used. Unfortunately, although both materials have been chosen as substrates for GaN epitaxial growth, the substrates are badly matched to GaN with respect to their lattice constant and thermal expansion coefficient. In addition, when atoms such as Ga are deposited on the substrate, the atoms are very mobile on the plain substrate, so homogeneously wetting on the substrate is difficult. To solve the problems, buffer layer was developed in the growth of GaN layer, resulting in rapid progress in III-nitride growth. Accordingly, the buffer techniques have become critical key issue and determine the properties of III-nitride. However, several problems such as leakage current, wafer bowing and metal-organic chemical vapor deposition (MOCVD) chamber condition still exist, resulting in the degraded properties of electronic device. To overcome these problems, new low temperature buffer layers for each substrate were proposed in this study.
The problems in epitaxial growth of GaN on Si substrate, first of all, were investigated when AlN buffer layer, conventional buffer layer for GaN on Si, was grown by same MOCVD system for the GaN growth. We confirmed MOCVD reactor circumstance related with previous GaN growth run, Ga memory effect, is significant for properties of GaN/AlN/Si structure. The small amount of Ga from the Ga memory effect affected the final stress and crystal quality of GaN on Si as well as the surface of AlN buffer layer. To solve the Ga memory effect, we proposed a AlN buffer layer deposited by DC magnetron sputtering at room temperature. The ex-situ buffer layer could be effective solution to avoid growth circumstance problem in MOCVD reactor since the system does not include Ga. Moreover low growth temperature could prevent interdiffusion between Si-Al, leading to leakage path. For epitaxial growth of AlN on Si substrate by DC magnetron sputtering at room temperature, the pre-deposited Al process, deposition of thin Al layer before main AlN deposition, was developed. It was expected that the activation energy for epitaxial growth of AlN on Al interlayer became lower than it on Si substrate, resulting from smaller lattice mismatch between AlN and Al (6~8%) than between AlN and Si (19%). Moreover, the sufficient kinetic energy from the high DC power helped epitaxial growth of AlN even at the room temperature. Also, single crystalline GaN was successfully grown by MOCVD on the AlN buffer layer, which shows the new room temperature AlN buffer layer could be substituted for conventional AlN buffer layer grown at high temperature by MOCVD system.
Additionally, new low temperature (LT) GaN buffer layer for GaN on sapphire substrate was proposed to solve problems of the GaN on sapphire which are low resistivity and convex wafer bowing. The LT GaN buffer layer was fabricated as introduction of tri-methylgallium (TMGa) into the reactor together with ammonia during the temperature ramp-up after the growth of a LT GaN buffer layer. We confirmed nano-columnar structure of the buffer layer with high carbon concentration and investigated the growth mechanism. The GaN layer on sapphire with new LT GaN buffer layer revealed the high-resistivity characteristic and reduction of wafer bowing. A HEMT device made on the layer showed a good pinch-off characteristic and high off-state breakdown voltage over 800 V at a gate voltage of -4 V, implying the new LT buffer layer is effective to grow GaN on sapphire for electronic device.Chapter 1. Introduction 1
1.1. III-nitride based devices 1
1.1.1 General properties of III-nitride materials 1
1.1.2 The principal of formation of two-dimensional electron gas in III-nitride semiconductor 3
1.2. Growth of III-nitride film 10
1.2.1 Epitaxial growth of III-nitride 10
1.2.2 The intrinsic stress evolution at the grain boundary in the film 11
1.3. Substrate for III-nitride 18
1.3.1 Si substrate 18
1.3.2 Sapphire substrate 19
1.4. Buffer layer in III-nitride 24
1.4.1 Buffer layer for Si substrate 24
1.4.2 Buffer layer for sapphire substrate 26
1.5. The problems of the buffer layer for HEMT device 32
1.5.1 Electrical problem 32
1.5.2 Stress problem 34
1.5.3 Dislocation problem 35
1.6. Thesis contents and organization 41
1.7. Bibliography 43
Chapter 2. The problem of GaN on Si grown by MOCVD Investigation of Ga memory effect 51
2.1. Introduction 51
2.2. Experimental procedure 53
2.3. The effect of AlN run sequence for GaN on Si substrate 56
2.4. Ga memory effect for AlN buffer layer on Si 68
2.5. Summary 76
2.6. Bibliography 77
Chapter 3. Growth of AlN buffer layer on Si substrate by DC magnetron sputtering at room temperature 81
3.1. Growth of AlN buffer layer with same alignment of out-of-plane 81
3.1.1 Introduction 81
3.1.2 Experimental procedure 83
3.1.3 Results and discussion 85
3.1.4 Summary 96
3.2. Epitaxial growth of single crystalline AlN buffer layer on Si (111) 97
3.2.1 Introduction 97
3.2.2 Experimental procedure 99
3.2.3 Results and discussion 102
3.2.4 Summary 121
3.3. Further study of AlN buffer layer grown by DC magnetron sputtering at room temperature 122
3.3.1 Annealing process for AlN buffer layer 122
3.3.2 Further study on the pre-deposition process 129
3.4. Bibliography 134
Chapter 4. The development of low temperature buffer layer for GaN on sapphire 139
4.1. Introduction 139
4.2. Experimental procedure 142
4.3. Results and discussion 145
4.3.1 Semi-insulating characteristics 145
4.3.2 Characteristic of less bowed GaN and crystal qualities 156
4.4. Investigation of growth mechanism and evaluation of HEMT device 165
4.4.1 Investigation of growth mechanism and new low temperature buffer layer 165
4.4.2 Evaluation of HEMT device 174
4.5. Summary 177
4.6. Bibliography 178
Chapter 5. Conclusion 183
๊ตญ๋ฌธ์ด๋ก 186
Publication list 190Docto
Meta-analysis on the Effect of Adventure Education in Korea
์ด ์ฐ๊ตฌ์ ๋ชฉ์ ์ ๊ทธ๋์ ๊ต์ก๊ณ์ ๊ด์ฌ์ ํฌ๊ฒ ๋ฐ์ง ๋ชปํ๋ ๊ทน๊ธฐ ํ๋ จ, ์ผ์, ์์ฐ๊ถ ์๋ จํ๋ ๋ฑ์ ๋ชจํ๊ต์ก์ด๋ผ๋ ์๋ก์ด ๊ต์ก ์์ญ์ ํ๋๋ก ์ธ์ํ๋ฉด์ ๊ต์ก์ ์ผ๋ก ํ์ฉํ๊ธฐ ์ํ ๊ฐ๋ฅ์ฑ์ ๋ชจ์ํ๋ ๊ฒ์ด๋ค. ์ด๋ฅผ ์ํด ์ด 6๊ฐ์ ๋ฐ์ดํฐ๋ฒ ์ด์ค๋ฅผ ํตํด ์ ์ ํ 16ํธ์ ๊ตญ๋ด ๋ชจํ๊ต์ก ๊ด๋ จ ์ฐ๊ตฌ๋ฌผ์ ๋ฉํ๋ถ์ํ์ฌ, ์ ์ฒด ํจ๊ณผํฌ๊ธฐ๋ก ํ์คํ๋ ํ๊ท ์ฐจ๋ฅผ ์ฐ์ถํ์๋ค. ๋์ง์ฑ ๊ฒ์ ๊ฒฐ๊ณผ๊ฐ ํต๊ณ์ ์ผ๋ก ์ ์๋ฏธํ์ฌ ๋๋คํจ๊ณผ ๋ชจํ์ ์ฌ์ฉํด ๋ฉํ๋ถ์์ ์งํํ์๋ค. ๋ฉํ๋ถ์ ๊ฒฐ๊ณผ, ๊ตญ๋ด ๋ชจํ๊ต์ก์ ์ ์ฒด ํจ๊ณผํฌ๊ธฐ๋ 0.335์๋ค. ์ด๋ ์ค๊ฐ๋ณด๋ค ์กฐ๊ธ ์์ ํฌ๊ธฐ์ ํจ๊ณผ๋ก ๊ต์ก์ ์ผ๋ก ์ ์๋ฏธํ ์์ค์ด์๋ค. ๊ตญ๋ด ๋ชจํ๊ต์ก ์์ญ์ ์ฐ๊ตฌ๋ค์ด ๋ณด๊ณ ํ ํจ๊ณผ์ ์ข
๋ฅ๋ 100์ฌ ๊ฐ์ง๊ฐ ๋์ด์ ์ด๋ค์ ์ด 5๊ฐ์ง์ ์ธ์ง์ , ์ ์์ , ์ฌํ์ , ๋ณตํฉ์ , ์ ์ฒด์ ์์ญ์ผ๋ก ๋ถ๋ฅํ์ฌ ์์ญ๋ณ ํจ๊ณผํฌ๊ธฐ๋ฅผ ์ฐ์ถํ์๋ค. ๊ทธ ๊ฒฐ๊ณผ, ๋ณตํฉ์ ํน์ฑ ์์ญ์์ ๊ฐ์ฅ ํจ๊ณผ๊ฐ ์ปธ์ผ๋ฉฐ ๋ค์์ผ๋ก๋ ์ ์์ ํน์ฑ ์์ญ์ด์๋ค. ์ด๋ค ์์ญ์์์ ๋ชจํ๊ต์ก์ ํจ๊ณผ๋ ๊ต์ก์ ์ผ๋ก ์ ์๋ฏธํ ์์ค์ด์๋ค. ๊ตญ๋ด์ ๊ตญ์ธ์ ๋ชจํ๊ต์ก์ ๋น๊ตํ์ฌ ๊ตญ๋ด ๋ชจํ๊ต์ก ๋ถ์ผ์ ํจ๊ณผ๋ฅผ ๋์ด๊ธฐ ์ํ ์์ฌ์ ์ ๋์ถํ์๋ค.The purpose of this study was to search the possibility of adventure education in Korea. This meta-analysis analyzed 16 studies and calculated the standardized mean difference in effect size. As the result of homogeneity test, random-effects model was chosen. The overall effect size(d) of adventure education was positive with 0.335, which means a little lower than moderate. It was educationally significant. The studies in the area of adventure education reported over 100 kinds of effect variables. This study assorted them into cognitive, emotional, social, complex, and physical domains and calculated each effect size. As the result of comparing those domains, complex domain had the biggest effect size and next was emotional domain. They were educationally significant. By the comparison of Korean and abroad adventure education, this study suggested how to develop Korean adventure education
A Meta-Analysis of the Effects of School Violence Prevention Programs in Korea
This study purports to evaluate the effectiveness of school violence prevention programs and to identify the success factors of these programs. To search for the previous studies, we searched through web databases including keris, nanet, kiss, dapia, the Korean Psychology Association, etc., using as key words school violence, aggressiveness, bullying, delinquency, perpetrators, victims, prevention, and effect size. We selected a total of 23 publications including journal articles, theses, and dissertations which employed a pretest-posttest control group design and standardized measurement tools. A total of 96 effect size values were calculated by using the CMA(Comprehensive Meta Analysis) V2 program. The results show that the total program effect size value based on the random effect model was high. The analysis of effect sizes as to program characteristics reveal that the effect size values for intensive awareness-evoking programs were significantly higher than those for programs which attempted to indirectly intervene the participants psychological traits. Such program strategies were associated with not only a reduction in violent behavior but also enhanced social-emotional skills. It was also shown that as the total number of sessions increased, the effect size values became significantly higher. Small group activities focused on high school students had a larger effect size value. Based on the findings, implications for future research and program implementation were discussed.์ด ์ฐ๊ตฌ๋ ๋ฉํ๋ถ์ ๊ธฐ๋ฒ์ ํ์ฉํ์ฌ ํ๊ตํญ๋ ฅ ์๋ฐฉ ํ๋ก๊ทธ๋จ์ ํจ๊ณผ์ฑ์ ์ข
ํฉ์ ์ผ๋ก ํ๊ฐํ๊ณ ์ ํ์๋ค. ์ ํ์ฐ๊ตฌ๋ค์ ๊ฒ์ํ๊ธฐ ์ํ์ฌ ํ์ ์ฐ๊ตฌ์ ๋ณด์๋น์ค, ๊ตญํ๋์๊ด, ๊ตญ๋ฆฝ์ค์๋์๊ด, ํ๊ตญ์ฌ๋ฆฌํํ ๋ฐ์ดํฐ๋ฒ ์ด์ค์์ ํ๊ตํญ๋ ฅ, ๊ณต๊ฒฉ์ฑ, ๊ดด๋กญํ, ์๋ฐ, ๋นํ, ๊ฐํด์, ํผํด์, ์๋ฐฉ, ํจ๊ณผํฌ๊ธฐ ๋ฑ์ ํค์๋๋ก ํ์ฌ ์๋ฃ๋ฅผ ๊ฒ์ํ์๊ณ , ๊ฒ์๋ ์๋ฃ ์ค์์ ์คํ์ง๋จ, ํต์ ์ง๋จ์ ์ค์ ํ ์คํ์ฐ๊ตฌ์ ํ์คํ๋ ์ธก์ ๋๊ตฌ๋ฅผ ์ฌ์ฉํ ๋
ผ๋ฌธ์ ๊ธฐ์ค์ผ๋ก ์ด 23ํธ์ ๋
ผ๋ฌธ์ ์ ์ ํ์๋ค. ์ด๋ค ๋
ผ๋ฌธ์์ ์ถ์ถํ ์ด 96๊ฐ์ ํจ๊ณผํฌ๊ธฐ ๊ฐ์ ๋ฉํ๋ถ์ ์ ๋ฌธ ํ๋ก๊ทธ๋จ์ธ CMA(Comprehensive Meta Analysis) V2๋ฅผ ์ด์ฉํ์ฌ ๋ถ์ํ์๋ค. ๋ถ์๊ฒฐ๊ณผ, ๋๋คํจ๊ณผ๋ฅผ ์ด์ฉํ ์ ์ฒด ํ๋ก๊ทธ๋จ์ ํจ๊ณผํฌ๊ธฐ ๊ฐ์ด ํฐ ๊ฒ์ผ๋ก ๋ํ๋ฌ๋ค. ํ๋ก๊ทธ๋จ ์ ํ์ ๋ฐ๋ฅธ ํจ๊ณผํฌ๊ธฐ ๊ฐ์ ๋น๊ตํ ๊ฒฐ๊ณผ, ํ๊ตํญ๋ ฅ์ ๋ํ ๋ฌธ์ ์ ๊ธฐ๋ฅผ ํตํด ํญ๋ ฅ์ ๋ํ ์ธ์๊ณผ ํ๋ ๋ณํ๋ฅผ ์ง์ ์ ์ผ๋ก ๋๋ชจํ๋ ์ง์ ๊ต์ ๋ฐ ์ฒดํ๋ฐฉ์์ด ์ฌ๋ฆฌ์ ์์ธ์ ๊ฐ์ ์ ์ผ๋ก ๊ฐ์
ํ๋ ๋ฐฉ์๋ณด๋ค ํจ๊ณผํฌ๊ธฐ๊ฐ ์ ์ํ๊ฒ ํฐ ๊ฒ์ผ๋ก ๋ํ๋ฌ๋ค. ์ด๋ฌํ ํ๋ก๊ทธ๋จ ํจ๊ณผ๋ ๊ณต๊ฒฉ์ ํ๋์ด๋ ์ค์ ํญ๋ ฅ์ ๊ฐ์๋ฟ๋ง ์๋๋ผ ์ฌํ์ ๊ธฐ์ , ์ ์ ๊ฐ์ ์ธก๋ฉด์์๋ ๋ํ๋ฌ๋ค. ๋ํ ๋์์ฐ๋ น์ด ๊ณ ๋ฑํ์์ผ ๋, ํ๋ก๊ทธ๋จ ์ค์ ํ๊ธฐ์๊ฐ ์ฆ๊ฐํ ์๋ก, ๋์ง๋จ๋ณด๋ค๋ ์์ง๋จ ํ๋์์ ํจ๊ณผํฌ๊ธฐ๊ฐ ์ ์ํ๊ฒ ํฐ ๊ฒ์ผ๋ก ๋ํ๋ฌ๋ค. ์ฐ๊ตฌ๊ฒฐ๊ณผ์ ๊ธฐ์ดํ์ฌ, ํ์์ฐ๊ตฌ์ ํ๋ก๊ทธ๋จ ์ด์์ ๋ํ ์์ฌ์ ์ด ๋
ผ์๋์๋ค