20 research outputs found

    12.8 kHz Energy-Efficient Read-Out IC for High Precision Bridge Sensor Sensing System

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022.2. ๊น€์ˆ˜ํ™˜.In the thesis, a high energy-efficient read-out integrated circuit (read-out IC) for a high-precision bridge sensor sensing system is proposed. A low-noise capacitively-coupled chopper instrumentation amplifier (CCIA) followed by a high-resolution incremental discrete-time delta-sigma modulator (DTฮ”ฮฃฮœ) analog-to-digital converter (ADC) is implemented. To increase energy-efficiency, CCIA is chosen, which has the highest energy-efficiency among IA types. CCIA has a programmable gain of 1 to 128 that can amplify the small output of the bridge sensor. Impedance boosting loop (IBL) is applied to compensate for the low input impedance, which is a disadvantage of a CCIA. Also, the sensor offset cancellation technique was applied to CCIA to eliminate the offset resulting from the resistance mismatch of the bridge sensor, and the bridge sensor offset from -350 mV to 350 mV can be eliminated. In addition, the output data rate of the read-out IC is designed to be 12.8 kHz to quickly capture data and to reduce the power consumption of the sensor by turning off the sensor and read-out IC for the rest of the time. Generally, bridge sensor system is much slower than 12.8 kHz. To suppress 1/f noise, system level chopping and correlated double sampling (CDS) techniques are used. Implemented in a standard 0.13-ฮผm CMOS process, the ROICโ€™s effective resolution is 17.0 bits at gain 1 and that of 14.6 bits at gain 128. The analog part draws the average current of 139.4 ฮผA from 3-V supply, and 60.2 ฮผA from a 1.8 V supply.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ณ ์ •๋ฐ€ ๋ธŒ๋ฆฌ์ง€ ์„ผ์„œ ์„ผ์‹ฑ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์—๋„ˆ์ง€ ํšจ์œจ์ด ๋†’์€ Read-out Integrated Circuit (read-out IC)๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ € ์žก์Œ Capacitively-Coupled Instrumentation Amplifier (CCIA)์— ์ด์€ ๊ณ ํ•ด์ƒ๋„ Discrete-time Delta-Sigma ๋ณ€์กฐ๊ธฐ(DTฮ”ฮฃฮœ) ์•„๋‚ ๋กœ๊ทธ-๋””์ง€ํ„ธ ๋ณ€ํ™˜๊ธฐ(ADC)๋ฅผ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์—๋„ˆ์ง€ ํšจ์œจ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด IA ์œ ํ˜• ์ค‘ ์—๋„ˆ์ง€ ํšจ์œจ์ด ๊ฐ€์žฅ ๋†’์€ CCIA๋ฅผ ์„ ํƒํ•˜์˜€๋‹ค. CCIA๋Š” ๋ธŒ๋ฆฌ์ง€ ์„ผ์„œ์˜ ์ž‘์€ ์ถœ๋ ฅ์„ ์ฆํญํ•  ์ˆ˜ ์žˆ๋Š” 1 ์—์„œ 128์˜ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๊ฐ€๋Šฅํ•œ ์ „์•• ์ด๋“์„ ๊ฐ€์ง„๋‹ค. CCIA์˜ ๋‹จ์ ์ธ ๋‚ฎ์€ ์ž…๋ ฅ ์ž„ํ”ผ๋˜์Šค๋ฅผ ๋ณด์ƒํ•˜๊ธฐ ์œ„ํ•ด Impedance Boosting Loop (IBL)์„ ์ ์šฉํ•˜์˜€๋‹ค. ๋˜ํ•œ CCIA์— ์„ผ์„œ ์˜คํ”„์…‹ ์ œ๊ฑฐ ๊ธฐ์ˆ ์„ ์ ์šฉํ•˜์—ฌ ๋ธŒ๋ฆฌ์ง€ ์„ผ์„œ์˜ ์ €ํ•ญ ๋ฏธ์Šค๋งค์น˜๋กœ ์ธํ•œ ์˜คํ”„์…‹์„ ์ œ๊ฑฐ ๊ธฐ๋Šฅ์„ ํƒ‘์žฌํ•˜์˜€์œผ๋ฉฐ -350mV์—์„œ 350mV๊นŒ์ง€ ๋ธŒ๋ฆฌ์ง€ ์„ผ์„œ ์˜คํ”„์…‹์„ ์ œ๊ฑฐํ•  ์ˆ˜ ์žˆ๋‹ค. Read-out IC์˜ ์ถœ๋ ฅ ๋ฐ์ดํ„ฐ ์ „์†ก๋ฅ ์€ 12.8kHz๋กœ ์„ค๊ณ„ํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฅผ ๋น ๋ฅด๊ฒŒ ์ฑ„๊ณ  ๋‚˜๋จธ์ง€ ์‹œ๊ฐ„ ๋™์•ˆ ์„ผ์„œ์™€ read-out IC๋ฅผ ๊บผ์„œ ์„ผ์„œ์˜ ์ „๋ ฅ ์†Œ๋น„๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ๋ธŒ๋ฆฌ์ง€ ์„ผ์„œ ์‹œ์Šคํ…œ์€ 12.8kHz๋ณด๋‹ค ๋Š๋ฆฌ๊ธฐ ๋•Œ๋ฌธ์— ์ด๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ํ•˜์ง€๋งŒ, ์ผ๋ฐ˜์ ์ธ CCIA๋Š” ์ž…๋ ฅ ์ž„ํ”ผ๋˜์Šค ๋•Œ๋ฌธ์— ๋น ๋ฅธ ์†๋„์—์„œ ์„ค๊ณ„๊ฐ€ ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด demodulate ์ฐจํ•‘์„ ์•ฐํ”„ ๋‚ด๋ถ€๊ฐ€ ์•„๋‹Œ ์‹œ์Šคํ…œ ์ฐจํ•‘์„ ์ด์šฉํ•ด ํ•ด๊ฒฐํ•˜์˜€๋‹ค. 1/f ๋…ธ์ด์ฆˆ๋ฅผ ์–ต์ œํ•˜๊ธฐ ์œ„ํ•ด ์‹œ์Šคํ…œ ๋ ˆ๋ฒจ ์ฐจํ•‘ ๋ฐ ์ƒ๊ด€ ์ด์ค‘ ์ƒ˜ํ”Œ๋ง(CDS) ๊ธฐ์ˆ ์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. 0.13ฮผm CMOS ๊ณต์ •์—์„œ ๊ตฌํ˜„๋œ read-out IC์˜ Effective Resolution (ER)์€ ์ „์•• ์ด๋“ 1์—์„œ 17.0๋น„ํŠธ์ด๊ณ  ์ „์•• ์ด๋“ 128์—์„œ 14.6๋น„ํŠธ๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ์•„๋‚ ๋กœ๊ทธ ํšŒ๋กœ๋Š” 3 V ์ „์›์—์„œ 139.4ฮผA์˜ ํ‰๊ท  ์ „๋ฅ˜๋ฅผ, ๋””์ง€ํ„ธ ํšŒ๋กœ๋Š” 1.8 V ์ „์›์—์„œ 60.2ฮผA์˜ ํ‰๊ท  ์ „๋ฅ˜๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค.CHAPTER 1 INTRODUCTION 1 1.1 SMART DEVICES 1 1.2 SMART SENSOR SYSTEMS 4 1.3 WHEATSTONE BRIDGE SENSOR 5 1.4 MOTIVATION 8 1.5 PREVIOUS WORKS 10 1.6 INTRODUCTION OF THE PROPOSED SYSTEM 14 1.7 THESIS ORGANIZATION 16 CHAPTER 2 SYSTEM OVERVIEW 17 2.1 SYSTEM ARCHITECTURE 17 CHAPTER 3 IMPLEMENTATION OF THE CCIA 19 3.1 CAPACITIVELY-COUPLED CHOPPER INSTRUMENTATION AMPLIFIER 19 3.2 IMPEDANCE BOOSTING 22 3.3 SENSOR OFFSET CANCELLATION 25 3.4 AMPLIFIER OFFSET CANCELLATION 29 3.5 AMPLIFIER IMPLEMENTATION 32 3.6 IMPLEMENTATION OF THE CCIA 35 CHAPTER 4 INCREMENTAL ฮ”ฮฃ ADC 37 4.1 INTRODUCTION OF INCREMENTAL ฮ”ฮฃ ADC 37 4.2 IMPLEMENTATION OF INCREMENTAL ฮ”ฮฃ MODULATOR 40 CHAPTER 5 SYSTEM-LEVEL DESIGN 43 5.1 DIGITAL FILTER 43 5.2 SYSTEM-LEVEL CHOPPING & TIMING 46 CHAPTER 5 MEASUREMENT RESULTS 48 6.1 MEASUREMENT SUMMARY 48 6.2 LINEARITY & NOISE MEASUREMENT 51 6.3 SENSOR OFFSET CANCELLATION MEASUREMENT 57 6.4 INPUT IMPEDANCE MEASUREMENT 59 6.5 TEMPERATURE VARIATION MEASUREMENT 63 6.6 PERFORMANCE SUMMARY 66 CHAPTER 7 CONCLUSION 68 APPENDIX A. 69 ENERGY-EFFICIENT READ-OUT IC FOR HIGH-PRECISION DC MEASUREMENT SYSTEM WITH IA POWER REDUCTION TECHNIQUE 69 BIBLIOGRAPHY 83 ํ•œ๊ธ€์ดˆ๋ก 87๋ฐ•

    Effects of Magentic field on the Shapes of a Bubble in a Uniaxial Stranining Flow

    No full text
    Maste

    Clinical study on the necessity of prophylactic antibiotic therapy in tooth extraction

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์น˜์˜ํ•™๊ณผ, 2011.2. ์ตœ์ง„์˜.Maste

    Scanning Force Microscope๋ฅผ ์ด์šฉํ•œ ๋ฐ˜๋„์ฒด ํ‘œ๋ฉด ์กฐ์‚ฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๋ฌผ๋ฆฌํ•™๊ณผ,1997.Maste

    Bacillus subtilis์—์„œ Methylglyoxal์ด ์„ธํฌ ํ˜•ํƒœ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ƒ๋ช…๊ณผํ•™๋ถ€, 2017. 8. ๊ฐ•์‚ฌ์šฑ.๋ง‰๋Œ€๋ชจ์–‘์˜ ์„ธ๊ท ์€ ์„ธํฌ์˜ ๋ถ„์—ด ๋ฐ ์‹ ์žฅ ๊ณผ์ •์„ ํ†ตํ•ด ๊ณ ์œ ํ•œ ํ˜•ํƒœ๋ฅผ ์œ ์ง€ํ•จ์œผ๋กœ์จ ์ ์ ˆํ•œ ์„ธํฌ์˜ ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์„ธํฌ ํ˜•ํƒœ์˜ ์œ ์ง€๋Š” ์„ธํฌ ๊ณจ๊ฒฉ์„ ์ด๋ฃจ๋Š” ์š”์†Œ๋“ค์— ์˜ํ•ด ์ด๋ฃจ์–ด ์ง€๋ฉฐ ๋‹ค์–‘ํ•œ ๋Œ€์‚ฌ๋ฌผ์งˆ์˜ ์ฆ๊ฐ์ด ๊ด€์—ฌ๋˜์–ด ์—„๊ฒฉํžˆ ์กฐ์ ˆ๋œ๋‹ค. ์ฃผ๋กœ ํ•ด๋‹น๊ณผ์ •์—์„œ ์ƒ์„ฑ๋˜๋Š” ๋Œ€์‚ฌ์‚ฐ๋ฌผ์ธ ๋ฉ”ํ‹ธ๊ธ€๋ฆฌ์˜ฅ์‚ด์€ ๊ณ ์ดˆ๊ท ์„ ํฌํ•จํ•œ ๋ช‡๋ช‡ ์„ธ๊ท ์—์„œ๋Š” ๋ฉ”ํ‹ธ๊ธ€๋ฆฌ์˜ฅ์‚ด ํ•ฉ์„ฑํšจ์†Œ(MGS)๋ฅผ ํ†ตํ•ด ์„ธํฌ ๋‚ด ์–‘์ด ์กฐ์ ˆ๋œ๋‹ค. ๋ฉ”ํ‹ธ๊ธ€๋ฆฌ์˜ฅ์‚ด์€ ํŽฉํƒ€์ด๋“œ์™€ ๊ฐ™์€ ์•„๋ฏผ์„ ๊ฐ€์ง„ ์œ ๊ธฐํ™”ํ•ฉ๋ฌผ๊ณผ ์‰ฝ๊ฒŒ ๋ฐ˜์‘ํ•˜๋ฉฐ ์ตœ๊ทผ ๋ณด๊ณ ๋œ ๋ฐ”์— ๋”ฐ๋ฅด๋ฉด ๋ฉ”ํ‹ธ๊ธ€๋ฆฌ์˜ฅ์‚ด์˜ ์ถ•์ ์€ ์„ธํฌ์˜ ์ƒ์žฅ๊ณผ ํ˜•ํƒœ ๋ณ€ํ™”์— ์˜ํ–ฅ์„ ์คŒ๊ณผ ๋™์‹œ์— ์„ธํฌ ๋‚ด ํด๋ฆฌ์•„๋ฏผ์˜ ๊ฐ์†Œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. ๋‘๊ฐœ ์ด์ƒ์˜ ์•„๋ฏผ์„ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ํด๋ฆฌ์•„๋ฏผ์€ ๋ช‡๋ช‡ ์„ธ๊ท ์—์„œ ํŽฉํ‹ฐ๋„๊ธ€๋ฆฌ์นธ๊ณผ ๊ณต์œ ๊ฒฐํ•ฉ์„ ์ด๋ฃจ๊ณ  ์žˆ์œผ๋ฉฐ ์„ธํฌ์˜ ์™ธํ”ผ์™€์˜ ๋น„๊ณต์œ ์  ๊ฒฐํ•ฉ์„ ํ†ตํ•ด ์„ธํฌ ํ˜•ํƒœ์˜ ์•ˆ์ •ํ™”์— ํ•„์ˆ˜์ ์ธ ์—ญํ• ์„ ํ•œ๋‹ค๊ณ  ๋ณด๊ณ ๋œ ๋ฐ” ์žˆ๋‹ค. ๋˜ํ•œ ํด๋ฆฌ์•„๋ฏผ ์ƒํ•ฉ์„ฑ ํšจ์†Œ์˜ ๊ฒฐ์†์€ ์„ธํฌ์˜ ํฌ๊ธฐ๋ณ€ํ™”์™€ ํ•จ๊ป˜ ๋ฉ”ํ‹ธ๊ธ€๋ฆฌ์˜ฅ์‚ด์˜ ์ถ•์ ์„ ์•ผ๊ธฐํ•œ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ฉ”ํ‹ธ๊ธ€๋ฆฌ์˜ฅ์‚ด๊ณผ ํด๋ฆฌ์•„๋ฏผ์˜ ์ƒํ˜ธ๊ด€๊ณ„์— ์˜ํ•œ ํ˜•ํƒœํ•™์  ๋ณ€ํ™”์™€ ๊ทธ๊ฒƒ์˜ ์กฐ์ ˆ๊ธฐ์ž‘์— ๋Œ€ํ•œ ์‹คํ—˜์  ์ฆ๊ฑฐ๋Š” ๋ชจํ˜ธํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ฐ„์ƒ์„ธํฌ์ธ ๊ณ ์ดˆ๊ท ์˜ ์„ธํฌ ๋ถ„์—ด ๋ฐ ์‹ ์žฅ ๊ณผ์ •์—์„œ ๋ฉ”ํ‹ธ๊ธ€๋ฆฌ์˜ฅ์‚ด๊ณผ ํด๋ฆฌ์•„๋ฏผ ๊ทธ๋ฆฌ๊ณ  ๊ทธ๊ฒƒ๋“ค์˜ ์ƒํ•ฉ์„ฑ ํšจ์†Œ๋“ค๊ฐ„์˜ ์ƒํ˜ธ ํ˜น์ธ ๋…๋ฆฝ์  ์—ญํ• ์„ ๊ทœ๋ช…ํ•˜๋Š”๋ฐ ์ดˆ์ ์„ ๋‘์—ˆ๋‹ค. MGS์™€ ํด๋ฆฌ์•„๋ฏผ ์ƒํ•ฉ์„ฑ ํšจ์†Œ(์•„๋ฅด๊ธฐ๋‹Œ ํƒˆ ํƒ„์‚ฐํšจ์†Œ(SpeA), ์•„๊ทธ๋งˆํ‹ด ๋ถ„ํ•ดํšจ์†Œ(SpeB), ์Šคํผ๋ฏธ๋”˜ ํ•ฉ์„ฑํšจ์†Œ(SpeE))๋ฅผ ๊ฒฐ์† ๋ฐ ๊ณผ ๋ฐœํ˜„์„ ์‹œํ‚จ ๋ณ€์ด ๊ท ์ฃผ๋“ค์˜ ํ˜•ํƒœํ•™์  ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์„ธํฌ ๋‚ด ๋ฉ”ํ‹ธ๊ธ€๋ฆฌ์˜ฅ์‚ด๊ณผ ํด๋ฆฌ์•„๋ฏผ์˜ ์–‘์ด ์ธก์ •๋˜์—ˆ๋‹ค. MGS์™€ ํด๋ฆฌ์•„๋ฏผ ์ƒํ•ฉ์„ฑ ํšจ์†Œ์˜mRNA๋ฐœํ˜„ ์–‘์ƒ๊ณผ ํ•จ๊ป˜ ์„ธํฌ๊ณจ๊ฒฉ ๋‹จ๋ฐฑ์งˆ๋“ค์˜ ์œ„์น˜์™€ ๋ฐœํ˜„ ์ •๋„๋ฅผ ๋น„๊ตํ•˜์˜€๋‹ค. ์ƒ์ฒด ์™ธ ์‹คํ—˜์—์„œ ๋ฉ”ํ‹ธ๊ธ€๋ฆฌ์˜ฅ์‚ด๊ณผ ์Šคํผ๋ฏธ๋”˜์˜ ์ƒํ˜ธ์ž‘์šฉ์€ ์‹œํ”„์—ผ๊ธฐ๋ฅผ ํ˜•์„ฑํ•จ์œผ๋กœ์จ ๋ฉ”ํ‹ธ๊ธ€๋ฆฌ์˜ฅ์‚ด์˜ ํ€ด๋…น์‚ด๋ฆฐ ์œ ๋„์ฒด ํ˜•์„ฑ์„ ๊ธ‰๊ฒฉํ•˜๊ฒŒ ๊ฐ์†Œ์‹œ์ผฐ๋‹ค. ์„ธํฌ ๋‚ด ๋ฉ”ํ‹ธ๊ธ€๋ฆฌ์˜ฅ์‚ด๊ณผ ํด๋ฆฌ์•„๋ฏผ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ์ถ”์ •ํ•˜์—ฌ ์ด ์œ ๊ธฐํ™”ํ•ฉ๋ฌผ๋“ค์„ ์ƒ์žฅ ๋ฐฐ์ง€์— ์ฒ˜๋ฆฌํ•œ ๊ฒฐ๊ณผ ๋ฉ”ํ‹ธ๊ธ€๋ฆฌ์˜ฅ์‚ด๊ณผ ํด๋ฆฌ์•„๋ฏผ์„ ์ฒ˜๋ฆฌํ•œ ์„ธํฌ์—์„œ ๊ฐ๊ฐ ์‹ ์žฅ๋œ ๊ทธ๋ฆฌ๊ณ  ๋‹จ์ถ•๋œ ๊ณ ์ดˆ๊ท  ์„ธํฌ๋“ค์ด ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ์™ธ์ธ์„ฑ์˜ ๋ฉ”ํ‹ธ๊ธ€๋ฆฌ์˜ฅ์‚ด๊ณผ ํด๋ฆฌ์•„๋ฏผ ์ฒ˜๋ฆฌ์˜ ๊ฒฝ์šฐ์™€๋Š” ๋‹ค๋ฅด๊ฒŒ, mgsA, speB, ๊ทธ๋ฆฌ๊ณ  speE ์œ ์ „์ž ๊ฒฐ์†๊ท ์ฃผ๋Š” ๋‹จ์ถ•๋œ ํ˜•ํƒœ๋ฅผ ๋ณด์˜€์œผ๋ฉฐ ์ด์™€๋Š” ๋Œ€์กฐ์ ์œผ๋กœ ๊ฐ ์œ ์ „์ž์˜ ๊ณผ ๋ฐœํ˜„ ๊ท ์ฃผ์—์„œ๋Š” ์„ธํฌ์˜ ์‹ ์žฅ์ด ์žˆ์—ˆ๋‹ค. ๋†€๋ž๊ฒŒ๋„ speB์™€ speE ์œ ์ „์ž๋ฅผ ๊ณผ ๋ฐœํ˜„์‹œํ‚ด๊ณผ ๋”๋ถˆ์–ดmgsA ์œ ์ „์ž๋ฅผ ๊ฒฐ์†์‹œํ‚จ ์„ธํฌ๋“ค์€ ์•ผ์ƒ๊ท ์ฃผ์— ๋น„ํ•ด ์‹ ์žฅ๋œ ํ˜•ํƒœ๊ฐ€ ์•„๋‹Œ ๋‹จ์ถ•๋œ ํ˜•ํƒœ๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์™ธํ˜•์  ๋ณ€ํ™”๋Š” ์œ ์ „์ž ์กฐ์ ˆ์ด ์ˆ˜๋ฐ˜๋œ ์„ธํฌ ๋‚ด ๋ฉ”ํ‹ธ๊ธ€๋ฆฌ์˜ฅ์‚ด๊ณผ ์Šคํผ๋ฏธ๋”˜ ํ•จ๋Ÿ‰์˜ ๋ณ€ํ™”๊ฐ€ ๋ฐ€์ ‘ํ•˜๊ฒŒ ์—ฐ๊ด€๋˜์–ด ์žˆ์—ˆ๊ณ  ์ „๋ฐ˜์  ์œ ์ „์ž ์กฐ์ ˆ์ธ์ž์ธ spx์— ์˜ํ•ด ์กฐ์ ˆ ๋˜์—ˆ๋‹ค. ๋ฉ”ํ‹ธ๊ธ€๋ฆฌ์˜ฅ์‚ด๊ณผ ํด๋ฆฌ์•„๋ฏผ์€ ์„ธํฌ์˜ ํ˜•ํƒœ ๋ณ€ํ™”๊ฐ€ ์ผ์–ด๋‚˜๋Š” ๋™์•ˆ ์ƒํ˜ธ์ ์œผ๋กœ ์œ ๋„๋˜์—ˆ๋‹ค. ํŠนํžˆ ๋ฉ”ํ‹ธ๊ธ€๋ฆฌ์˜ฅ์‚ด์˜ ๋†๋„๊ฐ€ ๋‚ฎ์€ ์„ธํฌ๋Š” ์„ธํฌ์‹ ์žฅ์˜ ์ €ํ•ด๋ฅผ ๋ณด์˜€์œผ๋ฉฐ ๋ฉ”ํ‹ธ๊ธ€๋ฆฌ์˜ฅ์‚ด์ด ์ถ•์ ๋œ ์„ธํฌ๋Š” ๋‘๋“œ๋Ÿฌ์ง€๊ฒŒ ์‹ ์žฅ๋œ ๊ฐ„์ƒ ํ˜•ํƒœ๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ํ˜•ํƒœํ•™์  ๋ณ€ํ™”๋Š”MGS, ํด๋ฆฌ์•„๋ฏผ ์ƒํ•ฉ์„ฑ ํšจ์†Œ ๊ทธ๋ฆฌ๊ณ  FtsZ, MreB์™€ ๊ฐ™์€ ์„ธํฌ ํ˜•ํƒœ ์กฐ์ ˆ ์ธ์ž๋“ค์ด ๊ด€์—ฌ๋˜์–ด์žˆ์—ˆ๋‹ค. mgsA ๊ฒฐ์† ๊ท ์ฃผ์—์„œ CFP-FtsZ์˜ ํ˜•๊ด‘๊ฐ•๋„๋Š” 13% ์ฆ๊ฐ€ํ•œ ๋ฐ˜๋ฉด์— ๊ณผ๋ฐœํ˜„ ๊ท ์ฃผ์—์„œ๋Š” 26% ๊ฐ์†Œํ•˜์˜€๊ณ  GFP-MreB๋Š” ๋ฐ˜๋Œ€๋˜๋Š” ๊ฐ•๋„๋ฅผ ๋ณด์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์„ธํฌ ๋‚ด ๋ฉ”ํ‹ธ๊ธ€๋ฆฌ์˜ฅ์‚ด์˜ ์ฆ๊ฐ€๋œ ์–‘์ดspx์˜ ์กฐ์ ˆ์— ์˜ํ•œ mgsA ๋ฐœํ˜„๊ณผ ์Šคํผ๋ฏธ๋”˜ ์–‘์˜ ๋ณ€ํ™”๋ฅผ ์•ผ๊ธฐํ•จ์œผ๋กœ์จ ๊ณ ์ดˆ๊ท  ์„ธํฌ์˜ ๋ถ„์—ด์„ ์–ต์ œํ•˜๊ณ  ์‹ ์žฅ์„ ์œ ๋ฐœ์‹œํ‚จ๋‹ค๋Š” ๊ฒƒ์„ ์ œ์•ˆํ•œ๋‹ค.Rod shape bacteria maintains its intrinsic cell shape through cell division and elongation, thereby enabling it to perform biological function properly. The maintenance of cell morphologies is accomplished by the cytoskeletal elements and is tightly controlled by the involvement of variation in the level of various metabolites. Methylglyoxal is a metabolite produced mainly in glycolysis, but its cellular level is regulated by methylglyoxal synthase (MGS) in several bacteria including Bacillus subtilis and Escherichia coli. Methylglyoxal readily reacts with organic compounds containing amines such as peptides. As recently reported, accumulation of methylglyoxal affects the growth and morphology of the cells and leads to decrease in intracellular polyamines. Polyamines containing two or more amines are covalently bound to peptidoglycan in some bacteria and have been reported to play an essential role in the stabilization of cell morphology through non-covalent binding to the cell envelope. It is also known that the deficiency of the polyamine biosynthetic enzyme causes the accumulation of methylglyoxal along with the change of cell size. However, the morphological changes due to the interrelationship between methylglyoxal and polyamines and the experimental evidence for its regulatory mechanism are still ambiguous. This study focused on explaining the reciprocal or independent roles of methylglyoxal, polyamines and their biosynthetic enzymes in the cell division and elongation process of B. subtilis. According to the morphological changes of deficient and overexpressed strains of MGS and polyamine biosynthesis enzymes (arginine decarboxylase(SpeA), agmatinase(SpeB), and spermidine synthase(SpeE)), intracellular concentration of methylglyoxal and polyamines were measured. The transcription levels of MGS and polyamine biosynthesis enzymes and the localization and translation levels of cytoskeletal proteins were checked with comparison. The interaction of methylglyoxal and spermidine dramatically reduced the formation of quinoxaline derivatives of methylglyoxal by forming Schiff-base products in vitro. Considering putative intracellular interaction of methylglyoxal and polyamines, these organic compounds were treated in growth media. In consequence, it was observed that B. subtilis cells were elongated and shortened in the methylglyoxal- and polyamine-treated cells, respectively. Unlike the exogenous methylglyoxal and polyamine treatments, the mgsA, speB, and speE deletion strains were shortened, whereas, in contrast, the overexpressed strains of each gene had cell elongation. In addition, strains of overexpression of speB and speE, as well as lacking mgsA, showed a shortened length, rather than an elongated length, as compared to wild type strains. These phenotypic behaviors were closely associated with changes in intracellular methylglyoxal and spermidine content accompanied by gene regulation under the control of the global regulator, spx. The methylglyoxal and spermidine are reciprocally induced during cell-shape changes. In particular, low concentration of intracellular methylglyoxal led stunted cell elcongation while the methylglyoxal-accumulated cells showed the significantly elongated rod-shaped morphology. The morphological changes were engaged in the expressions of mgsA, polyamine genes, and cell shape regulators including tubulin-like (FtsZ) and actin- like (MreB) cytoskeletons. The fluorescence intensity of CFP-FtsZ was increased by 13% in MGsA-deficient strain, but decreased by 26% in overexpressing strain and the intensity of GFP-mreB was opposite. This study suggests that an increased level of intracellular methylglyoxal induces the expression of mgsA and changes in spumidine concentration by the regulation of spx, thereby inhibiting division and inducing elongation of the B. subtilis.I. INTRODUCTION 1 1. Cell size regulation in bacteria 2 1.1. Division and elongation 2 2. Bacillus subtilis 3 2.1. Cell size regulators in Bacillus 4 3. Polyamines 7 3.1. Polyamines in general 7 3.2. Function of polyamines 8 3.3. Interaction between polyamines and nucleic acids 10 3.4. Enzymatic biosynthesis of polyamines 12 4. Methylglyoxal 15 4.1. Overview of methylglyoxal 17 4.2. Methylglyoxal production 17 4.3. Physiological influences of methylglyoxal 20 4.4. Methylglyoxal in Bacterial physiology 23 4.5. Methylglyoxal synthase(MGS) in Bacillus subtilis 24 4.6. Schematic relationship between methylglyoxal and polyamines in cell elongation in B. subtilis 26 5. Aims of this study 28 II. MATERIALS AND METHODS 31 1. Materials 32 2. Methods 32 2.1. Strains and culture conditions 32 2.2. Disruption and overexpression of mgsA and polyamine-biosynthesizing genes 32 2.3. Bacillus MGS overproduction in E. coli 39 2.4. Enzyme kinetics 39 2.5. Polyamines and MG measurement 39 2.6. Microscopy 40 2.7. Northern blot analysis and real-time PCR 40 2.8. Western blot analysis 41 2.9. Statistical analysis 41 III. RESULTS 43 1. A possible interaction between MG and polyamines can alter their cellular levels and biosynthesis gene expressions 44 1.1. Shiff base formation between MG and SPD in vitro 44 1.2. The changes of mRNA level of mgsA, spx, clpP and speE by growth phase 47 2. B. subtilis cells are elongated and shortened by exogenous MG and polyamines 49 2.1. Morphological properties of B. subtilis in exogenous MG and PA 49 2.2. The expression level of mgsA, spx, clpP, and PA genes in exogenous MG and PA 52 3. Bacillus mgsA-overexpressing cells display MG accumulation and elongated rod-shaped morphology 57 3.1. Physiological properties of mgsA mutants 57 3.2. The morphological changes in mgsA mutants 59 3.3. The expression of spx in mgsA-overexpression cells 59 4. The cellular SPD content changes essentially induce or reduce MG biosynthesis 62 4.1. The cellular PA content in mgsA and PA gene mutants 62 4.2. SPD as the most predominant PA in Bacillus subtilis 62 4.3. The relationship between cellular SPD content and MG level 65 4.4. The decreased MG level induced by polyamine-deficient leads to Bacillus cell shortening process. 69 5. The double-mutants, including speBOE/mgsA and speEOE/mgsA, were shortened by the mgsA disruption despite the cellular SPD increases. 77 5.1. Cell elongation by MG rather than polyamine-deficiency 77 5.2. Decreased cellular SPD caused by changes of cellular MG content acts as a second factor of cell length control mechanism in the case of B. subtilis. 78 6. The potential mechanism FtsZ-, MreB-, or RodA-mediated cell length changes triggered by cellular MG and polyamine contents 83 6.1. The expression level of cell elongation and division factors in the mgsAOE, speBOE, and speEOE cells 83 6.2. The comparison of expression level of FtsZ and MreB in mgsA mutants 87 IV. DISCUSSION 93 V. REFERENCES 98Docto

    Studies on the stability of electroosmotic flow under time-periodic electric field

    No full text
    Docto

    Dictyostelium discoideum์˜ ์ƒ์žฅ๊ณผ ๋ถ„ํ™”์˜ ์ „ํ™˜์—์„œ Calfumirin-1์˜ ์—ญํ• 

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ƒ๋ช…๊ณผํ•™๋ถ€, 2011.8. ๊ฐ•์‚ฌ์šฑ.Maste

    12.8 kHz Energy-Efficient Read-Out IC for High Precision Bridge Sensor Sensing System

    Get PDF
    In the thesis, a high energy-efficient read-out integrated circuit (read-out IC) for a high-precision bridge sensor sensing system is proposed. A low-noise capacitively-coupled chopper instrumentation amplifier (CCIA) followed by a high-resolution incremental discrete-time delta-sigma modulator (DTฮ”ฮฃฮœ) analog-to-digital converter (ADC) is implemented. To increase energy-efficiency, CCIA is chosen, which has the highest energy-efficiency among IA types. CCIA has a programmable gain of 1 to 128 that can amplify the small output of the bridge sensor. Impedance boosting loop (IBL) is applied to compensate for the low input impedance, which is a disadvantage of a CCIA. Also, the sensor offset cancellation technique was applied to CCIA to eliminate the offset resulting from the resistance mismatch of the bridge sensor, and the bridge sensor offset from -350 mV to 350 mV can be eliminated. In addition, the output data rate of the read-out IC is designed to be 12.8 kHz to quickly capture data and to reduce the power consumption of the sensor by turning off the sensor and read-out IC for the rest of the time. Generally, bridge sensor system is much slower than 12.8 kHz. To suppress 1/f noise, system level chopping and correlated double sampling (CDS) techniques are used. Implemented in a standard 0.13-ฮผm CMOS process, the ROICโ€™s effective resolution is 17.0 bits at gain 1 and that of 14.6 bits at gain 128. The analog part draws the average current of 139.4 ฮผA from 3-V supply, and 60.2 ฮผA from a 1.8 V supply.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ณ ์ •๋ฐ€ ๋ธŒ๋ฆฌ์ง€ ์„ผ์„œ ์„ผ์‹ฑ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์—๋„ˆ์ง€ ํšจ์œจ์ด ๋†’์€ Read-out Integrated Circuit (read-out IC)๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ € ์žก์Œ Capacitively-Coupled Instrumentation Amplifier (CCIA)์— ์ด์€ ๊ณ ํ•ด์ƒ๋„ Discrete-time Delta-Sigma ๋ณ€์กฐ๊ธฐ(DTฮ”ฮฃฮœ) ์•„๋‚ ๋กœ๊ทธ-๋””์ง€ํ„ธ ๋ณ€ํ™˜๊ธฐ(ADC)๋ฅผ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์—๋„ˆ์ง€ ํšจ์œจ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด IA ์œ ํ˜• ์ค‘ ์—๋„ˆ์ง€ ํšจ์œจ์ด ๊ฐ€์žฅ ๋†’์€ CCIA๋ฅผ ์„ ํƒํ•˜์˜€๋‹ค. CCIA๋Š” ๋ธŒ๋ฆฌ์ง€ ์„ผ์„œ์˜ ์ž‘์€ ์ถœ๋ ฅ์„ ์ฆํญํ•  ์ˆ˜ ์žˆ๋Š” 1 ์—์„œ 128์˜ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๊ฐ€๋Šฅํ•œ ์ „์•• ์ด๋“์„ ๊ฐ€์ง„๋‹ค. CCIA์˜ ๋‹จ์ ์ธ ๋‚ฎ์€ ์ž…๋ ฅ ์ž„ํ”ผ๋˜์Šค๋ฅผ ๋ณด์ƒํ•˜๊ธฐ ์œ„ํ•ด Impedance Boosting Loop (IBL)์„ ์ ์šฉํ•˜์˜€๋‹ค. ๋˜ํ•œ CCIA์— ์„ผ์„œ ์˜คํ”„์…‹ ์ œ๊ฑฐ ๊ธฐ์ˆ ์„ ์ ์šฉํ•˜์—ฌ ๋ธŒ๋ฆฌ์ง€ ์„ผ์„œ์˜ ์ €ํ•ญ ๋ฏธ์Šค๋งค์น˜๋กœ ์ธํ•œ ์˜คํ”„์…‹์„ ์ œ๊ฑฐ ๊ธฐ๋Šฅ์„ ํƒ‘์žฌํ•˜์˜€์œผ๋ฉฐ -350mV์—์„œ 350mV๊นŒ์ง€ ๋ธŒ๋ฆฌ์ง€ ์„ผ์„œ ์˜คํ”„์…‹์„ ์ œ๊ฑฐํ•  ์ˆ˜ ์žˆ๋‹ค. Read-out IC์˜ ์ถœ๋ ฅ ๋ฐ์ดํ„ฐ ์ „์†ก๋ฅ ์€ 12.8kHz๋กœ ์„ค๊ณ„ํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฅผ ๋น ๋ฅด๊ฒŒ ์ฑ„๊ณ  ๋‚˜๋จธ์ง€ ์‹œ๊ฐ„ ๋™์•ˆ ์„ผ์„œ์™€ read-out IC๋ฅผ ๊บผ์„œ ์„ผ์„œ์˜ ์ „๋ ฅ ์†Œ๋น„๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ๋ธŒ๋ฆฌ์ง€ ์„ผ์„œ ์‹œ์Šคํ…œ์€ 12.8kHz๋ณด๋‹ค ๋Š๋ฆฌ๊ธฐ ๋•Œ๋ฌธ์— ์ด๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ํ•˜์ง€๋งŒ, ์ผ๋ฐ˜์ ์ธ CCIA๋Š” ์ž…๋ ฅ ์ž„ํ”ผ๋˜์Šค ๋•Œ๋ฌธ์— ๋น ๋ฅธ ์†๋„์—์„œ ์„ค๊ณ„๊ฐ€ ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด demodulate ์ฐจํ•‘์„ ์•ฐํ”„ ๋‚ด๋ถ€๊ฐ€ ์•„๋‹Œ ์‹œ์Šคํ…œ ์ฐจํ•‘์„ ์ด์šฉํ•ด ํ•ด๊ฒฐํ•˜์˜€๋‹ค. 1/f ๋…ธ์ด์ฆˆ๋ฅผ ์–ต์ œํ•˜๊ธฐ ์œ„ํ•ด ์‹œ์Šคํ…œ ๋ ˆ๋ฒจ ์ฐจํ•‘ ๋ฐ ์ƒ๊ด€ ์ด์ค‘ ์ƒ˜ํ”Œ๋ง(CDS) ๊ธฐ์ˆ ์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. 0.13ฮผm CMOS ๊ณต์ •์—์„œ ๊ตฌํ˜„๋œ read-out IC์˜ Effective Resolution (ER)์€ ์ „์•• ์ด๋“ 1์—์„œ 17.0๋น„ํŠธ์ด๊ณ  ์ „์•• ์ด๋“ 128์—์„œ 14.6๋น„ํŠธ๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ์•„๋‚ ๋กœ๊ทธ ํšŒ๋กœ๋Š” 3 V ์ „์›์—์„œ 139.4ฮผA์˜ ํ‰๊ท  ์ „๋ฅ˜๋ฅผ, ๋””์ง€ํ„ธ ํšŒ๋กœ๋Š” 1.8 V ์ „์›์—์„œ 60.2ฮผA์˜ ํ‰๊ท  ์ „๋ฅ˜๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค.CHAPTER 1 INTRODUCTION 1 1.1 SMART DEVICES 1 1.2 SMART SENSOR SYSTEMS 4 1.3 WHEATSTONE BRIDGE SENSOR 5 1.4 MOTIVATION 8 1.5 PREVIOUS WORKS 10 1.6 INTRODUCTION OF THE PROPOSED SYSTEM 14 1.7 THESIS ORGANIZATION 16 CHAPTER 2 SYSTEM OVERVIEW 17 2.1 SYSTEM ARCHITECTURE 17 CHAPTER 3 IMPLEMENTATION OF THE CCIA 19 3.1 CAPACITIVELY-COUPLED CHOPPER INSTRUMENTATION AMPLIFIER 19 3.2 IMPEDANCE BOOSTING 22 3.3 SENSOR OFFSET CANCELLATION 25 3.4 AMPLIFIER OFFSET CANCELLATION 29 3.5 AMPLIFIER IMPLEMENTATION 32 3.6 IMPLEMENTATION OF THE CCIA 35 CHAPTER 4 INCREMENTAL ฮ”ฮฃ ADC 37 4.1 INTRODUCTION OF INCREMENTAL ฮ”ฮฃ ADC 37 4.2 IMPLEMENTATION OF INCREMENTAL ฮ”ฮฃ MODULATOR 40 CHAPTER 5 SYSTEM-LEVEL DESIGN 43 5.1 DIGITAL FILTER 43 5.2 SYSTEM-LEVEL CHOPPING & TIMING 46 CHAPTER 5 MEASUREMENT RESULTS 48 6.1 MEASUREMENT SUMMARY 48 6.2 LINEARITY & NOISE MEASUREMENT 51 6.3 SENSOR OFFSET CANCELLATION MEASUREMENT 57 6.4 INPUT IMPEDANCE MEASUREMENT 59 6.5 TEMPERATURE VARIATION MEASUREMENT 63 6.6 PERFORMANCE SUMMARY 66 CHAPTER 7 CONCLUSION 68 APPENDIX A. 69 ENERGY-EFFICIENT READ-OUT IC FOR HIGH-PRECISION DC MEASUREMENT SYSTEM WITH IA POWER REDUCTION TECHNIQUE 69 BIBLIOGRAPHY 83 ํ•œ๊ธ€์ดˆ๋ก 87๋ฐ•
    corecore