12 research outputs found

    Effect of Curing Temperature and Aging on the mechanical Properties of Concrete (I) -Experimental Results and Analysis-

    No full text
    This paper reports the effects of curing temperature and aging on the strength and the modulus of elasticity. In oder to determine the strength and the modulus of elasticity with curing temperature and aging, experimental and analytical methods are adopted. The tests of 480 cylinders are carried out for type I, V and V with 15 percent replacement of fly ash cement concretes, which are cured at isothermal conditions of 10, 23, 35 and 50℃. and the concrete cylinders are tested at the ages of 1, 3, 7 and 28 days. According to the experimental results, the concrete subjected to high temperature at early ages attaines higher early-age compressive and splitting tensile strength but eventually attaines lower later-age compressive and splitting tensile strength. Even if modulus of elasticity has the same tendency, the variation of modulus of elasticity with curing temperature is smaller than that of compressive strength. Based on these experimental results, the relationships among compressive strength, modulus of elasticity and splitting tensile strength are proposed considering the effects of curing temperature, aging and cement type

    Later-Age Strength Prediction of Concrete With Curing Temperature

    No full text
    본 연구는 양생온도의 영향에 따른 콘크리트의 장기강도 예측식을 개발하고, 기존에 보고된 데이터를 이용하여 제안식의 신뢰성을 검증하기 위한 것이다. 제안식은 반응률상수 모델을 이용하였으며, 콘크리트의 장기강도에 영향을 미치는 인자로 양생온도에 따른 확산장벽의 효과를 고려하였다. 제안식을 검증하기위하여 각각의 데이터를 28일 상대강도의비로바꾸어 -0.6~59.7°C 범위의 8개의 평균 양생온도에 대해서 회귀분석하였다. 회귀분석을통해 제안식의 온도 영향계수인 반응율상수, 한계강도, 반응지수를 양생온도에 따른 함수식으로 표현하였다. 제안식은 기존의모델식에 비해 신뢰성이 높았으며, 초기재령에서는 기존의 모델식등과 큰 차이를나타내지 않았으나 장기재령으로 갈수록 제안식의 정확도가 크게 높아짐을 알 수 있었다

    A Study on Thermal Stress in T/G Wall of Containment Building

    No full text
    In this study, the change of concrete temperature, strain and thermal stress were measured by using the embedded type concrete gauges in tendon gallery wall of containment building. A finite element analysis was performed to clarify the thermal behavior of concrete. The analytic and test results were investigated to improve the validity of analytic method. According to the test results, concrete temperature, strain and thermal stress were strongly affected by measuring point and environment condition of member. And the thermal stress was developed in the member which was not demoulded at early ages. This is caused by the change of internal temperature and restrained condition. A finite element effectively interpreted the test results by estimating the concrete properties and the site condition

    A Study on the Convection Heat Transfer Coefficient in Concrete at Early Ages

    No full text
    The setting and hardening of concrete is accompanied by nonlinear temperature distribution caused by developing heat of cement hydration. expecially at early ages, nonlinear temperature distribution has a large influence n the crack evaluation. So the need to predict the exact temperature history in concrete has led to the examination thermal properties. In this study, the convection heat transfer coefficient is experimentally investigated which is one of the thermal properties in concrete. Furthermore, the result of the experiment is compared with those of analysis by the program which is developed in KAIST. As a result of comparison, the analytical results are in good approximation with experimental data

    Study on the Coefficient of Air Convection for Concrete Mix of Nuclear Power Plant

    No full text
    The hardening of concrete after setting is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. Especially at early ages, this nonlinear distribution has a large influence on the tensile cracking. As a result, in order to predict the exact temperature distribution in concrete structures it is required to examine thermal properties of concrete. In this study, the coefficient of air convection for concrete mix of nuclear power plant, which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind and types of form. The coefficient of air convection obtained from experiment increases with velocity of wind, and its dependance on wind velocity is varied with types of form. This tendency is due to a combined heat transfer system of conduction through form and convection to air. The coefficient of air convection for concrete mix of nuclear power plant obtained from this study was well agreed with the existing models

    Early Age Cracking Analysis of Massive Concrete Base Slab with Enhanced Microplane Model

    No full text
    Early age cracking of concrete is a widespread and complicated problem, and diverse applications in practical engineering have focused on this issue. Since massive concrete base slab composes the infrastructure of other concrete structures such as pier, concrete dam, and high rise buildings, early age cracking of that is considered as a crucial problem. In this study, finite element analysis (FEA) implemented with the age-dependent microplane model was performed. For a massive concrete base slab, cracking initiation and propagation, and deformation variation were investigated with concrete age. In massive concrete slab, autogenous shrinkage increases the risk of early age cracking and it reduces reinforcement effect on control of early age cracking. Gradual crack occurrence is experienced from exterior surface towards interior of the slab in case of combined hydration heat and autogenous shrinkage. FEA implemented with enhanced microplane model successfully simulates the typical cracking patterns due to edge restraint in concrete base slab

    양생온도 변화에 따른 콘크리트의 재료역학적 특성

    No full text
    Experimental investigation was undertaken to determine early-age strength development and the relationships between the mechanical properties of type I, V and V/fly ash cement concrete with different curing temperature. The tests for mechanical properties, i.e., compressive strength, splitting tensile strength and modulus of elasticity were carried out for type, I, V and V with 15% replacement with fly ash cement concrete. For this purpose 480 concrete cylinders cured at isothermal conditions of 10, 23, 35 and 5 were tested at ages of 1, 3, 7 and 28days. According to the experiments, the concrete subjected to high temperature at early age got greater strength at early age, however eventually lower strength at late age. The derived relationships between compressive strength and splitting tensile strength and elastic modulus of elasticity appeared to be identical for all types of cement
    corecore