38 research outputs found

    ์ €์••์šฉ ์ „๊ธฐ์ „์ž๊ธฐ๊ธฐ์˜ ์ ˆ์—ฐ์„ฑ๋Šฅ ํ‰๊ฐ€๋ฅผ ์œ„ํ•œ ๋ถ€๋ถ„๋ฐฉ์ „์‹œํ—˜์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    This dissertation deals with the application of partial discharge(PD) test on low-voltage electrical and electronic devices, which is recently being accepted as a non-destructive and an effective dielectric test method. The withstand voltage test(WVT) on low-voltage electrical and electronic devices may cause degradation of insulation performance by applying the test voltage. However, the PD test does not occur insulation degradation of the device under test because it is carried out at a relatively low AC voltage compare to that of WVT. The PD test also provides much more detailed information about the insulation such as proper fabrication of the insulation system, selection of materials, and precise manufacturing of any piece. Occurrence and characteristics of PD were studied in solid insulation system, and a PD measurement system which can detect charges below 1pC was fabricated. PD pulse detection was performed by a coupling network with a discharge free capacitor and a RLC detection impedance. The low cut-off frequency of the detection circuit was set at 1MHz(-3dB) to attenuate AC voltage by 270dB and to pass discharge pulses without any distortion. A low noise wide-band amplifier having a gain of 40dB was designed since the magnitude of PD pulse propagated to the detection circuit was as low as the order of ใŽถ. A shielding enclosure of a Ni-Cu double structure and a HV filter with a high cut-off frequency of 3.5kHz was designed to get a better measuring condition against radiation and conduction noises from the outside. The PD measurement system was evaluated to noise interference because the maximum sensitivity of the system depends on noise level, and the peak noise level appeared 3mVp-p. Calibration to calculate the sensitivity of the PD measurement system was performed according to the IEC standard on low-voltage insulation transformers and induction motors. The sensitivities in them were 38.4mV/pC and 11.4mV/pC, respectively. The system is possible to measure apparent charge of 0.2pC in the transformers and 0.5pC in the motors considering the noise level. Comparative experiment combined with the WVT was carried out on the transformers and the induction motors to propose a PD test requirement for low-voltage electrical and electronic devices. Discharge inception voltage (DIV), discharge extinction voltage (DEV), apparent charge, and phase distribution of PD pulses were analyzed in the experiment. The results showed a decrease in DIV, DEV and an increase in apparent charge, and demonstrated that degradation of insulation proceeded during the WVT and aging. Also, no changes in PD parameters appeared up to 70% of the test voltage specified in the WVT. Therefore the PD test for the types of transformers can be completed under 70% of the test voltage by measuring apparent charges below 1pC. As a replacement of the WVT for low-voltage electrical and electronic devices, the PD test requirement can be standardized through the same procedure proposed in this dissertation. However, the PD test should be performed in ranges from 30% to 50% of the test voltage not to make any degradation of insulation during the test. The PD test that can measure apparent charges of 0.1pC order is expected to be widely used electronic components with short dielectric distance such as photo-couplers, ICs, and PCBs.๋ชฉ ์ฐจ โ…ฐ ๊ทธ๋ฆผ ๋ฐ ํ‘œ ๋ชฉ์ฐจ โ…ฒ Abstract โ…ต ์ œ 1 ์žฅ ์„œ ๋ก  1 1.1 ์—ฐ๊ตฌ๋ฐฐ๊ฒฝ 1 1.2 ์—ฐ๊ตฌ๋ชฉ์  ๋ฐ ๋‚ด์šฉ 4 ์ œ 2 ์žฅ ์ ˆ์—ฐ์—ดํ™” ๋ฐ ํ‰๊ฐ€๊ธฐ์ˆ  7 2.1 ์ ˆ์—ฐ์—ดํ™”๊ธฐ๊ตฌ 7 2.2 ์ ˆ์—ฐํ‰๊ฐ€๊ธฐ์ˆ  11 ์ œ 3 ์žฅ ๋ถ€๋ถ„๋ฐฉ์ „์˜ ๋ฐœ์ƒ๊ณผ ๊ฒ€์ถœ์›๋ฆฌ 22 3.1 ๋ถ€๋ถ„๋ฐฉ์ „์˜ ๋ฐœ์ƒ 22 3.2 ๋ถ€๋ถ„๋ฐฉ์ „์˜ ํŠน์„ฑ 31 3.3 ๋ถ€๋ถ„๋ฐฉ์ „์˜ ๊ฒ€์ถœ์›๋ฆฌ 33 ์ œ 4 ์žฅ ๋ถ€๋ถ„๋ฐฉ์ „ ์ธก์ •์‹œ์Šคํ…œ์˜ ์„ค๊ณ„ ๋ฐ ์ œ์ž‘ 36 4.1 ๊ฒ€์ถœํšŒ๋กœ 37 4.2 ์ฐจํํ•จ 44 4.3 ์ธก์ •์‹œ์Šคํ…œ์˜ ํ‰๊ฐ€ 53 ์ œ 5 ์žฅ ๋ถ€๋ถ„๋ฐฉ์ „์‹œํ—˜ ๋ฐ ๋ถ„์„ 59 5.1 ์ ˆ์—ฐ๋ณ€์••๊ธฐ 62 5.1.1 1์ฐจ๊ถŒ์„ ๊ณผ ์ฒ ์‹ฌ 62 5.1.2 1์ฐจ๊ถŒ์„ ๊ณผ 2์ฐจ๊ถŒ์„  78 5.2 ์œ ๋„์ „๋™๊ธฐ 101 ์ œ 6 ์žฅ ๊ฒฐ ๋ก  110 ์ฐธ ๊ณ  ๋ฌธ ํ—Œ 11

    KTF์˜ K-Merce : Digital Convergence์™€ Mobile Finance / Commerce์˜ ์ „๊ฐœ

    Get PDF
    2003๋…„ 1์›” KTF์™€ KT์•„์ด์ปด ํ•ฉ๋ณ‘๊ณผ ํ•จ๊ป˜ ํ†ตํ•ฉ ๋ฒ•์ธ์˜ CEO๋กœ ์„ ์ž„๋œ ๋‚จ์ค‘์ˆ˜ ํ†ตํ•ฉ KTF ๋Œ€ํ‘œ ์ด์‚ฌ๋Š” ์ด๋™ํ†ต์‹ ์‹œ์žฅ ๋ฐ KTF์˜ ๋ฏธ๋ž˜์— ๋Œ€ํ•œ ๊ณ ๋ฏผ์œผ๋กœ 2003๋…„ ๋‚ด๋‚ด ๋ฐ”์œ ๋‚˜๋‚ ์„ ๋ณด๋ƒˆ๋‹ค. 1๋“ฑ ์—…์ฒด ๊ฐ€ ์œ ๋ฆฌํ•œ ํ†ต์‹  ์„œ๋น„์Šค ์‹œ์žฅ์˜ ํŠน์„ฑ์ƒ 2๋“ฑ ์—…์ฒด๋กœ์„œ 1๋“ฑ ์—…์ฒด๋ฅผ ๋”ฐ๋ผ ์žก๋Š” ๊ฒƒ์€ ์‰ฝ์ง€๊ฐ€ ์•Š์•˜๋‹ค. ๋˜ ํ•œ, ์ตœ๊ทผ ์ถœ์‹œํ•œ ์ƒˆ๋กœ์šด ์ƒํ’ˆ ๋ฐ ์„œ๋น„์Šค๊ฐ€ ์‹œ์žฅ์—์„œ ์˜ˆ์ƒ๋ณด๋‹ค ๋ชปํ•œ ์„ฑ๊ณผ๋ฅผ ๋‚ด๊ณ , ๋˜ํ•œ 2003๋…„ 1๋ถ„ ๊ธฐ์˜ KTF ์ „์ฒด ๋งค์ถœ์ด ์ง€๋‚œ ๋ถ„๊ธฐ์— ๋น„ํ•ด ๊ฐ์†Œํ•˜๋Š” ๋“ฑ ์‹ค์  ์•…ํ™”๋กœ ์ธํ•ด ๊ณ ๋ฏผ์€ ๊นŠ์–ด๋งŒ ๊ฐ”๋‹ค. ์ด๋Ÿฌํ•œ ์ƒํ™ฉ ํ•˜์—์„œ ๋‚จ ์‚ฌ์žฅ์€1์œ„ ์‚ฌ์—…์ž์™€์˜ ๊ฒฝ์Ÿ์—์„œ ์šฐ์œ„๋ฅผ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ํŒ์„ ํ”๋“œ๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค๊ณ  ํŒ๋‹จํ•˜๊ณ  ์ด๋ฅผ ์œ„ํ•ด ๊ธฐ์กด ๊ณ ๊ฐ์˜ ์šฐ๋Ÿ‰ํ™”๋ฅผ ์ง€ํ–ฅํ•˜๋ฉด์„œ ๋™์‹œ์— ์ง€์†์ ์œผ๋กœ ์ƒํ’ˆ์„ฑ ์ด ๋†’์€ ์‹ ์ œํ’ˆ ๋ฐ ์„œ๋น„์Šค๋ฅผ ๊ฐœ๋ฐœํ•˜์—ฌ Convergence๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์‹ ๊ทœ ์‹œ์žฅ์„ ์ฐฝ์ถœํ•˜์—ฌ ๊ทผ๋ณธ์ ์œผ ๋กœ ์‹œ์žฅ์˜ ์งˆ์„œ๋ฅผ ํ”๋“œ๋Š” ์ „๋žต์„ ๊ตฌ์‚ฌํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๊ทธ๋Š” ํ•œ ์‹ ๋ฌธ์‚ฌ์™€์˜ ์ธํ„ฐ๋ทฐ์—์„œ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ง์„ ๋‚จ๊ฒผ๋‹ค. ํŒ์„ ํ”๋“œ๋Š” ๊ฒƒ์ด์ฃ . ํ˜ธ์ฃผ ์นด๋ˆ„ ๊ฒฝ๊ธฐ์—์„œ ์„ ๋‘๋Š” ๋’ค๋”ฐ๋ผ ์˜ค๋Š” 2๋“ฑ์ฒ˜๋Ÿผ ์šดํ•ญํ•˜๋ฉด ๋˜์ง€๋งŒ 2๋“ฑ์€ ํŒ์„ ๋ฐ” ๊พธ๋ ค๊ณ  ์‹œ๋„ํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ง์ž…๋‹ˆ๋‹ค. ๋ฌผ๋ก  ์‰ฌ์šด ์ผ์€ ์•„๋‹ˆ์ง€๋งŒ, ๋ฐ˜๋“œ์‹œ ๋ฉ์น˜์‹ธ์›€์—์„œ ์ด๊ธฐ๊ธฐ ๋ณด๋‹ค๋Š”๋ช…ํ’ˆ ๊ฐœ๋…์˜ ์„œ๋น„์Šค๋กœ ์Šน๋ถ€๋ฅผ ๊ฑธ๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ๊ฐ€์ž…์ž๊ฐ€ 20%์— ๊ทธ์น˜๋”๋ผ๋„ KTF์˜ ์„œ๋น„์Šค์— ๋งŒ์กฑํ•ด์„œ ํŒฌ์ด ๋˜ ๋Š” ๊ฐ€์ž…์ž๋กœ๋งŒ ๊ตฌ์„ฑ๋˜๋ฉด ์ €๋ ฅ์ด ๋ฐœํœ˜๋œ๋‹ค๊ณ  ๋ด์š”.๋– ์˜ค๋ฅด๊ณ  ์žˆ๋Š” Mobile Finance์™€ Mobile Commerce๋ฅผ ๊ฒฐํ•ฉํ•˜์—ฌ 2002๋…„ 4์›” ์—…๊ณ„ ์ตœ์ดˆ๋กœ ๋‚ด์–ด ๋†“ ์€ K-Merce๋Š” ์ด์™€ ๊ฐ™์ด ํŒ์„ ํ”๋“ค์–ด ๋†“์œผ๋ ค๋Š” KTF์˜ ์•ผ์‹ฌ์ ์ธ ์‹œ๋„์˜€๋‹ค

    ์งˆ์†Œ ๋ฐ˜์‘์„ฑ RF ๋งˆ๊ทธ๋„คํŠธ๋ก  ์Šคํผํ„ฐ๋ง์— ์˜ํ•ด ์ œ์กฐ๋œ ์ฆ์ฐฉ์ƒํƒœ์˜ Fe-Hf-C-N ๋ฐ•๋ง‰๊ณผ Fe-Hf-N ๋ฐ•๋ง‰์˜ ์—ฐ์ž๊ธฐ ํŠน์„ฑ

    No full text
    Thesis (master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ธˆ์†๊ณตํ•™๊ณผ ์žฌ๋ฃŒ๊ณตํ•™์ „๊ณต,1998.Maste

    ์›๋ฃŒ์‚ฌ๋ฃŒ์˜ ์‚ฐ์ƒ์„ฑ๊ฐ€(AV) ์ธก์ •๋ฐฉ๋ฒ•ํ™•๋ฆฝ๊ณผ AV๊ฐ€ ๋ฐ˜์ถ”์œ„ ๋ฐœํšจ์„ฑ์ƒ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

    No full text
    Thesis(master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๋†์ƒ๋ช…๊ณตํ•™๋ถ€,2005.Maste

    ๋ฐ˜์ถ”์œ„ ํ˜๊ธฐ๊ณฐํŒก์ด ์„ฌ์œ ์†Œ๋ถ„ํ•ดํšจ์†Œ์˜ ์œ ์ „์  ๋‹ค์–‘์„ฑ๊ณผ ํŠน์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    ๋ฐ˜์ถ”๋™๋ฌผ์€ ๋ฐ•ํ…Œ๋ฆฌ์•„, ํ”„๋กœํ† ์กฐ์•„ ๊ทธ๋ฆฌ๊ณ  ๊ณฐํŒก์ด ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฏธ์ƒ๋ฌผ์˜ ๋„์›€์œผ๋กœ, ์„ญ์ทจํ•œ ์‚ฌ๋ฃŒ๋ฅผ ๋ถ„ํ•ดํ•˜์—ฌ ์—๋„ˆ์ง€์˜ ํ˜•ํƒœ๋กœ ์ „ํ™˜์‹œํ‚จ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฏธ์ƒ๋ฌผ ์ค‘ ๋ฐ˜์ถ”์œ„ ํ˜๊ธฐ๊ณฐํŒก์ด๋Š” ๋‹จ์ผ ๊ท ์ฒด์— ์„ฌ์œ ์†Œ ๋ถ„ํ•ดํšจ์†Œ ๋ฐ ๋‹จ๋ฐฑ์งˆ ๋ถ„ํ•ดํšจ์†Œ๋ฅผ ๋ถ„๋น„ํ•˜๋Š” ๋ณตํ•ฉํšจ์†Œ์ฒด๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ ์„ฌ์œ ์†Œ ๋ถ„ํ•ด ํšจ์†Œ๋Š” ๋ฐ”์ด์˜ค ์—๋„ˆ์ง€ ์ƒ์‚ฐ๊ณผ ๊ด€๋ จํ•˜์—ฌ ์žฌ์กฐ๋ช…๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ƒ๋ฌผ์ •๋ณดํ•™ ๋ฐ ์ฐจ์„ธ๋Œ€ ์—ผ๊ธฐ์„œ์—ด๋ถ„์„ ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์— ๋”ฐ๋ผ ์ƒˆ๋กœ์šด ํšจ์†Œ์˜ ๋ฐœ๊ฒฌ์— ๊ฐ€์†ํ™”๋ฅผ ์ด๋ฃจ๊ฒŒ ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฐ˜์ถ”์œ„ ํ˜๊ธฐ๊ณฐํŒก์ด๊ฐ€ ์ƒ์‚ฐํ•˜๋Š” ์ƒˆ๋กœ์šด ์„ฌ์œ ์†Œ ๋ถ„ํ•ด ํšจ์†Œ๋ฅผ ์ฐพ์•„๋‚ด๊ณ , ๊ฐ ํšจ์†Œ์˜ ์—ผ๊ธฐ์„œ์—ด์˜ ์ƒ๋™์„ฑ๊ณผ ๊ทธ ํšจ์†Œ์  ํŠน์„ฑ์„ ๋น„๊ต ๋ถ„์„ํ•˜์˜€๋‹ค. 1. ๋ฐ˜์ถ”์œ„ ํ˜๊ธฐ๊ณฐํŒก์ด Neocallimastix frontalis PMA02์˜ ํƒ„์ˆ˜ํ™”๋ฌผ ๋Œ€์‚ฌํšŒ๋กœ๋‚ด์˜ ๊ธฐ๋Šฅ์„ฑ ์œ ์ „์ž ๋ถ„์„ ๋ณธ ์—ฐ๊ตฌ๋Š” N. frontalis PMA02์˜ ํƒ„์ˆ˜ํ™”๋ฌผ ๋Œ€์‚ฌํšŒ๋กœ ๋‚ด์˜ ๊ธฐ๋Šฅ์„ฑ ์œ ์ „์ž๋ฅผ expressed sequence tagging ๋ฐฉ๋ฒ•์„ ํ†ตํ•˜์—ฌ ์•Œ์•„๋ณด๊ณ ์ž ์‹ค์‹œํ•˜์˜€๋‹ค. ์ด 10,080๊ฐœ์˜ clone์— ๋Œ€ํ•œ ์—ผ๊ธฐ์„œ์—ด์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ ํ‰๊ท  ํฌ๊ธฐ 628bp์— ๋Œ€ํ•œ ์—ผ๊ธฐ์„œ์—ด์˜ ์ •๋ณด๋ฅผ ์–ป์—ˆ์œผ๋ฉฐ, ์ค‘๋ณต๋˜๋Š” ์ง€์ ์„ ์—ฐ๊ฒฐํ•จ์œผ๋กœ์จ 1410๊ฐœ์˜ contig์— ๋Œ€ํ•œ ์ •๋ณด์™€ 1360๊ฐœ์˜ singleton์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ํš๋“ํ•˜์˜€๋‹ค. Public data base๋ฅผ ์ด์šฉํ•˜์—ฌ ์—ผ๊ธฐ์„œ์—ด์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ 1192๊ฐœ์˜ clone์ด ๊ธฐ๋Šฅ์ด ๋ณด๊ณ ๋œ ์—ผ๊ธฐ์„œ์—ด๊ณผ ์ผ์น˜ํ•˜์˜€์œผ๋ฉฐ, ์ด์ค‘ 693๊ฐœ clone์˜ ์—ผ๊ธฐ์„œ์—ด์ด ๊ณฐํŒก์ด์—์„œ ์œ ๋ž˜ํ•œ ๋‹จ๋ฐฑ์งˆ๊ณผ ์ผ์น˜ํ•˜์˜€๋‹ค. ๊ธฐ๋Šฅ์ด ๋ฐํ˜€์ง„ clone ์ค‘ 154 ๊ฐœ์˜ ์„œ์—ด์ด ์ƒ๋ฌผ๋Œ€์‚ฌ์— ๊ด€์—ฌํ•˜๋Š” ์œ ์ „์ž์˜€๊ณ , 328๊ฐœ clone์˜ ์—ผ๊ธฐ์„œ์—ด์ด ์„ธํฌ๊ตฌ์„ฑ์— ๊ด€์—ฌํ•˜๋Š” ์œ ์ „์ž์˜€๋‹ค. ๋˜ํ•œ ํƒ„์ˆ˜ํ™”๋ฌผ์˜ ๋Œ€์‚ฌ๊ณผ์ •์— ๊ด€์—ฌํ•˜๋Š” ๋Œ€๋ถ€๋ถ„์˜ ํšจ์†Œ๋‹จ๋ฐฑ์งˆ์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ EST ๋ถ„์„์„ ํ†ตํ•˜์—ฌ ์–ป์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. Hemicellulase์ธ mannanase, xylose isomerase, xylan esterase ์™€ xylanase์™€ ฮฒ-glucosidases 5์ข…, cellulase 10์ข…์ด ๊ฒ€์ถœ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” N.frontalis ์˜ ํƒ„์ˆ˜ํ™”๋ฌผ ๋ถ„ํ•ด์— ๋Œ€ํ•œ ๋ณตํ•ฉ ํšจ์†Œ ์ฒด๊ณ„๋ฅผ ๋ณด๊ณ ํ•˜๋Š” ์ตœ์ดˆ์˜ ์—ฐ๊ตฌ๋กœ, ์ดํ›„ ํ˜๊ธฐ๊ณฐํŒก์ด์˜ ์„ฌ์œ ์†Œ ๋ถ„ํ•ด ํšจ์†Œ ์—ฐ๊ตฌ์— ๊ธฐ์ดˆ์ž๋ฃŒ๋กœ ์ด์šฉ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. 2. ๋ฐ˜์ถ”์œ„ ํ˜๊ธฐ๊ณฐํŒก์ด Neocallimastic frontalis PMA02์—์„œ ๋ถ„๋ฆฌํ•œ Aacetyl xylan esterase1 ์˜ ๋ฐœํ˜„ ๋ฐ ํŠน์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ ๋ณธ ์—ฐ๊ตฌ๋Š” N.frontalis ์˜ EST ์„œ์—ด ๋ถ„์„์—์„œ ๋ถ„๋ฆฌํ•œ acetyl xylan esterase1(AXE1)์˜ ๋‹จ๋ฐฑ์งˆ ๋ฐœํ˜„๊ณผ ํšจ์†Œ ํŠน์„ฑ์„ ์•Œ์•„๋ณด๊ณ ์ž ์‹ค์‹œํ•˜์˜€๋‹ค. ๋ฐœํ˜„๋œ AXE1 ๋‹จ๋ฐฑ์งˆ์€ ๋ถ„์ž๋Ÿ‰์ด 37.3 kDa์ด๋ฉฐ, anaerobic fungus Opinomyces ์† ๊ณผ Neocallimastric patricicum ์—์„œ ๋ถ„๋ฆฌ๋œ AXEA, bnaI ์œ ์ „์ž์™€ ๊ฐ๊ฐ 73%, 55.6%์˜ ์—ผ๊ธฐ์„œ์—ด ์ƒ๋™์„ฑ์„ ๊ฐ–๋Š”๋‹ค. Aacetyl xylan esterase 1์€ pET28b ๋ฒกํ„ฐ์— ์‚ฝ์ž…๋˜์–ด E.coli BL21 (DE3) ์—์„œ ๋ฐœํ˜„๋˜์—ˆ๋‹ค. Aacetyl xylan esterase 1์€ 28.1%์˜ ํšจ์œจ๋กœ ์ •์ œ๋˜์—ˆ์œผ๋ฉฐ, ํšจ์†Œ์—ญ๊ฐ€๋Š” 495.2 U mg-1๋กœ ์ •์ œ ์ „ ๋ณด๋‹ค 123.3 ๋ฐฐ๋กœ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. Aacetyl xylan esterase 1์€ p-nitrophenyl acetate, ฮฑ-naphthyl acetate, acetylated birchwood xylan๊ณผ acetylated beechwood xylan๋ฅผ ๋ถ„ํ•ดํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ๋ฐ˜์‘ ์ ์ •์˜จ๋„์™€ pH๋Š” ๊ฐ๊ฐ 40oC and pH8 ์ด์—ˆ๋‹ค. ๋˜ํ•œ AXE1๊ณผxylanase๋ฅผ acetylated birchwood xylan์— ํšจ์†Œ๋ฐ˜์‘ ํ•œ ๊ฒฝ์šฐ, xylanase๋งŒ ๋‹จ์ผ ๋ฐ˜์‘ํ•œ ๊ฒฝ์šฐ์— ๋น„ํ•ด ์•ฝ 25%์˜ ์ƒ๋ณดํšจ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. 3. ํ•œ๊ตญ ์žฌ๋ž˜์‚ฐ์–‘์—์„œ ๋ถ„๋ฆฌํ•œ ๋ฐ˜์ถ”์œ„ ํ˜๊ธฐ๊ณฐํŒก์ด์˜ ํ˜•ํƒœ์ , ๋Œ€์‚ฌ์  ๊ทธ๋ฆฌ๊ณ  ์œ ์ „์ž์  ํŠน์„ฑ ๋น„๊ต ๋ณธ ์—ฐ๊ตฌ๋Š” ํ•œ๊ตญ ์žฌ๋ž˜์‚ฐ์–‘์— ์กด์žฌํ•˜๋Š” ๋ฐ˜์ถ”์œ„ ํ˜๊ธฐ ๊ณฐํŒก์ด๋ฅผ ๋ถ„๋ฆฌํ•˜๊ณ , ๊ฐ ๊ณฐํŒก์ด์˜ ํ˜•ํƒœ์ , ๋Œ€์‚ฌ์ , ์œ ์ „์ž์  ํŠน์„ฑ์„ ๋น„๊ตํ•˜๊ณ ์ž ์‹ค์‹œํ•˜์˜€๋‹ค. ๋ฐ˜์ถ”์œ„ ๋ˆ„๊ด€์ด ์žฅ์ฐฉ๋œ 4๋งˆ๋ฆฌ์˜ ์žฌ๋ž˜์‚ฐ์–‘์—์„œ ์ด 37๊ฐœ์˜ ํ˜๊ธฐ ๊ณฐํŒก์ด๋ฅผ sigmacell, starch, CMC, filterpaper ์™€ ๊ฐ 4๊ฐœ์˜ ๋ณตํ•ฉ ๊ธฐ์งˆ์„ ํƒ„์†Œ์›์œผ๋กœ ์ด์šฉํ•˜์—ฌ ๋ถ„๋ฆฌํ•˜์˜€๋‹ค. ๋ถ„๋ฆฌ๋œ ๊ณฐํŒก์ด๋Š” ๋ชจ๋‘ filamentous ํ˜• ๊ฐ€๊ทผ๊ณผ monocentric ํ˜• ์—ฝ์ƒ์ฒด๊ฐ€ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ๋ถ„๋ฆฌ๋œ ๊ณฐํŒก์ด๋Š” ํ˜•ํƒœ์  ๊ด€์ฐฐ๊ณผ ITS1 ์„œ์—ด๋ถ„์„์„ ํ†ตํ•ด O25, O27๊ณผ O29๋Š” Piromyces ์†์œผ๋กœ ๋‚˜๋จธ์ง€๋Š” Neocallimastix ์†์œผ๋กœ ๋ถ„๋ฅ˜๋˜์—ˆ๋‹ค. ํ˜•ํƒœ์  ๋ถ„์„๊ณผ ๋Œ€์‚ฌ์œ ์ „์ž์˜ ์„œ์—ด๋ถ„์„์„ ํ†ตํ•œ ๋น„๊ต ๋ถ„์„์—์„œ๋Š”, ๊ฐ ๊ณฐํŒก์ด์˜ ํŠน์ง•์„ ๊ตฌ๋ถ„์ง€์„ ๋ช…ํ™•ํ•œ ์ฐจ์ด๋ฅผ ์ฐพ์„ ์ˆ˜ ์—†์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ITS1 ์„œ์—ด ๋ถ„์„์— ๋”ฐ๋ผ ๋ถ„๋ฆฌ๋œ ๊ณฐํŒก์ด๋Š” ์ด 9๊ฐœ์˜ Neocallimastix ์†๊ณผ 1๊ฐœ์˜ Piromyces์†์œผ๋กœ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ํŠนํžˆ Piromyces์†์œผ๋กœ ๋ถ„๋ฅ˜๋œ ๊ณฐํŒก์ด์˜ ์„ฑ์žฅ ์†๋„, CMCase์™€ xylanase์˜ ์—ญ๊ฐ€๊ฐ€ Neocallimastix ์†๋ณด๋‹ค ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ์•˜๋‹ค. ์ด๋ ‡๊ฒŒ ๋ถ„๋ฅ˜๋œ ๊ณฐํŒก์ด์ค‘ ์ด 7๊ฐœ๋ฅผ ์„ ๋ฐœํ•˜์—ฌ ์ดํ›„ ์—ฐ๊ตฌ์— ์ ์šฉํ•˜์˜€๋‹ค. 4. ํ•œ๊ตญ ์žฌ๋ž˜์‚ฐ์–‘์—์„œ ๋ถ„๋ฆฌํ•œ ๋ฐ˜์ถ”์œ„ ํ˜๊ธฐ๊ณฐํŒก์ด์˜ ์„ฌ์œ ์†Œ ๋ถ„ํ•ดํšจ์†Œ์˜ ์œ ์ „์  ๋‹ค์–‘์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ ๋ณธ ์—ฐ๊ตฌ๋Š” ์„ฌ์œ ์†Œ ๋ถ„ํ•ด๋Šฅ๋ ฅ์„ ๊ทผ๊ฑฐ๋กœ ์„ ๋ฐœ๋œ ๋ฐ˜์ถ”์œ„ ํ˜๊ธฐ๊ณฐํŒก์ด์˜ cDNA libray๋ฅผ ๊ตฌ์ถ•ํ•˜๊ณ , ํšจ์†Œ๋ฐ˜์‘์„ ๊ธฐ์ดˆ๋กœ ๊ธฐ๋Šฅ์„ฑ ์œ ์ „์ž๋ฅผ ๋ถ„๋ฆฌ, ๋น„๊ตํ•˜๊ณ ์ž ์‹ค์‹œํ•˜์˜€๋‹ค. Neocallimastix ์† 6์ข…(G8, G9, G51, G52, G64 and O7) ๊ณผ 1์ข…์˜Piromyces์† (O25)์˜ cDNA library๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€์œผ๋ฉฐ, ๊ฐ ๊ณฐํŒก์ด ๋ณ„๋กœ ํ‰๊ท  2.1kb ํฌ๊ธฐ์˜ cDNA๊ฐ€ ์‚ฝ์ž…๋œ 60,000 ๊ฐœ์˜phage๋ฅผ ์„ ๋ฐœ์— ์ด์šฉํ•˜์˜€๋‹ค. ํšจ์†Œ ๋ฐ˜์‘์— ๊ทผ๊ฑฐํ•œ ์„ ๋ฐœ์„ ํ†ตํ•ด ์„ ๋ฐœ๋œ 151๊ฐœ์˜ clone ์— ๋Œ€ํ•œ ์—ผ๊ธฐ์„œ์—ด์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ Cel45A ๊ทธ๋ฃน์ด ๊ฐ€์žฅ ๋งŽ์ด ํฌํ•จ๋˜์–ด ์žˆ์—ˆ์œผ๋ฉฐ, ํŠนํžˆcellobiohydrolase๋Š”Piromyces์†์—์„œ๋งŒ ๋ถ„์„๋˜์—ˆ๋‹ค. ํ˜๊ธฐ๊ณฐํŒก์ด์˜ ์„ฌ์œ ์†Œ ๋ถ„ํ•ด ์œ ์ „์ž ์™€์˜์ƒ๋™์„ฑ ๋ถ„์„์—์„œ๋Š” 80% ์ดํ•˜๊ฐ€ 10๊ฐœ๊ฐ€ ์žˆ์—ˆ์œผ๋ฉฐ, ์„ ๋ฐœ๋œ ์œ ์ „์ž๊ฐ„์—๋Š” ์ตœ๊ณ  ์•ฝ 40%์˜ ์—ผ๊ธฐ์„œ์—ด ์ƒ๋™์„ฑ์„ ๊ฐ–๋Š” ๊ฒƒ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. 5. ํ•œ๊ตญ ์žฌ๋ž˜์‚ฐ์–‘์—์„œ ๋ถ„๋ฆฌํ•œ ๋ฐ˜์ถ”์œ„ ํ˜๊ธฐ๊ณฐํŒก์ด์˜ ์„ฌ์œ ์†Œ ๋ถ„ํ•ดํšจ์†Œ์˜ ๋ฐœํ˜„ ๋ฐ ํŠน์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ ๋ณธ ์—ฐ๊ตฌ๋Š” ์„ฌ์œ ์†Œ ๋ถ„ํ•ด๋Šฅ๋ ฅ์„ ๊ทผ๊ฑฐ๋กœ ์„ ๋ฐœ๋œ ์„ฌ์œ ์†Œ ๋ถ„ํ•ด ํšจ์†Œ ์œ ์ „์ž์˜ ๋‹จ๋ฐฑ์งˆ ๋ฐœํ˜„๊ณผ ํšจ์†Œ ํŠน์„ฑ์„ ์•Œ์•„๋ณด๊ณ ์ž ์‹ค์‹œํ•˜์˜€๋‹ค. ๊ฐ ์„ฌ์œ ์†Œ ๋ถ„ํ•ด ์œ ์ „์ž๋Š” pYES2/CT ๋ฒกํ„ฐ์— ์‚ฝ์ž…๋˜์–ดSaccharomyces cerevisiae INVSC1์—์„œ ๋ฐœํ˜„๋˜์—ˆ๋‹ค. ๋ฐœํ˜„๋œ ๋‹จ๋ฐฑ์งˆ์€ ๋ถ„์ž๋Ÿ‰์ด 43.22kDa ๋ถ€ํ„ฐ 89.37 kDa ์œผ๋กœ ๋‹ค์–‘ํ•˜์˜€๋‹ค. ๊ฐ ์„ฌ์œ ์†Œ ๋ถ„ํ•ด ๋‹จ๋ฐฑ์งˆ์€ GH 5, GH 6, GH 9 ์™€ GH 45 ๋„ค ๊ฐœ์˜ glycosylhydrolase family๋กœ ๋ถ„๋ฅ˜๋˜์—ˆ๋‹ค. Public data base๋ฅผ ์ด์šฉํ•˜์—ฌ ์•„๋ฏธ๋…ธ์‚ฐ ์„œ์—ด์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ โ‘  O25-7-2, โ‘ก O25-13-4, โ‘ข O25-2-2, โ‘ฃ G8-15, โ‘ค G9-9, โ‘ฅ G64-17, โ‘ฆ G7-33์™€โ‘ง O7-56๋Š” ๊ฐ๊ฐ โ‘  Piromyces ์†์˜ exocellobiohydrolase (81%), โ‘ก Piromyces ์†์˜endoglucanase Cel9B(88%), โ‘ข Piromyces ์†์˜endoglucanase 5A(91%),โ‘ฃPiromyces ์†์˜endoglucanase Cel9B(82%), โ‘ค Ralstoniasolanacearum์˜ endoglucanase(46%), โ‘ฅ Orpinomyces์†์˜ glucanohydrolase(69%), โ‘ฆ Piromyces ์†์˜ endoglucanase 45A(82%), โ‘ง Rhizopusoryzae์˜ endo-beta-1,4-D-glucanase(65%)๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ๋ฐ˜์‘ ์ ์ • pH๋Š” pH5์—์„œpH 9๊นŒ์ง€, ์ ์ • ์˜จ๋„๋Š” 40oC ์—์„œ 60oC ๊นŒ์ง€๋กœ ๋‹ค์–‘ํ•˜๊ฒŒ ๋ถ„์„๋˜์—ˆ๋‹ค. ํŠนํžˆ O7-33, O7-56 ์™€ O25-7-2๋Š” 80 oC ์—์„œ 1์‹œ๊ฐ„ ์ฒ˜๋ฆฌ ํ›„์—๋„ ์•ฝ 40% ์ •๋„์˜ ์„ฌ์œ ์†Œ ๋ถ„ํ•ด ๋Šฅ๋ ฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด ์—ด ์•ˆ์ •์„ฑ์ด ์šฐ์ˆ˜ํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋Š” ๋ฐ˜์ถ”์œ„ ํ˜๊ธฐ๊ณฐํŒก์ด์˜ ํƒ„์ˆ˜ํ™”๋ฌผ ๋Œ€์‚ฌํšŒ๋กœ์— ๊ด€๋ จ๋œ ๊ธฐ๋Šฅ์„ฑ ์œ ์ „์ž ์—ฐ๊ตฌ์™€ ์„ฌ์œ ์†Œ ๋ถ„ํ•ด ํšจ์†Œ ๊ด€๋ จ์—ฐ๊ตฌ์˜ ๊ธฐ์ดˆ์ž๋ฃŒ๋กœ ์ด์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค. ๋˜ํ•œ ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ํš๋“ํ•œ ์„ฌ์œ ์†Œ ๋ถ„ํ•ด ํšจ์†Œ๋“ค์€ ์•ˆ์ „์„ฑ๊ณผ ๋Œ€๋Ÿ‰๋ฐฐ์–‘์— ๋Œ€ํ•œ ์‹œํ—˜์ด ์ˆ˜ํ–‰๋  ๊ฒฝ์šฐ, ์‚ฌ๋ฃŒ ๋ฐ ๋ฐ”์ด์˜ค ์—๋„ˆ์ง€๋ฅผ ๋น„๋กฏํ•œ ํšจ์†Œ ๊ด€๋ จ ์‚ฐ์—…์— ์ ์šฉ์ด ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.The ruminant animals acquire most of their energy from the fermentation products of feed digested by anaerobic bacteria, protozoa and fungi. The rumen anaerobic fungi secrete various cellulolytic enzymes through their multiple enzyme system. Due to increase in bio-energy production using bio-mass, interests in cellulolytic enzymes are increasing. In addition, development in bioinformatics tools and Next Generation Sequencing technology, the discovery of novel cellulolytic enzymes from anaerobic fungi are much easier than ever. In this study, unknown cellulolytic enzyme, and to analyze genetic diversity and characteristics of enzymes were performed. 1. Analysis of Functional Genes Involved in Carbohydrate Metabolism from Anaerobic Rumen Fungus Neocallimastix frontalis PMA02 The purpose of this study was to isolate functional genes related with carbohydrate metabolism from anaerobic rumen fungus N. frontalis using high throughput Expressed Sequence Tagging method. From 10,080 acquired clones, 9,569 clones with average size of 628 bp were selected for analysis. After assembling process, 1,410 contigs were assembled and 1,369 sequences were remained as singletons. The 1,192 sequences were matched with proteins in public data base with known function and 693 of them were matched with proteins isolated from fungi. 154 sequences were classified as the genes related with biological process and 328 sequences were classified as the genes related with cellular components. Most of enzymes in the pathway of glucose metabolism were successfully isolated via construction of 10,080 ESTs. Four kinds of hemi-cellulase were isolated such as mannanase, xylose isomerase, xylan esterase, and xylanase were isolated. Five ฮฒ-glucosidases with at least three different conserved domain structures were isolated. Ten cellulases with at least five different conserved domain structures were isolated. This is the first solid data supporting the expression of multiple enzyme system in fungus N. frontalisfor polysaccharide hydrolysis. 2. Molecular Cloning, Heterologous Expression, and Characterization of Acetyl Xylan Esterase1 from Anaerobic Rumen Fungus Neocallimastic frontalis PMA02 The purpose of this study was to express and characterize the AXE1 acquired from EST analysis of the rumen anaerobic fungus N. frontlis PMA 02. The deduced amino acid sequences consisted of mature protein with an estimated molecular mass of 37.3 kDa with 4.5 pI. The high sequence homologies were obtained with AXEA and BnaI of anaerobic fungus Opinomyces spp. and N. patricicum, respectively but not with those of any other aerobic microbes. The cloned gene was heterologously expressed as recombinant protein in E.coli BL21 (DE3). After partial purification, 121.3- fold activity with a yield of 28.1% and the specific activity of 495.2 U mg-1 were acquired. The partially purified recombinant protein displays broad substrate specificity as acetate being released not only from p-nitrophenyl acetate but also from ฮฑ-naphthyl acetate, acetylated birchwoodxylan and acetylated beechwoodxylan. Temperature and pH optima were 40oC and pH 8 respectively when assed with p-nitrophenyl acetate as a substrate. In addition, synergistic effect was also observed when co-incubated with xylanase for the degradation of acetylated birchwoodxylan. 3. Comparison of Morphologic, Metabolic and Genetic Characteristics of Anaerobic Rumen Fungi Isolated From Korean Native Goat The purpose of this study was to compare of the morphology, metabolic end-product and genetic characteristics of anaerobic rumen fungi isolated from Korean native goat. The isolated anaerobic rumen fungi were cultivated in anaerobic condition at 39โ„ƒ with modified Lowes medium containing each filter paper, starch, carboxymethylcellulose(CMC), sigmacell and mixture of 4 substrates(G) as carbon source. All of the isolated fungi were observed filamentous rhizoid and monocentric thallus. From the results of morphological and ITS1 gene analyses, colonies O25, O27 and O29 were identified as genus Piromyces genus and the other 34 colonies were identified as genus Neocallimastix. According to phylogenetic analysis based on ITS1 analysis, isolated 37 fungi were separated into 10 groups. The growth rate and fibrolytic enzyme activities of genus Piromycesgenus were the lower than those of genus Neocallimastix. 4. Genetic Diversity of cellulolytic Enzymes in Anaerobic Rumen Fungi Isolated from Korean Native Goat The purpose of this study was to discover noble cellulolytic enzyme genes from anaerobic rumen fungi isolated from Korean native goat using meta-transcriptome methods. The cDNA library for 6 Neocallimastix genus (G8, G9, G51, G52, G64 and O7) and one Piromyces genus (O25) were constructed. Six thousandphages which containing average 2.1kb of fungal cDNA were screened based on cellulytic activities. One hundred and fifty one phages were selected and cDNA sequences were analyzed. Endo-glucanase Cel45A were detected with the highest number from selected genes, particularly cellobiohydrolase were analyzed only from the genus Piromyces. In the NCBI blast test, genes which showed below 80% similarity were 10. The about 40% similarity was detected in selected genes. 5. Cloning and Characteristics of Cellulolytic Enzymes from Anaerobic Rumen Fungi in Saccharomyces cerevisiae. The purpose of this study was to express and characterize the cellulolytic enzymes acquired from cDNA library of the rumen anaerobic fungus isolated Korea native goat. Each 8 cellulolytic genes were cloned into pYES2/CT vector and expressed as recombinant protein in Saccharomyces cerevisiae INVSC1. The deduced amino acid sequences consisted of mature protein with an estimated molecular mass of 43.22 kDa to 89.37 kDa. Cellulolytic genes were classified with 4 glycosyl-hydrolase family as GH 5, GH 6, GH 9 and GH 45. According to blastP, 8 cellulolytic genes were analyzed as follows : O25-7-2 ; Piromyce ssp. exocellobiohydrolase (81%), O25-13-4 ; Piromyce ssp. endoglucanase Cel9B(88%),O25-2-2 ; Piromyce ssp. endoglucanase 5A(91%), G8-15 ; Piromyce ssp. endoglucanase Cel9B(82%),G9-9 ; Ralstonia solanacearum endoglucanase (46%), G64-17 ; Orpinomyce ssp. Glucanohydrolase (69%),G7-33 ; Piromyce ssp. endoglucanase 45A(82%), O7-5 ; Rhizopuso ryzae endoglucanase (65%). Optimal pHs and temperatures were distributed widely from pH 5 to pH 9 and 40oCto 60oC. Especially, heat stability of O7-33, O7-56 and O25-7-2 was better than other expressed cellulolytic enzymes because of remained activity of this 3 enzymes were about 40% after incubation at 80oC for 1hr. The results of this study could be used in functional genomics and cellulolytic enzyme research for metabolic pathway of carbohydrate fermentation in anaerobic rumen fungi. Also, if the problem of stability and mass culture is resolved, heterologous cellulolytic enzymes acquired in this study might be applied to feed, bio-energy and enzyme industry.Docto

    ํ•œ๊ตญ ๋ฌด์„ ์ธํ„ฐ๋„ท ์‚ฐ์—…์˜ ๊ตญ์ œํ™”๊ฐ€๋Šฅ์„ฑ๊ณผ ์ „๋žต์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ•œ๊ตญ ๊ธฐ์—…๋“ค์ด ์„ธ๊ณ„์‹œ์žฅ์„ ์„ ๋„ํ•  ๊ฒฝ์Ÿ๋ ฅ์„ ๊ฐ€์ง„ ๊ฒƒ์œผ๋กœ ์ธ์ • ๋ฐ›๊ณ ์žˆ๋Š” ๋ฌด์„ ์ธํ„ฐ๋„ท ์‚ฐ์—…์˜ ๊ตญ์ œํ™” ๊ฐ€๋Šฅ์„ฑ๊ณผ ์ „๋žต์„ ํƒ์ƒ‰ํ•˜๊ธฐ ์œ„ํ•ด ๊ฒฝ์˜์ „๋žต๊ณผ ๊ตญ์ œ๊ฒฝ์˜ ๋ถ„์•ผ์˜ ์ด๋ก ์  ๋ฐฐ๊ฒฝ์„ ๋ฐ”ํƒ•์œผ๋กœ ์ ‘๊ทผ์„ ์‹œ๋„ํ•˜์˜€๋‹ค. Yip์˜ ์‚ฐ์—…๊ธ€๋กœ๋ฒŒํ™” ๋™์ธ ๋ชจ๋ธ๊ณผ Porter์˜ ๊ตญ๊ฐ€๊ฒฝ์Ÿ๋ ฅ ๋‹ค์ด์•„๋ชฌ๋“œ ๋ชจ๋ธ์„ ์ ์šฉํ•˜์—ฌ ์–ป์€ ์ฃผ์š” ๋ถ„์„๊ฒฐ๊ณผ์™€ ์‹œ์‚ฌ์ ์„ ์š”์•ฝํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ „์„ธ๊ณ„์ ์œผ๋กœ ๋ฌด์„ ์ธํ„ฐ๋„ท ์‹œ์žฅ์€ ๋น ๋ฅด๊ฒŒ ์„ฑ์žฅํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ํ•œ๊ตญ ๋ฌด์„ ์ธํ„ฐ๋„ท ์‚ฌ์—…์ž๋“ค์€ ์šด์šฉ ๋…ธํ•˜์šฐ์™€ ์‘์šฉ ๊ธฐ์ˆ ๋ ฅ ์ƒ์˜ ๊ฐ•์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, ๋„คํŠธ์›Œํฌ ํšจ๊ณผ๊ฐ€ ์ ์šฉ๋˜๋Š” ์‚ฐ์—…์˜ ํŠน์„ฑ์„ ๊ณ ๋ คํ•  ๋•Œ ํ•œ๊ตญ ๋ฌด์„ ์ธํ„ฐ๋„ท ์‚ฌ์—…์ž๋“ค์˜ ๊ตญ์ œํ™” ๋‹น์œ„์„ฑ์€ ๋งค์šฐ ๋†’์€ ์ƒํ™ฉ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ•ด์™ธ ์‚ฌ์—…์ž์™€ ๋น„๊ตํ•˜์—ฌ ์ž๋ณธ๋ ฅ๊ณผ ์ธ์ง€๋„๊ฐ€ ๋–จ์–ด์ง„๋‹ค๋Š” ๋‹จ์ ์€ ํ•œ๊ตญ ๊ธฐ์—…๋“ค์ด ํ’€์–ด์•ผ ํ•  ๊ณผ์ œ๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•œ๊ตญ์—์„œ ๋ฌด์„ ์ธํ„ฐ๋„ท์ด ๊ธ‰๊ฒฉํžˆ ๋ฐœ์ „ํ•  ์ˆ˜ ์žˆ์—ˆ๋˜ ๊ฒƒ์€ ์น˜์—ดํ•œ ๊ตญ๋‚ด ๊ฒฝ์Ÿํ™˜๊ฒฝ๊ณผ, ์†Œ๋น„์ž๋“ค์˜ ๊นŒ๋‹ค๋กœ์šด ์š”๊ตฌ, ์—ฐ๊ด€์‚ฐ์—…์˜ ์šฐ์ˆ˜์„ฑ, ๊ทธ๋ฆฌ๊ณ  ์ •๋ถ€ ์ธก๋ฉด์—์„œ์˜ ๋‹ค์–‘ํ•œ ์ œ๋„์ ์ธ ์ง€์›์ด ๋’ท๋ฐ›์นจ๋˜์–ด ๊ฐ€๋Šฅํ–ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์„ ์ง„๊ตญ๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ์ •๋ณดํ†ต์‹  ๋ถ„์•ผ์˜ ๊ณ ๊ธ‰์ธ๋ ฅ์˜ ๋ถ€์กฑ์€ ํ•œ๊ตญ์˜ ๋ฏธ๋ž˜ ๊ตญ๊ฐ€๊ฒฝ์Ÿ๋ ฅ์— ์ œ๋™์„ ๊ฑธ ์ˆ˜ ์žˆ๋Š” ์š”์ธ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค

    A Study on the Tradition of the Image of Lord Yeonsan in the Archives

    No full text

    ์ง€์  ์žฌ์‚ฐ๊ถŒ์˜ ์ „๋žต์  ๊ด€๋ฆฌ์˜ ์„ฑ๊ณต์š”์ธ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธฐ์—…์˜ ์ „๋žต์ ์ธ ์ง€์  ์žฌ์‚ฐ๊ถŒ ๊ด€๋ฆฌ ๋ฐ ํ™œ์šฉ์— ๊ด€ํ•œ ๊ฒƒ์œผ๋กœ, ๊ธฐ์กด์˜ ์—ฐ๊ตฌ๋“ค๊ณผ ํ•ด์™ธ ๊ธฐ์—…๋“ค์˜ ์‚ฌ๋ก€๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ง€์  ์žฌ์‚ฐ๊ด€๋ฆฌ ์ „๋žต์˜ ์š”์†Œ๋“ค์„ ์‚ดํŽด๋ณด๊ณ  ์„ฑ๊ณต์ ์ธ ๊ด€๋ฆฌ ์ „๋žต์„ ์œ„ํ•œ ๊ธฐ์—…์˜ ์—ญ๋Ÿ‰ ๋ฐ ํŠน์„ฑ์„ ๋„์ถœํ•˜๊ณ  ์žˆ๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅด๋ฉด, ์ง€์  ์žฌ์‚ฐ์€ ๊ธฐ์—…์˜ ํ•ต์‹ฌ์ ์ธ ์ž์‚ฐ์ด๋ฉฐ ์ด์˜ ์ ๊ทน์ ์ธ ํ™œ์šฉ์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์ „๋žต์  ๋ชฉํ‘œ์˜ ๋‹ฌ์„ฑ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋˜ํ•œ ์ง€์  ์žฌ์‚ฐ ๊ด€๋ฆฌ ์ „๋žต์€ ์ „์‚ฌ์  ํ™œ๋™์ด๋ฉฐ ๊ธฐ์—…์˜ ์ฃผ์š” ์˜์‚ฌ๊ฒฐ์ •๊ณผ ๋ฐ€์ ‘ํ•œ ๊ด€๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๊ธฐ์—…์€ ์ด ์ ์„ ์ฃผ์ง€ํ•˜๊ณ  ์ง€์  ์žฌ์‚ฐ์˜ ํ™•๋ณด, ์ง€์  ์žฌ์‚ฐ์˜ ํ™œ์šฉ์„ ํ†ตํ•œ ๊ฐ€์น˜ ์ฐฝ์ถœ. ์ฐฝ์ถœํ•œ ๊ฐ€์น˜๋กœ๋ถ€ํ„ฐ ์–ป๋Š” ์ด์œค์˜ ์ „์œ ๋ฅผ ์œ„ํ•œ ์„ธ๋ถ€ ์ „๋žต์„ ์ˆ˜๋ฆฝํ•˜์—ฌ์•ผ ํ•œ๋‹ค. ์ง€์  ์žฌ์‚ฐ์˜ ํ™•๋ณด์—์„œ๋Š” ๊ธฐ์ˆ ์˜ ์›์ฒœ์„ ๋‹ค์–‘ํ™” ํ•˜์—ฌ ์ž์›์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋ฉฐ, ์™ธ๋ถ€๋กœ๋ถ€ํ„ฐ ์ง€์‹์„ ํ™•๋ณดํ•  ๊ฒฝ์šฐ ์ „๋žต์  ๋ชฉํ‘œ๊ฐ€ ๋šœ๋ ทํ•ด์•ผ ํ•จ์ด ๋“œ๋Ÿฌ๋‚ฌ๋‹ค. ๋˜ํ•œ ๊ธฐ์—…์€ ์ง€์  ์žฌ์‚ฐ์„ ์ „๋žต์ ์œผ๋กœ ํ™œ์šฉํ•ด ์ƒˆ๋กœ์šด ๊ฒฝ์Ÿ ์šฐ์œ„๋ฅผ ์ฐฝ์ถœํ•ด ๋‚ผ ์ˆ˜ ์žˆ๊ณ  ๋ผ์ด์„ผ์‹ฑ ์ „๋žต์„ ํ†ตํ•ด์„œ๋Š” ์ˆ˜์ต์˜ ํ™•๋ณด์™€ ๋”๋ถˆ์–ด ๋‹ค์–‘ํ•œ ์ „๋žต์  ๋ชฉํ‘œ๊นŒ์ง€๋„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๊ธฐ์—…์€ ์ˆ˜์ง์ , ์ˆ˜ํ‰์  ์ฐจ๋ณ„ํ™”๋ฅผ ํ†ตํ•ด ๊ฐ€์น˜๋ฅผ ์ „์œ ํ•  ์ˆ˜ ์žˆ๊ณ  ์ž ์žฌ์ ์ธ ์ง„์ž…์ž๋ฅผ ์ €์ง€ํ•จ์œผ๋กœ์จ, ๊ทธ๋ฆฌ๊ณ  ์‹œ์žฅ ๊ธฐ๋ฐ˜ ์ „๋žต์„ ํ™œ์šฉํ•˜์—ฌ ์ง€์  ์žฌ์‚ฐ์„ ๋ณดํ˜ธํ•˜๊ณ  ๊ฐ€์น˜๋ฅผ ์ „์œ ํ•  ์ˆ˜ ์žˆ์Œ์ด ๋ฐํ˜€์กŒ๋‹ค. ๊ธฐ์—…์ด ์ง€์  ์žฌ์‚ฐ์— ๊ธฐ๋ฐ˜ํ•œ ์ „๋žต์„ ์„ฑ๊ณต์ ์œผ๋กœ ์ˆ˜๋ฆฝํ•˜๊ณ  ์‹คํ–‰ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ง€์  ์žฌ์‚ฐ์˜ ๊ฐ€์น˜์™€ ํŠน์„ฑ์„ ํŒŒ์•…ํ•˜๋Š” ์—ญ๋Ÿ‰์„ ๊ฐ–์ถ”์–ด์•ผ ํ•˜๋ฉฐ, ํ˜์‹ ๊ณผ ์ง€์‹ ์ฐฝ์ถœ์— ์ ํ•ฉํ•œ ์กฐ์ง ํŠน์„ฑ. ์ง€์  ์žฌ์‚ฐ ๊ด€๋ฆฌ ์ „๋‹ด ๋ถ€์„œ์™€ ์ „๋ฌธ ์ธ๋ ฅ์˜ ํ™•๋ณด๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค. ๋˜ํ•œ ๊ธฐ์—…์€ ํ˜์‹  ์„ฑ๊ณผ์— ๋Œ€ํ•œ ๋ณด์ƒ ์ฒด๊ณ„๋ฅผ ์ •๋น„ํ•˜๊ณ  ๊ฐ•ํ™”ํ•˜๋ฉฐ, ๋ถ€์„œ๊ฐ„์˜ ํ˜‘์—…๊ณผ ๊ฒฝ์˜์ง„์˜ ์ ๊ทน์ ์ธ ๊ด€์—ฌ๋ฅผ ๋„๋ชจํ•จ์œผ๋กœ์จ ์ง€์  ์žฌ์‚ฐ ๊ด€๋ฆฌ ์ „๋žต์„ ์„ฑ๊ณต์œผ๋กœ ์ด๋Œ ์ˆ˜ ์žˆ๋‹ค
    corecore