38 research outputs found

    Study on the arc stability and the weld quality based on the statistical analysis of the arc power and the dynamic resistance

    Get PDF
    Welding techniques are applied as a major process in the manufacture of most metal structures. In particular, the automotive, shipbuilding and plant industries have been partially automated and are still heavily equipped with manual and semi-automatic welding. In terms of weld quality, the quality and stability of the arc can be considered an important factor in order to produce a designer or a result of a weld meeting specific criteria. However, there is a possibility of weld defects even if these factors fall into the normal category, and when assessing weld quality, they rely on the visual assessments and manual testing through non-destructive testing. This study performed more than 80 welding times and detected welding current and welding voltage using a welding signal detector during the welding process. After converting the detected signals into data, power and dynamic resistance related to the arc energy intensity were calculated. It is like the energy to melt wires and parent metal, and the arc dynamic resistance is generally associated with arc length and at the same time a constant power is required to meet the desired weld quality, making it an evaluation on weld quality and arc stability. Probability and graph analysis based on the statistical method were then performed by projecting the calculated values onto the current-voltage plane trajectory. The relationship between these results and the results of welding by visual and non-destructive testing was investigated to establish objective and quantitative criteria to assess how the quality and stability of arcs alone affect weld quality. It is judged that this can be easily evaluated by a person who is not a high-function or a non-destructive examination.| μš©μ ‘κΈ°μˆ μ€ λŒ€λΆ€λΆ„μ˜ κΈˆμ†κ΅¬μ‘°λ¬Ό μ œμ‘°μ—μ„œ μ£Όμš” κ³΅μ •μœΌλ‘œ μ μš©λœλ‹€. 특히 μžλ™μ°¨, μ‘°μ„ ν•΄μ–‘, ν”ŒλžœνŠΈ 산업은 전체 κ±΄μ‘°κ³΅μ •μ˜ λŒ€λΆ€λΆ„μ— μš©μ ‘κ³΅μ •μ΄ 적용되고 있고 λΆ€λΆ„μ μœΌλ‘œ μžλ™ν™”κ°€ 이루어지고 μžˆμœΌλ‚˜ μ—¬μ „νžˆ μˆ˜λ™ 및 λ°˜μžλ™ μš©μ ‘μ΄ 많이 적용되고 μžˆλ‹€. μš©μ ‘ ν’ˆμ§ˆ μΈ‘λ©΄μ—μ„œ μ„€κ³„μž λ˜λŠ” νŠΉμ • 기쀀에 λ§Œμ‘±ν•˜λŠ” μš©μ ‘ κ²°κ³Όλ₯Ό λ§Œλ“€κΈ° μœ„ν•΄ μ•„ν¬μ˜ ν’ˆμ§ˆκ³Ό μ•ˆμ •μ„±μ€ μ€‘μš”ν•œ μš”μ†ŒλΌκ³  λ³Ό 수 μžˆλ‹€. ν•˜μ§€λ§Œ μ΄λŸ¬ν•œ μš”μ†Œλ“€κ³Ό 같은 λ‹€μ–‘ν•œ μš©μ ‘ λ³€μˆ˜λ“€μ΄ 정상 범주에 μ†ν•˜λ”λΌλ„ μš©μ ‘ 결함이 λ°œμƒν•  κ°€λŠ₯성이 있으며, μš©μ ‘ ν’ˆμ§ˆμ„ 평가할 λ•ŒλŠ” κ³ κΈ°λŠ₯자의 μœ‘μ•ˆ 평가와 λΉ„νŒŒκ΄΄κ²€μ‚¬λ₯Ό ν†΅ν•œ μˆ˜λ™ 검사에 μ˜μ‘΄ν•˜κ³  μžˆλ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” 80회 μ΄μƒμ˜ μš©μ ‘μ„ μˆ˜ν–‰ν•˜κ³  μš©μ ‘κ³Όμ •λ™μ•ˆ μš©μ ‘μ‹ ν˜Έ κ²€μΆœμž₯치λ₯Ό μ΄μš©ν•˜μ—¬ μš©μ ‘μ „λ₯˜μ™€ μš©μ ‘μ „μ••μ„ κ²€μΆœν•˜μ˜€λ‹€. κ²€μΆœλœ μ‹ ν˜Έλ₯Ό λ°μ΄ν„°λ‘œ λ³€ν™˜ν•œ ν›„ 아크 μ—λ„ˆμ§€ 세기와 연관이 μžˆλŠ” 좜λ ₯(power), 동저항(dynamic resistance)λ₯Ό κ³„μ‚°ν•˜μ˜€λ‹€. μ΄λŠ” 와이어 및 λͺ¨μž¬λ₯Ό 용육 μ‹œν‚€λŠ” μ—λ„ˆμ§€μ™€ κ°™κ³ , 일반적으둜 아크 동저항은 아크 길이와 관련이 있으며 λ™μ‹œμ— μΌμ •ν•œ 좜λ ₯이 μžˆμ–΄μ•Ό μ›ν•˜λŠ” μš©μ ‘ ν’ˆμ§ˆμ„ λ§Œμ‘±ν•  수 있기 λ•Œλ¬Έμ— μ•„ν¬μ˜ ν’ˆμ§ˆκ³Ό μ•ˆμ •μ„±μ— λŒ€ν•œ νŒλ‹¨ μš”μ†Œλ‘œ μ‚Όμ•˜λ‹€. κ·Έ λ‹€μŒ μ „λ₯˜-μ „μ•• 평면 ꢀ적에 κ³„μ‚°λœ 값을 νˆ¬μ˜ν•˜μ—¬ 톡계적 λ°©λ²•μœΌλ‘œ ν™•λ₯  및 κ·Έλž˜ν”„ 뢄석 등을 μ‹œν–‰ν•˜μ˜€λ‹€. 이 결과와 μœ‘μ•ˆ 및 λΉ„νŒŒκ΄΄κ²€μ‚¬μ— μ˜ν•œ μš©μ ‘ 결과의 관련성을 μ‘°μ‚¬ν•˜μ—¬ μš©μ ‘μ‹ ν˜Έμ˜ λΆ„μ„λ§ŒμœΌλ‘œ μ•„ν¬μ˜ ν’ˆμ§ˆκ³Ό μ•ˆμ •μ„±μ΄ μš©μ ‘ ν’ˆμ§ˆμ— μ–΄λ– ν•œ 영ν–₯을 λ―ΈμΉ˜λŠ” 지λ₯Ό ν‰κ°€ν•˜λŠ” 객관적, μ •λŸ‰μ  기쀀을 λ§ˆλ ¨ν•˜μ˜€λ‹€. 이λ₯Ό 톡해 κ³ κΈ°λŠ₯자 λ˜λŠ” λΉ„νŒŒκ΄΄κ²€μ‚¬κ°€ μ•„λ‹Œ 일반 μž‘μ—…μžκ°€ μ†μ‰½κ²Œ μš©μ ‘ ν’ˆμ§ˆμ„ 평가할 수 μžˆλŠ” κ²ƒμœΌλ‘œ νŒλ‹¨λœλ‹€.1. μ„œ λ‘  1.1 연ꡬ λ°°κ²½ 및 λͺ©μ  1 1.2 연ꡬ 동ν–₯ 3 1.3 연ꡬ λ‚΄μš© 4 2. 아크 좜λ ₯κ³Ό 아크 동저항에 λŒ€ν•œ κ³ μ°° 2.1 μš©μ ‘ λΉ„λ“œ ν˜•μƒ 5 2.2 μš©μ ‘ μ „λ₯˜ 및 μš©μ ‘ μ „μ•• 7 2.3 아크 좜λ ₯κ³Ό 아크 동저항 8 3. 아크 μ•ˆμ •μ„± 및 μš©μ ‘ ν’ˆμ§ˆ 평가 κΈ°μ€€ 10 4. λ³Έ λ‘  4.1 μ‹€ν—˜ κ°€μ„€ 16 4.2 μ‹€ν—˜ κ³„νš 17 4.2.1 μ‹€ν—˜ μž₯λΉ„ 17 4.2.2 뢄석 μ†Œν”„νŠΈμ›¨μ–΄ 19 4.2.3 μ‚¬μš© μ‹œν—˜νŽΈ 21 4.2.4 μš©μ ‘ 쑰건 22 4.2.5 λΉ„νŒŒκ΄΄ 검사 23 5. μ‹€ν—˜ 및 κ²°κ³Ό 5.1 μ‹œν—˜νŽΈ μœ‘μ•ˆ 확인 및 λΉ„νŒŒκ΄΄ 검사 κ²°κ³Ό 비ꡐ 24 5.2 μ „λ₯˜-μ „μ•• 평면 ꢀ적과 좜λ ₯ 및 λ™μ €ν•­μ˜ 상관관계 37 5.2.1 μ „λ₯˜-μ „μ•• νŒŒν˜• μ „μ²˜λ¦¬ 38 5.2.2 μ „λ₯˜-μ „μ•• λ²”μœ„μ— λ”°λ₯Έ ꡬ간별 데이터 밀집도 뢄석 39 5.2.3 μ „λ₯˜-μ „μ•• 평면 ꢀ적 뢄석 κ²°κ³Ό 42 5.3 검증 44 6. κ²° λ‘  50 μ°Έκ³ λ¬Έν—Œ 52Maste

    μ‚¬λžŒμ˜ MCF-7ADR μ„Έν¬μ—μ„œ 포도당 고갈이 cytoskeletal reorganization에 λ―ΈμΉ˜λŠ” 영ν–₯

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :생물학과,1998.Maste

    ßPix-b에 μ˜ν•œ 신경세포 μˆ˜μƒ 돌기 μ†Œκ·Ή ν˜•μ„± 쑰절 κΈ°μž‘μ— κ΄€ν•œ 연ꡬ

    No full text
    Thesis(doctors)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :생λͺ…κ³Όν•™λΆ€,2008.2Docto

    Effect of Mental Model Based Instruction on Student's Conceptual Changes in Circular Motion

    No full text
    λ³Έ μ—°κ΅¬λŠ” μ •μ‹ λͺ¨ν˜•μ΄λ‘ μ— κΈ°λ°˜ν•œ μ›μš΄λ™ κ°œλ…ν–₯상 ν”„λ‘œκ·Έλž¨μ΄ ν•™μƒλ“€μ˜ 과학적 κ°œλ… ν˜•μ„±μ— λ―ΈμΉ˜λŠ” 효과λ₯Ό κ²½ν—˜μ μœΌλ‘œ ν™•μΈν•˜κ³ μž ν•˜μ˜€λ‹€. μ •μ‹ λͺ¨ν˜•μˆ˜μ—…은 기쑴의 전톡적 μˆ˜μ—…κ³ΌλŠ” 달리 ν•™μƒμ˜ 쑴재둠적 κΈ°λ³Έ μ „μ œμ™€ 인식적둠 κΈ°λ³Έ μ „μ œλ₯Ό λ³€ν™”μ‹œν‚€κΈ° μœ„ν•œ μ²˜μΉ˜κ°€ ν¬ν•¨λ˜μ—ˆλ‹€λŠ” μ μ—μ„œ 차별점을 μ§€λ‹Œλ‹€. μ •μ‹ λͺ¨ν˜•μˆ˜μ—…μ˜ 효과 검증을 μœ„ν•˜μ—¬ 고등학생 109λͺ…을 μ •μ‹ λͺ¨ν˜• μˆ˜μ—… 처치 여뢀에 따라 μ‹€ν—˜μ§‘λ‹¨κ³Ό ν†΅μ œμ§‘λ‹¨μœΌλ‘œ κ΅¬λΆ„ν•œ ν›„ 두 μ§‘λ‹¨κ°„μ˜ μ›μš΄λ™ κ°œλ…μ— 차이가 λ‚˜νƒ€λ‚˜λŠ”μ§€λ₯Ό μ‚΄νŽ΄λ³΄μ•˜λ‹€. λ˜ν•œ 각 집단 λ‚΄μ—μ„œ 과학적 μ •μ‹ λͺ¨ν˜• ν˜•μ„± μˆ˜μ€€μ— 따라 λ°œμƒν•˜λŠ” ν•™μŠ΅μž νŠΉμ„±μ˜ 차이λ₯Ό ν™•μΈν•˜μ˜€λ‹€. 연ꡬ결과 μ •μ‹ λͺ¨ν˜•μˆ˜μ—…을 μ²˜μΉ˜λ°›μ€ μ‹€ν—˜μ§‘λ‹¨μ΄ 전톡적인 μˆ˜μ—…μ„ 받은 ν†΅μ œμ§‘λ‹¨λ³΄λ‹€ μ›μš΄λ™κ³Ό κ΄€λ ¨λœ 과학적 κ°œλ…λ³€ν™”κ°€ 더 많이 μΌμ–΄λ‚œ κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€. λ˜ν•œ μ •μ‹ λͺ¨ν˜• μˆ˜μ—…μ§‘λ‹¨μ˜ 경우 인지적 νŠΉμ„±κ³Ό ν•™μ—…μ„±μ·¨ νŠΉμ„± λͺ¨λ‘μ—μ„œ 과학적 κ°œλ…λ³€ν™”κ°€ 많이 μΌμ–΄λ‚œ 집단과 그렇지 μ•Šμ€ 집단간에 차이가 λ‚˜νƒ€λ‚˜μ§€ μ•Šμ€ 반면, 전톡적인 μˆ˜μ—…μ§‘λ‹¨μ˜ 경우 과학적 κ°œλ…λ³€ν™”κ°€ 많이 λ‚˜νƒ€λ‚œ 집단이 그렇지 μ•Šμ€ 집단보닀 높은 ν•™μŠ΅λ™κΈ°μ™€ ν•™μ—…μ„±μ·¨κ²°κ³Όλ₯Ό λ³΄μ΄λŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€. λ³Έ 연ꡬλ₯Ό 톡해 μ •μ‹ λͺ¨ν˜• μˆ˜μ—…λͺ¨ν˜•μ΄ 이둠적으둜 뿐만 μ•„λ‹ˆλΌ κ²½ν—˜μ μœΌλ‘œ 과학적 κ°œλ…λ³€ν™”μ— νš¨κ³Όκ°€ μžˆμŒμ„ 확인할 수 μžˆμ—ˆλ‹€. The purpose of this research was to verify the effect of Mental Model based instruction on the student's conceptual changes in circular motion. The Mental Model based instruction was specifically designed to change the student's ontological presupposition and epistemological presupposition. One hundred and nine high school students were randomly assigned to either the treatment group or control group. In the treatment group, the Mental Model based instruction was given. For the control group, traditional lecture type instruction was given. The concepts of circular motion in physics were covered in both instructions. Pretests and Posttests on the concept of circular motion were administered to both groups. In addition, data on the students' cognitive abilities and achievement were collected. The results showed that the students in Mental Model based instruction had more scientific conceptual changes than the ones in the traditional instruction. For the Mental Model based instruction group, the students with most scientific conceptual changes did not differ from the ones without any scientific conceptual changes in terms of their cognitive abilities and achievement. However, for the traditional instruction groups, the students with most scientific conceptual changes showed higher motivation and achievement than the ones without any scientific conceptual changes. The implication of the results were discussed in terms of the application of Mental Model theory in practice
    corecore