17 research outputs found

    ์ •์ „๊ธฐ์ˆ˜๋ ฅํ•™ ์ธ์‡„๋ฅผ ํ™œ์šฉํ•œ ๋‹จ์ผ๋ฒฝ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ๊ธฐ๋ฐ˜ ํŠธ๋žœ์ง€์Šคํ„ฐ ๋ฐ ์‘์šฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2020. 8. ํ™์šฉํƒ.As the demand and research for electronic devices on flexible and stretchable substrates gradually continues comparable to the conventional rigid silicon-based electronic devices, interest in new semiconducting materials capable of low-temperature processes and large-area processes is increasing. Single-walled carbon nanotube (SWCNT) is one of the representative materials satisfying the new interests thanks to its excellent electrical and mechanical properties. SWCNT can be advantageous for non-vacuum, low-temperature, and large-area processes in response to various solution processes such as dipping, inkjet printing, and gravure printing. For high-performance devices with low power consumption based on next-generation electronics, the demand for ultra-fine patterning technology based on the solution process is also increasing. In this thesis, SWCNT-based all electrohydrodynamic-jet (E-jet) printing system was established, a SWCNT-based thin-film transistor (SWCNT-TFT) with a channel length of 5 microns was implemented through the system. In addition, by developing and grafting technology to control the threshold voltage of SWCNT-TFTs based on the solution process, we have demonstrated highly integrated and high-resolution SWCNT-based applications including logic gate, pixel circuits for image detector and display. In addition to the micrometer scale fine pattern technology by the E-jet printing system, a new solution process-based vertical stacking technology is also introduced to further improve the transistor density, enabling high-resolution, highly integrated electronic applications in a continuous environment without any vacuum or high temperature process. The technology introduced in this thesis for high performance, high resolution, and high integration of SWCNT-based devices makes it possible to fabricate a 250 pixel per inch active matrix backplane utilizing only the solution process.์œ ์—ฐ ๊ธฐํŒ ๋ฐ ์‹ ์ถ•์„ฑ ๊ธฐํŒ์ƒ์˜ ์ „์ž ์†Œ์ž์— ๋Œ€ํ•œ ์ˆ˜์š” ๋ฐ ์—ฐ๊ตฌ๊ฐ€ ์ข…๋ž˜์˜ ๋‹จ๋‹จํ•œ ์‹ค๋ฆฌ์ฝ˜ ๊ธฐ๋ฐ˜์˜ ์ „์ž ๊ธฐ์ˆ ๋งŒํผ์ด๋‚˜ ๋งŽ์€ ๊ด€์‹ฌ์„ ๋ฐ›๊ณ  ์žˆ์–ด, ์ด๋ฅผ ์œ„ํ•œ ์ €์˜จ ๊ณต์ • ๋ฐ ๋Œ€๋ฉด์  ๊ณต์ •์ด ๊ฐ€๋Šฅํ•œ ์ƒˆ๋กœ์šด ๋ฐ˜๋„์ฒด ๋ฌผ์งˆ ์—ฐ๊ตฌ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๋‹จ์ผ๋ฒฝ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ๋Š” ๋›ฐ์–ด๋‚œ ์ „๊ธฐ์  ๋ฐ ๊ธฐ๊ณ„์  ํŠน์„ฑ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋น„ ์ง„๊ณต, ์ €์˜จ, ๊ทธ๋ฆฌ๊ณ  ๋Œ€๋ฉด์  ๊ณต์ •์ด ๊ฐ€๋Šฅํ•œ ๋‹ด๊ธˆ ๊ณต์ •, ์ž‰ํฌ์ ฏ ํ”„๋ฆฐํŒ…, ๊ทธ๋ฆฌ๊ณ  ๊ทธ๋ผ๋น„์•„ ์ธ์‡„๋ฒ•๊ณผ ๊ฐ™์€ ์šฉ์•ก๊ณต์ •์— ๋Œ€์‘ํ•˜๊ธฐ์— ์ด๋Ÿฌํ•œ ์š”๊ตฌ๋ฅผ ์ถฉ๋ถ„ํžˆ ์ถฉ์กฑ์‹œํ‚จ๋‹ค. ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์šฉ์•ก ๊ณต์ • ๊ธฐ๋ฐ˜ ์†Œ์ž์˜ ๊ณ ์„ฑ๋Šฅ ๋ฐ ์ €์ „๋ ฅํ™”๋ฅผ ์œ„ํ•œ ์šฉ์•ก ๊ณต์ •๊ธฐ๋ฐ˜์˜ ์ดˆ ๋ฏธ์„ธ ํŒจํ„ฐ๋‹ ๊ธฐ์ˆ ์— ๋Œ€ํ•œ ํ•„์š”์„ฑ๋„ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‹จ์ผ๋ฒฝ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ๊ธฐ๋ฐ˜์˜ ์ „ ์ •์ „๊ธฐ์ˆ˜๋ ฅํ•™ ์ธ์‡„ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜์—ฌ 5๋งˆ์ดํฌ๋ก ์˜ ์ฑ„๋„ ๊ธธ์ด๋ฅผ ๊ฐ–๋Š” ๋‹จ์ผ๋ฒฝ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ๊ธฐ๋ฐ˜ ๋ฐ•๋ง‰ํŠธ๋žœ์ง€์Šคํ„ฐ๋ฅผ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ๋˜ํ•œ ์šฉ์•ก ๊ณต์ •๊ธฐ๋ฐ˜์˜ ๋‹จ์ผ๋ฒฝ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ๊ธฐ๋ฐ˜ ๋ฐ•๋ง‰ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ๋ฌธํ„ฑ ์ „์••์„ ์กฐ์ ˆํ•˜๋Š” ๊ธฐ์ˆ ์„ ๊ฐœ๋ฐœํ•˜๊ณ  ์ด๋ฅผ ์ ‘๋ชฉ์‹œ์ผœ ๋…ผ๋ฆฌ์†Œ์ž์™€ ์˜์ƒ์„ผ์„œ ๋ฐ ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ์œ„ํ•œ ํ”ฝ์…€ ํšŒ๋กœ๋ฅผ ํฌํ•จํ•œ ๋‹จ์ผ๋ฒฝ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ๊ธฐ๋ฐ˜์˜ ๊ณ ํ•ด์ƒ๋„, ๊ณ ์ง‘์ ํ™”๋œ ์‘์šฉ์†Œ์ž๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ •์ „๊ธฐ์ˆ˜๋ ฅํ•™ ์ธ์‡„ ์‹œ์Šคํ…œ์„ ํ†ตํ•œ ๋งˆ์ดํฌ๋ก  ์ˆ˜์ค€์˜ ๋ฏธ์„ธ ํŒจํ„ฐ๋‹ ๊ธฐ์ˆ  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ง‘์ ๋„๋ฅผ ๋”์šฑ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์šฉ์•ก ๊ณต์ •๊ธฐ๋ฐ˜์˜ ์ƒˆ๋กœ์šด ์ˆ˜์ง ์ ์ธตํ˜• ๊ธฐ์ˆ ์„ ๋„์ž…ํ•˜์—ฌ ๊ณ ํ•ด์ƒ๋„ ๋ฐ ๊ณ ์ง‘์ ํ™”๋œ ๋‹จ์ผ๋ฒฝ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ๊ธฐ๋ฐ˜์˜ ์ „์ž ์†Œ์ž๋ฅผ ์–ด๋– ํ•œ ์ง„๊ณต ๊ณต์ •์ด๋‚˜ ๊ณ ์˜จ๊ณต์ • ์—†์ด ์—ฐ์†๋œ ํ™˜๊ฒฝ์—์„œ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ ์ œ์‹œํ•œ ๋‹จ์ผ๋ฒฝ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ๊ธฐ๋ฐ˜ ์†Œ์ž์˜ ๊ณ ์„ฑ๋Šฅ, ๊ณ ํ•ด์ƒ๋„, ๊ณ ์ง‘์ ํ™”๋ฅผ ์œ„ํ•œ ๊ธฐ์ˆ ์€ 250 ppi๊ธ‰์˜ ๋Šฅ๋™ํ˜• ๋งคํŠธ๋ฆญ์Šค ๋ฐฑํ”Œ๋ ˆ์ธ์˜ ์ œ์ž‘์„ ์ˆœ์ˆ˜ ์šฉ์•ก๊ณต์ •๋งŒ์œผ๋กœ ์‹คํ˜„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค.1 Introduction 1 1.1 Single-Walled Carbon Nanotubes 1 1.2 Band structure of SWCNTs 8 1.2.1 Energy bandgap of SWCNTs 8 1.2.2 Density of states for SWCNTs 11 1.2.3 Detection for classifying species of SWCNTs 13 1.3 Sorting out semiconducting SWCNTs 16 1.3.1 Pre-deposition of the nanotubes and sorting later 16 1.3.2 First sorting out SWCNTs and deposition later 18 1.4 Operation of SWCNT-TFTs 21 1.4.1 SWCNT-TFTs as Schottky-barrier FETs 22 1.4.2 Random network of SWCNTs 26 1.5 Reported SWCNT-TFTs and applications 28 1.6 Technical points for microelectronics based on SWCNT-TFTs 32 1.7 Organization 34 2 Tunable threshold voltage in single-walled carbon nanotube thin-film transistors 35 2.1 Introduction 35 2.2 Experimental details 37 2.2.1 Fabrication process for solution-processed SWCNT-TFTs 37 2.2.2 Post-treatments for tunable threshold voltage in solution-processed SWCNT-TFTs and measurement of their electrical properties 38 2.3 Results and discussion 39 2.3.1 Post-chemical encapsulation for tunable threshold voltage 39 2.3.2 Contact resistance analysis by the Y-function method in SWCNT-TFTs employing chemical encapsulation 41 2.3.3 Shift of energy band in SWCNT-TFTs 42 2.3.4 Cycling tests for post-treatments 45 2.3.5 SWCNTs-based p-type only inverter 46 2.4 Conclusion 49 3 All electrohydrodynamic-jet printing system for single-walled carbon nanotube thin-film transistors 50 3.1 Introduction 50 3.2 Experimental details 55 3.2.1 Ink manufacturing for E-jet printed metal, dielectric, and active layers 55 3.2.2 Optimized E-jet printing conditions and fabrication process for all E-jet printed SWCNT-TFTs 57 3.3 Results and discussion 60 3.3.1 Constituting of all E-jet printing system 60 3.3.2 Optimized E-jet printed metal electrode 63 3.3.3 Optimized E-jet printed polymer dielectric 67 3.3.4 E-jet printing of S/D electrodes with short channel length 74 3.3.5 Formation of SWCNT networks in E-jet printing system 76 3.3.6 Overall process for all E-jet printing and electrical characteristics of all E-jet printed SWCNT-TFTs 78 3.4 Conclusion 83 4 All electrohydrodynamic-jet printing system based circuit design for high-resolution and highly integrated applications 85 4.1 Introduction 85 4.2 Experimental details 89 4.2.1 In-situ fabrication of via-hole and diode-connected SWCNTs-TFTs in all E-jet printing system 89 4.2.2 Fabrication process of all E-jet printed inverter with vertically stacked SWCNT-TFTs 90 4.2.3 Fabrication process of all E-jet printed active pixel sensor for image sensor with vertical stacking structure 92 4.2.4 Fabrication process of all E-jet printed pixel circuit for active matrix polymer light-emitting diode with vertical stacking structure 95 4.3 Results and discussion 98 4.3.1 In-situ via-hole formation technology based on all E-jet printing system 98 4.3.2 Additional E-jet printing of PVP layer on the SWCNT-TFTs 99 4.3.3 Electrical characteristics for all E-jet printed diode-connected SWCNT-TFTs 101 4.3.4 Electrical characteristics for all E-jet printed inverter with vertically stacked SWCNT-TFTs 103 4.3.5 Structure design for active pixel sensor based on vertically stacked E-jet printed SWCNT-TFTs 107 4.3.6 All E-jet printed pixel circuit for active matrix polymer light-emitting diode with vertical stacking structure 110 4.4 Conclusion 118 5 Conclusion 119 Appendix 121 A.1 Post-treatment with DI-water on SWCNT-TFT 121 A.2 Variation of characteristics of SWCNT-TFTs by post-treatment time with NH4OH 123 A.3 Surface energy variation by a ratio between cross-liking agent and PVP 124 A.4 Analysis for surface roughness parameters 125 A.5 Electrical characteristics of E-jet printed SWCNT-TFTs according to channel structure 128 Bibliography 130 Abstract in Korean 149Docto
    corecore